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Abstract: In this study, an unpretentious, non-toxic, and cost-effective dissolution casting method was
utilized to synthesize a group of anticancer and biologically active hybrid nanocomposite materials
containing biopolymer cellulose acetate. Pristine ZnO and Ag(0.01, 0.05, 0.1)/ZnO hybrid nanofillers
based on variable Ag NP loadings were prepared via green procedures in the presence of gum arabic
(GA). The chemical structures and the morphological features of the designed nanocomposite materi-
als were investigated by PXRD, TEM, SEM, FTIR, TGA, and XPS characterization techniques. The
characterization techniques confirmed the formation of CA@Ag(0.01, 0.05, 0.1)/ZnO hybrid nanocom-
posite materials with an average crystallite size of 15 nm. All investigated materials showed two
degradation steps. The thermal stability of the fabricated samples was ranked in the following order:
CA/ZnO < CA@Ag(0.01)/ZnO < CA@Ag(0.05)/ZnO = CA@Ag(0.1)/ZnO. Hence, the higher Ag doping
level slightly enhanced the thermal stability. The developed nanocomposites were tested against six
pathogens and were used as the target material to reduce the number of cancer cells. The presence of
Ag NPs had a positive impact on the biological and the anticancer activities of the CA-reinforced
Ag/ZnO composite materials. The CA@Ag(0.1)/ZnO hybrid nanocomposite membrane had the high-
est antimicrobial activity in comparison to the other fabricated materials. Furthermore, the developed
CA@Ag(0.1)/ZnO hybrid nanocomposite material effectively induced cell death in breast cancer.

Keywords: cellulose acetate; Ag-doped ZnO; nanocomposite materials; green synthesis; antibacterial
activity; anticancer activity

1. Introduction

Owing to their inherently advantageous structural, electrical, and mechanical char-
acteristics, polymer nanocomposites have experienced rapid growth in popularity and
advancement over the past few generations. The use of nanofiller in a polymer host could
be beneficial for a number of purposed, such as in biosensors, energy storage devices,
photocatalysts, drug delivery, and other applications [1]. Biopolymers differ from the
traditional polymers. They are created or obtained from living creatures, such as plants and
microbes [2]. Biopolymers may be natural or synthetic in nature [1]. The use of biopolymers
could produce material with unique properties, including biodegradability, biocompatibil-
ity, and sustainability [3]. Biodegradable polymers, or biopolymers, are synthetic materials
that can be decomposed by microorganisms such as bacteria and fungi [1,3]. As a result,
they do not harm the environment in any way [1]. Under aerobic conditions, biopolymers
degrade into CO2, H2O, and biomass, whereas under anaerobic conditions, they decompose
into methane, hydrocarbons, and biomass [3]. Therefore, biopolymers are promising sub-
stitutes for petroleum-based materials. Biopolymers can be categorized into three groups
depending on their sources. Biomass biopolymers, such as polysaccharides, proteins, and
lipids, are extracted from biomass. Biopolymers such as polylactic acid (PLA) can be
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chemically synthesized from biomass. Microorganism biopolymers, such as microbial
polysaccharides and microbial polyesters, are produced by microorganisms [3]. Improve-
ments in their mechanical and thermal characters can be achieved through nanoparticle
inclusion into the polymeric matrices. A number of nanoparticles, including metallic-based
materials and their oxides, as well as nanoclays, have been utilized to enhance the proper-
ties of polymers [4,5]. The development of biopolymers containing nanocomposites and the
many fields to which they have been applied have made possible new avenues of study. Ad-
ditionally, these types of nanocomposites are an emerging category of biohybrid composites
that typically combine biopolymer matrices with nanoscale reinforcing elements [6]. Such
eco-friendly NCs are well-rounded, so they should improve compatibility, recycling, and
output rates [3]. Moreover, biopolymers containing nanocomposites have a highly flexible
range of significant industrial uses in modern technology, such as for automotive parts,
environmentally sound packaging utilities, biomedical applications, smart electronics, and
a wide range of other applications [6].

Zinc oxide nanoparticles (ZnO NPs) constitute a multifunctional metal oxide because
of their unique electronic structure. They are also classified as semiconductor materials
(n-type), owing to the wide range of their bandgap (3.37 eV). Moreover, as non-toxic ma-
terials, they have potential in environmental and biological applications. ZnO NPs are
applied in a wide range of applications, for instance, gas sensors, optoelectronic devices,
dye-sensitized solar cells, and photocatalysts [7,8]. ZnO NPs have been incorporated into
biopolymers for target applications. Althomali et al. modified glassy carbon electrodes
with polyaniline@dialdehyde carboxymethyl cellulose/ZnO nanocomposites (PANI/D-
CMC/ZnO) for the detection of H2O2 [9]. Akshaykranth et al. fabricated a novel nanocom-
posite that consisted of polylactic acid (PLA) and curcumin–ZnO to investigate its optical
and antibacterial properties [10]. Kotharangannagari et al. applied hybrid nanocomposites
of starch/lysine@ZnO NPs in food packing applications [5]. Because of their antibacterial
properties, a lot of attention has been paid to silver nanoparticles (Ag NPs). They are widely
used in biological applications, such as biosensors, forensic science, burn treatment, wound
healing, biomolecule diagnostics, and chemotherapeutic processes [11–14]. It has been
demonstrated that well-known oxide materials can be combined with biopolymers such
as polysaccharides and their derivatives to form nanocomposites that either have a novel
functionality or improve upon an existing function. Ail et al. used Ag/ZnO/chitosan
(Ag/ZnO/Cs) ternary bionanocomposites to improve the antibacterial, optical, and pho-
tocatalytic properties of the metals [7]. Zare et al. combined Ag/Zn NPs with blended
poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-chitosan (PHBVCS) biopolymers to make
food packaging that promotes longer shelf life [15]. Trandafilović et al. investigated
the photocatalytic and antimicrobial activity of alginate-ZnO/Ag nanocomposites [16].
Shi et al. constructed Ag–ZnO/cellulose nanocomposites as effective photocatalysts for
the photodegradation of methyl orange (MO) [17]. Peng et al. reported decorating cel-
lulose/chitosan with Ag/Ag2O/ZnO (AZ@CC) to explore the resulting photocatalytic
and antimicrobial activity [18]. Cellulose is the natural biopolymer that is found in the
greatest abundance on the planet [17]. Among the most significant cellulose derivatives
is cellulose acetate (CA) [19], which is extracted and synthesized from renewable and
natural resources [20,21]. CA has attracted considerable attention, as it is a biodegradable
polymer with hydrophilic features, excellent chemical and mechanical stability, and low
toxicity [22,23]. Because of its advantages, CA has the potential to be broadly utilized
in industrial and biomedical applications, including drug delivery, wound dressing, and
separation membrane technology [24–26]. The number of studies related to CA have
increased [27]. In addition, gum arabic is one of the cellulose derivatives that could be
applied as a stabilizer in the synthesis of nanoparticles, as it is commercially available at
low cost [28–34]. The main strategy employed in the present work was to estimate the anti-
cancer and biological performances of cellulose acetate biopolymer membrane-reinforced
Ag/ZnO hybrid nanomaterials. A green synthesis procedure was utilized to prepare the
Ag/ZnO hybrid reinforcement agent in the presence of gum arabic. We also focused on
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structural investigations of the developed hybrid nanocomposite materials combined with
variations in Ag/ZnO dopant concentrations referring to the silver loadings using PXRD,
FTIR, TEM, SEM, XPS, and TGA techniques; morphological studies were also undertaken.

2. Experimental
2.1. Reagents and Materials

Silver nitrate (purity > 99%), zinc (II) nitrate hexahydrate (purity > 98%), cellulose
acetate, sodium hydroxide pellets, ethanol, and acetone (analytical grade) were obtained
from Sigma-Aldrich, Fisher Chemical, and Techno PharmChem India, respectively. Gum
arabic (GA) was available from a commercial market. Deionized water was used to prepare
all aqueous solutions. All chemicals were used as obtained.

2.2. Preparation of Pristine ZnO Nanoparticles

Freen synthesis of pristine ZnO NPs was carried out as follows: an aqueous solution
of Zn2+ (50 mL, 0.1 M) and GA (40 mL, 1% (w/v)) was stirred for 30 min, followed by
an adjustment of the pH to 10. The stirring was continued for an additional 180 min. For
a period of 24 h, the suspended solution was aged at room temperature. Before being
dried in a furnace, the emulsion was first centrifuged; then, any residue that remained was
thoroughly cleaned with ethanol and deionized water. The ZnO nanoparticles were then
subjected to a calcination process for 1 h at 400 ◦C in an oven.

2.3. Green Synthesis of Ag(0.01, 0.05, 0.1)/ZnO Hybrid Nanomaterials

A green synthesis for the Ag/ZnO hybrid nanomaterials based on variable Ag loading
was carried out as follows. Equal amounts of Ag+ and Zn2+ and 40 mL of aqueous solution
GA (1% (w/v)) were stirred together for 30 min. The pH value was adjusted to pH = 10,
and the aqueous solution was left at room temperature for 24 h. After the colloidal was
centrifuged, it was washed with a small amount of ethanol and deionized water. The
suspended solids were then centrifuged again. The precipitate was then dried in the oven
and subjected to a calcination process for 1 h at 400 ◦C in a furnace. The concentration of
Zn2+ was kept constant at 0.1 M, and three Ag+ concentrations were used, i.e., 0.01, 0.05,
and 0.1 M. Scheme 1 is an illustration of the preparation of Ag/ZnO hybrid nanomaterials.
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2.4. CA/ZnO and CA@Ag/ZnO Hybrid Membrane Fabrication Procedures

The dissolution casting technique was utilized to fabricate the developed CA/ZnO and
CA@Ag/ZnO hybrid membranes. A solution of 25 mL of acetone consisting of dissolved
cellulose acetate powder (1 g) and a 10% fixed loading of pure ZnO nanoparticles was used
to prepare the CA/ZnO hybrid membrane. The solution was stirred for 2 h, then sonicated
for 30 min. The casting procedure was then carried out, and the homogeneous solution was
poured into a glass petri dish. To avoid contamination from environmental particles, the
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dishes were wrapped in aluminum foil and dried for 24 h. Similar procedures were applied
for the fabrication of the CA@Ag(0.01–0.1)/ZnO hybrid membranes using three different
loadings of Ag (0.01, 0.05, and 0.1) each time.

2.5. Utilized Instrumentation

The properties of the CA biopolymer, the prepared green nanomaterials, and the
developed CA/ZnO and CA@Ag/ZnO hybrid membranes were studied using a number
of characterization techniques, such as PXRD, FTIR, TEM, SEM, TGA, and XPS. The
instrumentation used in this study was as follows. The PXRD pattern from 5◦ to 80◦ was
recorded with a Bruker D8 Advance X-ray diffractometer using Cu K (=1.5406A) radiation
at 40 kV and 20 mA. The FTIR spectra were recorded by (FT/IR-4100, JASCO, Japan) in
the range 400–4000 cm−1. The produced hybrid materials were analyzed using a TGA-50
Shimadzu Thermo gravimetric analyzer. We investigated the morphology and chemical
makeup using a JEMF200 multipurpose electron microscope and a JSM-7610F Plus Schottky
field emission scanning electron microscope. X-ray photoelectron spectra were captured
using a Thermo Scientific K-Alpha™ spectrometer (XPS).

2.6. Biological Screening

The biological activities of CA biopolymer and the developed CA/ZnO and
CA@Ag/ZnO hybrid membranes were displayed via the agar diffusion technique. They
were tested against a wide range of bacterial species, Gram-negative bacteria strains, Gram-
positive bacteria strains, and fungi; for example, Serratia marcescens ATCC 21074 and
Escherichia coli ATCC 35218; Bacillus Cereus ATCC 14579 and Staphylococcus aureus
ATCC 29213; and Candida albicans ATCC 76615 and Aspergillus flavus ATCC 9643. All
microorganisms were supplied by King Abdulaziz University (microbiology lab located
at King Fahad Medical Center) in Jeddah, Saudi Arabia. Previous studies revealed the
methodology used to evaluate antibacterial efficacy of the new nanocomposites [35]. Table 1
displays the results of measuring the size of the growth inhibition zone.

Table 1. Antimicrobial activities of CA/ZnO and CA@Ag(0.01, 0.05, 0.1)/ZnO hybrid materials.

Symbol
Microorganism Species/Inhibition Zone (mm)

S. aureus B. subtilis E. coli S. marcescens A. flavus C. albicans

CA/ZnO 8 3 - 7 - 2
CA@Ag(0.01)/ZnO 12 11 6 8 - 4
CA@Ag(0.05)/ZnO 14 13 9 8 - 6
CA@Ag(0.1)/ZnO 15 16 12 10 - 9

2.7. In Vitro MCF7 Anticancer Activity
2.7.1. Cell Culturing

The breast cancer cell lines (MCF-7) were cultured in Dulbecco’s Modified Eagle
Medium (DMEM), which was complemented with 10% fetal bovine serum (FBS), 100 g/mL
streptomycin, and 100 units/mL penicillin. After the cell lines had developed to their
full potential, they were subjected to an incubation period at a temperature of 40 degrees
Celsius. The compounds that were analyzed were suspected of having undergone many
doses of testing with MCF-7.

2.7.2. Experimental (Cell Count and Cell Viability) Investigations

The CA@Ag(0.1)/ZnO nanocomposite was chosen for this investigation because it had
previously been explored for its antimicrobial activity. In the previous investigation, it was
shown to demonstrate a modest level of antimicrobial activity against the bacteria and
fungus that were being studied. Over the course of 48 h, MCF-7 breast cancer cell lines were
cultivated in two different environments: in the absence of CA@Ag(0.1)/ZnO nanocompos-
ite and in its presence at several concentrations (0, 0.5, 1, 2, and 3 mg/mL). Following the
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incubation time, microscopic pictures were captured using inverted microscopy. Thereafter,
MCF-7 cell lines were harvested and quantified utilizing a hemocytometer [36–38].

In addition, an MTT test was carried out to determine cell viability according to the
recommendations provided by the manufacturer (Invitrogen, Carlsbad, CA, USA) [39]. This
test assessed the viability of cells by evaluating the metabolic activity of the cells that were
found to be viable. In this regard, MCF-7 cell lines were implanted in 96-well, flat-bottomed
plates, and cells were plated in the 96-multiwell plate (104 cells/well) for 24 h prior to
treatment with the material to enable cell adhesion to the plate wall. Experiments were
carried out for forty-eight hours, first in the absence of the CA@Ag(0.1)/ZnO nanocomposite
and then in its presence at varied concentrations, namely 0, 0.5, 1, 2, and 3 mg/mL.

3. Results and Discussion
3.1. Chemical Structure Evaluations of CA/ZnO and CA@Ag/ZnO Hybrid Membranes

The chemical structure of the developed CA/ZnO, as well as that of CA@Ag/ZnO in
hybrid membranes with variable silver loadings, was evaluated by eco-friendly and cost-
effective dissolution casting methods. Prior to the fabrication process, a green preparation
of pristine ZnO and hybrid Ag-doped ZnO NPs was carried out in the presence of gum
arabic. The solution’s immediate color change from colorless to dark gray confirmed the
reduction in silver ions. GA is a water-soluble polysaccharide-based biomaterial. The
advantage of gum arabic in this application is its ability to stabilize the desired hybrid
nanocomposite materials.

The PXRD features of CA, CA/ZnO, and CA@Ag(0.01–0.1)/ZnO hybrid composite
membranes are shown in Figure 1. This figure shows that pristine CA had a typical
diffraction pattern, including two separate diffraction peaks at 18 and 22◦ in the 2 direction,
as previously reported in the literature [40]. The crystalline nature of CA@ZnO was
demonstrated by a hexagonal structure with a P 63 mc space group, which is consistent
with the reference data for the material (JCPDS no. 36-1451). CA@Ag(0.01, 0.05, 0.1)/ZnO
hybrid nanocomposites had a face-centered cubic crystalline structure, as reflected by their
respective PXRD patterns, i.e., space group Fm-3m. These peaks were well-matched with
the reference peaks of silver (JCPDS no. 04-0783). The refraction peaks at 32.79 and 54.9◦

indicated the existence of Ag NPs. Figure 1 confirms the doping of the ZnO NPs with Ag
NPs. Moreover, the ZnO NPs maintained their crystal structure. Scherrer’s formula was
applied to the FWHM of the prominent peaks and their location to derive the crystallite
size (D) of the produced nanocomposite (nm). The pristine CA crystallite size (D) was
3.1 nm, whereas the average crystallite size of the fabricated nanocomposite membranes
was approximately 15 nm.

Figure 2 displays a TEM image of CA@Ag(0.1)/ZnO hybrid membrane (a) as a selected
example, and its related particle size distribution histogram is shown in Figure 2b. It can
be seen from the image that the prepared sample had a spherical shape, and the average
size of nanoparticles was 15 nm. The Ag/ZnO hybrid showed improved compatibility and
good distribution of nanoparticles into the CA polymer matrix.

Figure 3 displays SEM micrographs of pristine CA (a) CA@Ag(0.1)/ZnO hybrid ma-
terial (b), a high-resolution image of the CA@Ag(0.1)/ZnO hybrid material (c), and the
EDX signals and their percentage composition of the CA@Ag(0.1)/ZnO hybrid material (d).
Figure 3c shows that after the surface of CA was changed with a Ag(0.1)/ZnO hybrid mem-
brane, a variety of accumulated bubbles of different shapes appeared. Energy-dispersive
X-ray (EDX) was used to examine the elemental composition of the prepared sample, as
seen in Figure 3d. There were two peaks at 1.2 and 9.00 keV denoting Zn. The peak at
0.5 keV denoted O. The peak at 3.0 keV corresponded to silver. Moreover, an energy peak
of C linked to carbon in CA was also present. These findings confirm the formation of
a CA@Ag(0.1)/ZnO hybrid nanocomposite membrane.
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Figure 4 shows the FTIR analyses of the developed hybrid materials in the range of
500–4000 cm−1. FTIR analysis clarified the material functionality and nanocomposite for-
mation of the hybrid nanocomposite. Figure 4 shows the FTIR spectra of pristine CA (black
line), CA/ZnO composite material (purple line), and CA@Ag(0.01, 0.05, 0.1)/ZnO hybrid mate-
rials as final targeted products (green, pink, and red lines, respectively). The FTIR spectrum



Molecules 2023, 28, 1290 7 of 14

of pure CA showed an absorption-stretching broadband around 3400 cm−1, representing
the presence of hydroxyl groups. The C-H group was obtained from the foundations of
various peaks centered at 2973 and 1373 cm−1. The peak at 1061 cm−1 was attributed to the
C-O group. The presence of the peak around 1500 cm−1 was attributed to the stretching of
the CA composition of the C=O ester carbonyl group. The peak at 1061 cm−1 was attributed
to the 1120 cm−1 (acetate C-C-O stretching) and 1016 cm−1 (C-O stretching), which are
characteristic of CA [41,42]. The FTIR spectra of CA@ZnO hybrid materials (purple line)
display a characteristic peak of CA. In addition, a new peak around 477 cm−1 was assigned
to ZnO vibration, which further confirmed the formation of ZnO [42]. It can be seen that
after the formation of of silver nanoparticles on the surface of the zinc oxide nanoparticles,
the intensity of the ZnO peaks decreased in CA@Ag(0.01, 0.05, 0.1)/ZnO (green, pink, and red
lines, respectively) [43].
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Figure 5 illustrates the TGA patterns of pristine CA, CA/ZnO, and
CA@Ag(0.01, 0.05, 0.1)/ZnO hybrid materials. An initial weight loss amounting to ~10%
occurred at around 100 ◦C in all samples as a result of the removal of H2O molecules
and/or trapped solvents on the surface. The TGA thermogram for the pristine CA (black
line) displayed single-step weight losses. This TGA thermogram also exhibited a sharp
reduction in weight; 50% of the weight loss was observed at temperatures less than 400 ◦C.
The thermal degradation of pristine CA was complete at 600 ◦C. In the fabricated CA/ZnO
and CA@Ag(0.01,0.05, 0.1)/ZnO hybrid materials, the TGA curves mainly displayed two-step
weight losses. The CA/ZnO thermogram showed lower thermal degradation in the first
step compared to the CA, which meant that the addition of ZnO accelerated the ther-
mal decomposition of the pristine CA. Meanwhile, it displayed a significant increase in
thermal stability in the second step. The first step was rapid, starting at around 217 ◦C
and ending at around 385 ◦C, whereas the second step was slow and was completed at
around 492 ◦C. Furthermore, CA@Ag(0.01,0.05, 0.1)/ZnO hybrid materials showed identical
decomposition patterns consisting of two main decomposition stages. The TGA curves of
CA@Ag(0.05)/ZnO and CA@Ag(0.1)/ZnO were nearly identical (a tiny shift was observed,
as illustrated in the subfigure of Figure 5). The first step was rapid, starting at around
264 ◦C and ending at around 385 ◦C. The second step was complete at around 500 ◦C.
However, there was a noticeable shift in the TGA curve of CA@Ag(0.01)/ZnO. This shift
was clearly noted between 250 and 350 ◦C. The first step was rapid, starting at 200 ◦C
and ending at around 386◦C. The second step was complete at around 425 ◦C. An almost
75% weight loss was observed in all the fabricated hybrid materials at around 450 ◦C. The
thermal stability was highly affected by the silver loading in the fabricated hybrid materials.
The thermal stabilities for those developed materials were detected in the following order:
CA/ZnO < CA@Ag(0.01)/ZnO < CA@Ag(0.05)/ZnO = CA@Ag(0.1)/ZnO.
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Figure 6 displays the high-resolution XPS spectra of the fabricated CA@Ag(0.1)/ZnO
hybrid nanocomposite. Figure 6a presents two observable peaks at 1045.00 eV and
1022.01 eV that are characteristic of Zn 2p1/2 and Zn 2p3/2, respectively. This observa-
tion confirms the presence of Zn2+ ions within the fabricated hybrid nanocomposite.
Figure 6b presents the high-resolution Ag 3d spectrum giving rise to two peaks at 367.91
and 373.85 eV, corresponding to the Ag 3d5/2 and Ag 3d3/2 orbitals typical of Ag, respec-
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tively. Figure 6c shows a distinct peak realized at 532.84 eV, which could be correlated to
O1s. This observation endorses the presence of an oxide lattice phase within the hybrid
nanocomposite [44–46].
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3.2. Antimicrobial Activities

The fabricated CA/ZnO and CA@Ag(0.01, 0.05, 0.1)/ZnO hybrid materials were biologi-
cally screened against some selected bacterial and fungal microorganisms; the obtained
results are illustrated in Table 1 and Figure 7. The biological characters showed that the
presence of Ag NPs influenced the antibacterial capabilities of the developed nanocom-
posite materials. Table 1 records the effect of each tested material shown in the obtained
inhibition zones (mm) of the bacterial species and fungi, whereas Figure 7 shows a screening
illustration of CA/ZnO and CA@Ag(0.01, 0.05, 0.1)/ZnO hybrid materials against the same
investigated microorganisms. A disk diffusion method was applied to evaluate the antimi-
crobial activity assay of prepared samples. It can be seen from Table 1 and Figure 7 that
all fabricated hybrid composite materials demonstrated significant biological performance
against the majority of the tested bacteria and fungi, except A. flavus. Moreover, there was
a proportional relation between the concentration of Ag NPs in the prepared samples and
the inhibition zone (mm). The replication process and the growth of microorganisms were
noticeably affected by the increase in Ag NP loading. Thus, the CA@Ag(0.1)/ZnO hybrid
nanocomposite membrane had the highest antimicrobial activity among the prepared
samples. The biological properties showed that the presence of Ag NPs influenced the
antibacterial capabilities of the nanocomposite.

Many different mechanisms have been proposed for the inhibition and destruction
of bacterial cells [18,47,48]. According to some studies, electrostatic interaction between
nanomaterials and microorganisms would release a positive ion that would lead to mem-
brane breakdown or permeability disruption; for instance, ZnO NPs and Ag NPs would
produce Zn2+ and Ag+ ions, respectively, which would lead to cell death [7]. Such ions
may have the potential to interfere with the negatively charged functional groups (such as
–NH, –COOH, and –SH) that are found in proteins and nucleic acids, which may lead to
the suppression of DNA replication and the rupture of cell walls. Moreover, it has been
reported in the literature that the formation of reactive oxidation species (ROS), such as
hydroxyl radical (·OH) and hydrogen peroxide (H2O2), superoxide radical (O2

−), and sin-
glet oxygen (O2), can cause bacterial cell death. These species exhibited different levels of
activity and dynamics with ZnO NPs and Ag NPs. ROS caused oxidative stress in bacteria,
resulting in cell death. Moreover, the presence of Ag would reduce the recombination rate
of the electron–hole pair, enhancing the production of ROS. It has been suggested that the
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cause of cell death may be the direct interaction between various NPs and the bacterial
membrane [18,47,48].
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3.3. In Vitro MCF7 Anticancer Activity

Figure 8 shows images of the MCF7 cell used as a control (a) and that in the presence
of variable concentrations of CA@Ag(0.1)/ZnO hybrid composite material (0.50, 1, 2, and
3 mg/mL) (b-e) at a magnification of X = 600. Figure 8 also shows the relationship between
cellular uptake and the cytotoxicity of the hybrid nanocomposite. In addition, the results in
Figure 8 indicate the positive effect of the hybrid nanocomposite on the health of cells as
depicted by their more flattened appearance. Because of this effect, the CA@Ag(0.1)/ZnO
hybrid nanocomposite induces cell death in breast cancer. This result is consistent with the
findings reported in the abovementioned figure.
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Furthermore, Figure 9 displays the MCF7 cell counts at variable concentrations of
CA@Ag(0.1)/ZnO nanocomposites, namely 0.50, 1, 2, and 3 mg/mL. It can be concluded that
the cytotoxicity potential associated with the nanocomposites occurred in a concentration-
dependent manner. The hybrid nanocomposite caused 50% cell growth inhibition at
a concentration of 1 mg/Ml. Moreover, Figure 10 displays the MCF7 cell viability at variable
concentrations of CA@Ag(0.1)/ZnO hybrid material, namely 0.50, 1, 2, and 3 mg/mL.
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4. Conclusions

In order to manufacture a series of biologically active hybrid composite materials de-
pending on cellulose acetate-reinforced hybrid Ag/ZnO nanomaterials, an easy, non-toxic,
and cost-effective casting approach was efficiently utilized. A green synthesis method
was used to prepare ZnO NPs and Ag-doped ZnO in three different concentrations. The
chemical structure and morphologies of the developed composite materials were character-
ized using a number of techniques, such as PXRD, TEM, SEM, FTIR, TGA, and XPS. The
average crystallite size (nm) for such hybrid materials was 15 nm. The doping of the ZnO
NPs with Ag NPs and Ag2O NPs was confirmed. The hybrid nanocomposite membranes
were spherical, exhibiting thermal stability at temperatures over 400 ◦C. The biological
properties of fabricated materials were tested against selected bacterial and fungal species
using a common biological tool. The results showed that the fabricated materials did
not demonstrate any antimicrobial activities against A. flavus. The growth of the tested
microorganisms was noticeably affected by the increase in the concentration of Ag NP load-
ing. Moreover, hybrid nanocomposite membranes were used as target materials to reduce
the number of MCF7 cancer cell lines. In addition, the cell count and cell viability in the
presence of Ag NPs were analyzed through an MTT test. The biological properties showed
that the presence of Ag NPs influenced the antibacterial capabilities of the nanocomposite.
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