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Abstract: Hepatocellular carcinoma (HCC) accounts for the most common form of primary liver
cancer cases and constitutes a major health problem worldwide. The diagnosis of HCC is still chal-
lenging due to the low sensitivity and specificity of the serum α-fetoprotein (AFP) diagnostic method.
Extracellular vesicles (EVs) are heterogeneous populations of phospholipid bilayer-enclosed vesicles
that can be found in many biological fluids, and have great potential as circulating biomarkers
for biomarker discovery and disease diagnosis. Protein glycosylation plays crucial roles in many
biological processes and aberrant glycosylation is a hallmark of cancer. Herein, we performed a
comprehensive glycoproteomic profiling of urinary EVs at the intact N-glycopeptide level to screen
potential biomarkers for the diagnosis of HCC. With the control of the spectrum-level false dis-
covery rate ≤1%, 756 intact N-glycopeptides with 154 N-glycosites, 158 peptide backbones, and
107 N-glycoproteins were identified. Out of 756 intact N-glycopeptides, 344 differentially expressed
intact N-glycopeptides (DEGPs) were identified, corresponding to 308 upregulated and 36 downreg-
ulated N-glycopeptides, respectively. Compared to normal control (NC), the glycoproteins LG3BP,
PIGR and KNG1 are upregulated in HCC-derived EVs, while ASPP2 is downregulated. The findings
demonstrated that specific site-specific glycoforms in these glycoproteins from urinary EVs could be
potential and efficient non-invasive candidate biomarkers for HCC diagnosis.

Keywords: hepatocellular carcinoma; glycoproteomic; N-glycosylation; extracellular vesicles; mass
spectrometry; biomarker

1. Introduction

Liver cancer is the sixth most commonly diagnosed cancer and the third leading
cause of cancer death worldwide in 2020, with approximately 906,000 new cases and
830,000 deaths [1]. It is estimated that, by 2025, more than 1 million individuals will
be affected by liver cancer annually [2]. Hepatocellular carcinoma (HCC) accounts for
75–85% of primary liver cancer cases and constitutes a major health problem worldwide [3].
Although patients with HCC can be treated with local ablation, surgical resection, and
liver transplantation, due to the lack of specific clinical symptoms and efficient diagnostic
method in the early stage, the majority of patients are already in advanced stages when
they are diagnosed, thus having poor prognosis. For example, the 5-year survival rate for
HCC dropped from 70% for early-stage patients to 16% for late-stage patients [4]. Therefore,
early detection of HCC is of particular importance to reduce the mortality rates of HCC
patients. Currently, serum α-fetoprotein (AFP) measurement and liver ultrasonography
are widely accepted as the most effective and affordable tools to screen and diagnose HCC
in the clinic [5]. However, not all patients with HCC have elevated serum AFP, and the
sensitivity and specificity of AFP are limited to 40–62% [6]. Furthermore, tumors can only
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be detected by imaging technology if they are greater than 1 cm in diameter [7]. Therefore,
there is an urgent need to develop non-invasive biomarkers that are more sensitive for
HCC diagnosis at the early stage.

In recent years, liquid biopsy has gained much attention as an alternative biomarker
to conventional biomarkers and tissue biopsy for cancer diagnosis and monitoring. Liquid
biopsy represents a minimally invasive procedure that is usually performed on biofluid
samples to detect circulating tumor by-products, which includes circulating tumor cells
(CTCs), cell-free DNA (cfDNA), and extracellular vesicles (EVs) [8–10]. Compared with
CTCs and cfDNA, EVs have attracted researchers’ interest because they are not only present
in circulation at relatively early stages of disease, but also with high abundance and high
stability [11,12]. EVs are heterogeneous populations of phospholipid bilayer-enclosed
vesicles that are released from almost all types of cells and can be found in biological
fluids such as blood, saliva, urine, breast milk, and cerebrospinal fluid (CSF) [13,14].
According to their biophysical properties and biogenesis pathways, EVs are generally
grouped into two subclasses, exosomes and microvesicles. Exosomes are small EVs with
a size range of ~30–150 nm that derived from the endosomal membrane pathway, while
microvesicles are larger than exosomes (100–1000 nm) and are formed by budding directly
from the cell membrane [11]. EVs play a central role in intercellular communication
by selectively packaging and transporting bioactive cargoes such as proteins, RNA and
metabolites to recipient cells, and participating in immune responses, cardiovascular
diseases and cancer [15,16]. Recent studies have found that cancer cell-derived EVs released
into the tumor microenvironment and circulation can promote tumor progression and
metastasis by inducing matrix remodeling, angiogenesis, inflammation, and metastatic
niche formation [17]. Furthermore, multiple studies on EV-based diagnosis of cancer have
suggested that EV transcriptomic and proteomic biomarkers can increase the likelihood
of early and sensitive detections of cancer. For example, plasma EV-derived miRNA-
483-3 could be used as a potential biomarker for the diagnosis of early-stage small cell
lung cancer, and miRNA-152-3p and miRNA-1277-5p could be used for the diagnosis of
early-stage non-small cell lung cancer [18]. Glypican 1 (GCP1) and macrophage migration
inhibitory factor (MIF) were identified as potential exosome-associated biomarkers for early
diagnosis of pancreatic cancer [19,20]. As has been reported, tissue- and plasma-derived
exosomal hsa-miR-483-5p could differentiate HCC and non-HCC cases and may represents
a potential specific and sensitive biomarker for HCC diagnosis [21]. However, while these
studies mainly focus on the utilization of proteins or RNAs in EVs as biomarkers for disease
diagnosis, little attention is paid to researching the use of post-translational modifications
(PTMs) of proteins in EVs as biomarker.

Protein glycosylation is one of the most important PTMs found in eukaryotic cells,
which is involved in molecular recognition, immune response, and intercellular commu-
nication [22–24]. Notably, aberrant glycosylation of proteins is a hallmark of cancer, and
glycoproteins account for the majority of FDA-approved biomarkers for cancer diagnosis
and monitoring [25]. As has been reported, bifucosylated N-glycans with both core and
antennary fucosylation were elevated in HCC patients as compared to patients with cir-
rhosis [26]. Moreover, AFP-L3, a corefucosylated variant of AFP which reacts with LCA
fraction, was known to be more specific to HCC than AFP and was a useful biomarker
for HCC diagnosis and assessment [27]. In recent years, studies on EV glycosylation have
gradually increased. Because EVs originate from the plasma membrane or from multi-
vesicular endosomes, their surface is highly glycosylated, and specific cancer-associated
glycosignatures have already been identified in cancer EVs, thus highlighting EV glyco-
sylation as a potential source of novel circulating biomarkers in cancer diagnosis [28,29].
Currently, studies have been reported on the glycosylation of EVs derived from different
tumor cell lines and biofluids. For example, the proteoglycan glypican-1 positive (GPC1+)
exosomes derived from the serum of pancreas cancer patients could distinguish early-
and late-stage pancreas cancer as well as patients with a benign pancreas disease [30].
Furthermore, Sakaue et al. found that increased levels of sialic acids of CD133 glycoprotein
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from the pancreatic cancer patient’s ascites-derived exosomes, and indicated that highly
glycosylated CD133 could be a potential biomarker for advanced pancreatic cancer [31].
Moreover, the proteoglycan biglycan (BGN) and the glycoprotein basigin (EMMPRIN)
were found to be enriched in pancreatic tumor tissue-derived EVs [32]. In addition, high
levels of EMMPRIN were observed from breast cancer patient serumderived MVs [33].
Notably, galectin-3-binding protein (LG3BP) was identified in several tumor-derived EVs,
including ovarian cancer, uveal melanoma, and gliomas [34–36]. With respect to HCC,
there are currently only two glycosylation studies on EVs that have been reported, one
from serum-derived exosome, and the other from cell line-derived exosome. Lv et al.
performed a reverse capture strategy to profile the N-glycome of exosomes isolated from
HCC patients’ serum samples, and compared this to the N-glycans identified in exosomes
from healthy samples. The majority of the N-glycans detected in exosomes from HCC
patients were modified with sialic acids or fucoses [37]. Wang et al. found that compared
to exosomes derived from naive HCC cells, α2,6-sialylation degradation abolished both the
proliferation-promoting and migration-promoting effects of HCC-exo, which suggests that
a loss of α2,6-sialylation decreases HCC progression through the loss of cancer cell-derived
exosomes [38]. The above studies indicate that, compared with normal EVs, specific glyco-
sylation modifications are existing on the surface of tumor cell-derived EVs, therefore they
can be used as potential biomarkers for disease diagnosis and prognosis. Nevertheless,
previously studies on glycosylation of EVs mainly focus on the identification of released
glycans or deglycosylated peptides, losing the site-specific information of each individual
glycan. Little is known about the information on the glycosylation of tumor-derived EVs at
the intact glycopeptide (including both the glycosylation sites and glycan structures) level.

In this study, we investigated the glycoproteomic profiling of EVs from HCC patient
urine samples to screen the potential candidate biomarker. Urinary EVs were first isolated
by a previously reported EVTRAP method [39]. Then, intact-glycoproteomic analysis of
EVs glycoproteins were detected using the C18-HILIC-MS/MS analysis with the N-glycan
database engine GPSeeker search [40]. In total, 756 intact N-glycopeptides mapping to
154 N-glycosites on 107 intact N-glycoproteins were identified. Furthermore, variations
in the N-glycans and site-specific glycans were elucidated. With the criteria of differen-
tially expressed intact N-glycopeptides (DEGPs) as fold change cutoff ratio ≥2.0 or ≤0.5,
344 DEGPs were identified from EVs in HCC relative to the NC group, corresponding
to 308 upregulated and 36 downregulated N-glycopeptides, respectively. Moreover, the
relationship between aberrated glycoproteins in EVs and HCC was further discussed.

2. Results and Discussion
2.1. Workflow of EVs Proteomics and Glycoproteomics from Urine Samples

The workflow of EVs proteomics and glycoproteomics analysis from urine samples is
shown in Figure 1. In brief, EVs were first isolated by EVTRAP beads using pooled urine
samples from HCC patients and from NC, respectively. Then, urinary EVs were lysed and
the extracted proteins were digested into peptides; thereafter, 5% of the digested peptides
were directly used to perform proteomic analysis with nanoflow LC-MS/MS. The other
95% portion of peptides were labeled with isotopomeric dimethyl labels and mixed at a
1:1 ratio from HCC and NC, and the N-glycopeptides enrichment was performed by the
HILIC method. Finally, the N-glycopeptides were analyzed by nanoflow LC-MS/MS and
data were analyzed with the GPSeeker search engine.

2.2. General Description of Extracellular Vesicles Isolated by EVTRAP

Compared to the ultracentrifugation method, the EVTRAP method had a high re-
covery yield (over 95%) from urine samples [39], and had the capacity to uncover more
low-abundant urinary biomarkers, especially EV proteins with PTMs such as phospho-
rylation and glycosylation. The quality of the isolated EVs was evaluated by proteins
identified in the proteomic analysis with mass spectrometry. In three replicate tests, 1331
and 1275 proteins were identified in urinary EVs from the HCC and NC group, respectively
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(Supplementary Table S1). The quality of the isolated EVs was evaluated by comparing
the proteins identified in EVs by direct mass spectrometry with that in the Vesiclepedia
database [41], and up to 96% of the proteins were matched form the HCC group (Figure 2a).
Moreover, 94 proteins were overlapped with the top 100 most common identified EV
marker proteins, including EV markers such as CD9, CD63, Alix, TSG101, annexin A1 and
syntenin-1 (Figure 2b). In addition, Gene Ontology (GO) analysis of cellular component
revealed “extracellular exosome” as the top enriched GO item (Figure 2c). The quality eval-
uation results of EVs from the NC group was shown in Figure S1. Therefore, after quality
assessment of the isolated EVs, we performed comprehensive glycoproteomic analysis of
the EVs at the intact N-glycopeptide level and evaluated its potential role as a biomarker
for the hepatocellular carcinoma.
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2.3. Comprehensive Analysis of Intact N-glycopeptides in the Urinary EVs

With target and decoy database searches using the intact N-glycopeptide search
engine GPSeeker, a total of 756 intact N-glycopeptides were identified, corresponding to
154 N-glycosites on 107 intact N-glycoproteins with 286 putative N-glycan linkages from
94 monosaccharide compositions (Figure 3a, Table S2). All of the identified N-glycosites
were observed with N-X-S and N-X-T sequons, in which ~60% of the glycosites had the
N-X-T sequons and 40% had N-X-S sequons (Figure 3b). In addition, the percentage of
mannose, hybrid, and complex N-glycosylation among the 756 intact N-glycopeptide IDs
is 30.3%, 14.9% and 54.8%, respectively. Furthermore, compared with the NC-derived EVs,
the percentage of mannose N-glycosylation in HCC-derived EVs was increased while the
hybrid and complex N-glycosylation showed the opposite trend (Figure 3c). Moreover, for
the monosaccharide compositions of the N-glycan moieties among the identified intact
N-glycopeptides, the composition containing two HexNAc was the most common, and the
eight most common monosaccharide compositions and their occurrence numbers are shown
in Figure S2. Macro-heterogeneity and micro-heterogeneity are two key features of protein
glycosylation; therefore, we further performed the heterogeneity of glycosylation analysis
with our data set. As for macro-heterogeneity, approximately 30% of the glycoproteins
were identified to have more than one N-glycosite; whereas for micro-heterogeneity, ~46%
of the glycosites were occupied by more than one N-linked glycan compositions (Figure 3d).
For example, on probable serine carboxypeptidase (Q9H3G5, CPVL_HUMAN), the same
N-glycan composition N2H5F0S0 was identified on three N-glycosites (N81, N307, and
N346); while on the same N-glycosite N346, other N-glycan compositions (N2H3F0S0,
N2H4F1S0 and N2H4F0S0) were also identified (Table 1).
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Figure 3. Identification and distribution of intact N-glycopeptides in urinary EVs from patients
with HCC relative to NC. (a)The identified intact N-glycopeptide IDs (FDR ≤ 1%). (b) Sequence
motifs for N-glycosites having either the N-XS or N-X-T sequon and their relative percentage in
the unique Nglycosites identified. (c) The percentage of each N-glycan type in urinary EVs from
patients with HCC and NC. (d) Distribution of glycosites (left) and glycans per glycosite (right) of
the identified glycoproteins.
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Table 1. The intact N-glycopeptides identified from probable serine carboxypeptidase CPVL
(Q9H3G5, CPVL_HUMAN) modified with N2H5F0S0 on N-glycosites N81, N307 and N346 and
N2H4F0S0 and N2H6F0S0 on the N-glycosite N81 and N346 as well as N2H3F0S0 and N2H4F1S0 on
N-glycosite 346.

Glycosite Peptide Sequence Composition Glycan-Linkage GF Score Structural Diagnostic Ions

81 SYAGFLTVNK N2H4F0S0 01Y41Y41M(31M21M)61M 9 BII2,BI2,YI1,YI2,BI3,YII3,YI3,YII4,MH,YI1

N2H5F0S0 01Y41Y41M(31M)61M(31M)61M 11 24AI4,ZI1,YI1,YI2,YI3,BI4,
YI4,YII4,YIII3,MH,02XI1,ZI1,YI1

N2H6F0S0 01Y41Y41M(31M21M)61M(31M)61M 3 BI2,YI3,YI3
307 LLDGDLTSDPSYFQNVTGCSNYYNFLR N2H5F0S0 01Y41Y41M(31M)61M(31M)61M 3 BI2,BI4,YI1
346 QAIHVGNQTFNDGTIVEK N2H3F0S0 01Y41Y41M(31M)61M 5 BI3,YI1,YI2,ZI1,YI1

N2H4F0S0 01Y41Y41M(31M21M)61M 12 BII2,BI2,YI1,YI2,BI3,YII3,YI3,YII4,MH,02XI1,ZI1,YI1,YI2
N2H4F1S0 01Y(61F)41Y41M(31M)61M61M 4 BI4,YI3,YI4,YII3,YI1
N2H5F0S0 01Y41Y41M(31M)61M(31M)61M 12 ZI1,YI1,YI2,YI3,BI4,YI4,YII4,YIII3,02XI1,MH,ZI1,YI1,YI2,YI3
N2H6F0S0 01Y41Y41M(31M)61M(31M21M)61M 2 BI2,YI3

2.4. Relatively Quantification Analysis of the Site-Specific Glycans in the Urinary EVs

To further analyze the site-specific glycans in urinary EVs, the abundance of the
756 intact N-glycopeptide IDs together with their isotopic pairs (4.0134 Da) in the corre-
sponding MS spectra were searched with GPSeekerQuan. With the criteria of observation
of all of the six most abundant isotopic peaks; and with the designated differentially ex-
pressed intact N-glycopeptides (DEGPs) as fold change cutoff ratio ≥2.0 or ≤0.5, a total
of 344 DEGPs were identified corresponding to 308 upregulated and 36 downregulated
N-glycopeptides, respectively (Table S3). The 308 upregulated intact N-glycopeptides
come from 51 N-glycoproteins and the 36 downregulated intact N-glycopeptides come
from 7 N-glycoproteins. For the 51 intact N-glycoproteins with up-regulation, 38 were
quantified with more than one DEGPs. Among the upregulated N-glycopeptides, in-
tact N-glycopeptide NVTLLSR_N2H9F0S0 from N-glycosite N828 of N-glycoprotein Glu-
tamyl aminopeptidase (AMPE_HUMAN, Q07075) displayed the highest up-regulation,
with a fold change of 40 in HCC relative to NC (Figure S3). For Galectin-3-binding pro-
tein (LG3BP_HUMAN, Q08380), on N-glycosite N398, intact N-glycopeptide GLNLTED-
TYKPR_N2H3F1S0 was found to be 9.31-fold upregulated in HCC relative to NC (Figure 4),
while on N-glycosite N551, intact N-glycopeptides AAIPSALDTNSSK with compositions
of N2H3F1S0, N2H5F0S0 and N6H6F1S0 were identified with a range of upregulated
(2.21–9.31). LG3BP is a large oligomeric glycoprotein present in human body fluids and
originally identified as a tumor-secreted antigen from breast and lung cancer [42,43]. Up-
regulation of LG3BP was previously observed in the serum of patients with HCC, and high
expression of LG3BP was as a poor prognostic biomarker for HCC [44,45]. Recently, pro-
teomic analysis on serum exosomes revealed that the LG3BP has higher diagnostic capacity
than AFP, and has the potential as a candidate biomarker for HCC detection [46,47]. In
addition, upregulation of intact N-glycopeptideWNNTGCQALPSQDEGPSK_N2H5F0S0 at
N-glycosite N499 of the polymeric immunoglobulin receptor (PIGR_HUMAN, P01833) was
quantified with a fold change of 2.25 in HCC relative to NC (Figure S4). PIGR is universally
expressed in epithelial cells and regulates transcytosis of dimeric IgA and pentameric
IgM, which are the first-line antibodies in response to initial infection. Previously, studies
have shown that PIGR was significantly overexpressed in tumor tissues and in serum
samples in HCC patients, and the level of PIGR was statistically significantly associated
with early recurrence in early-stage HCC and in hepatitis B surface antigen-positive HCC
patients [48,49]. Previous studies have shown that elevated PIGR levels were found in
the serum EVs from patients with HCC, and EV-PIGR could promote liver cancer cell
aggressiveness through activating thePDK1/Akt/GSK3β/β-catenin signaling axis [46,50].
Therefore, EV-PIGR holds the potential as a diagnostic and prognostic marker in HCC.
For Kininogen-1 (KNG1_HUMAN, P01042), intact N-glycopeptides with compositions
of N6H3F0S0, N5H4F1S1 and N6H3F2S0 were identified with a range of upregulated
(2.27–3.39) in HCC relative to NC. KNG1 is a precursor for kinins and plays a central role
in the blood coagulation system and in the kinin–kallikrein system [51]. Previous studies
have shown that the serum level of KNG1 was significantly elevated in patients with
various cancers, including advanced colorectal adenoma (ACA), colorectal cancer (CRC),
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and HCC [52,53]. Hence, KNG1 is a potential serum biomarker for the early detection of
ACA, CRC and HCC. Moreover, we found that the N-glycan of KNG1 possesses fucose
modification, and this is consistent with the results from Wang et al. [54], who also revealed
an increased amount of both core and outer-arm fucosylation of KNG1 in patients with
HCC. In addition, they revealed that the increased reactivity with fucose-binding lectin
observed in patients with HCC is the result of increased levels of fucosylation. Therefore,
they proposed a biomarker algorithm that use the combination of fucosylated KNG1, AFP,
and clinical characteristics to improve the detection of early-stage HCC.
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from patients with HCC relative to NC; the N-glycosite is N398 on Galectin-3-binding protein
(LG3BP_HUMAN, Q08380). (a) Paired precursor ions. (b,c) N-glycan and peptide backbone graphical
fragmentation maps annotated with the matched fragment ions. (d) The MS/MS spectrum with the
matched fragment ions.

For the seven intact N-glycoproteins with down-regulation, all of them were quantified
with more than one DEGP. Among the downregulated N-glycopeptides, intact N-glycopeptide
SVNVSLTQEELDSGLDELSVR_N4H5F0S0 from N-glycosite N463 of A-kinase anchor protein
2 (AKAP2_HUMAN, Q9Y2D5) displayed the lowest down-regulation, with the fold change
of 0.18 in HCC relative to NC (Figure S5). Intact N-glycopeptideKNQSSEDILR_N4H5F1S1
at N-glycosite N478 of apoptosis stimulating of p53 protein 2 (ASPP2_HUMAN, Q13625)
was downregulated with a fold change of 0.34 in HCC relative to NC (Figure 5). ASPP2, a
member of the ankyrin-repeat, SH3-domain, and proline-rich region containing protein
(ASPP) family, which also include ASPP1 and inhibitory ASPP (iASPP), is a key regulator
of various cancer-relevant cellular phenotypes and behaviors, including cell proliferation,
apoptosis, and polarity [55,56]. ASPP2 is a haplo-insufficient tumor suppressor, and is
frequently downregulated in a variety of human cancers, including breast cancer, lung



Molecules 2023, 28, 1293 8 of 16

cancer and leukemia [57]. Furthermore, a previous study by Zhao et al. [58] also found
that ASPP2 is downregulated in hepatocellular carcinoma owing to DNA methylation.
Chen et al. [59] revealed that downregulation of ASPP2 may contribute to tumor progres-
sion and chemoresistance via promoting BECN1-dependent autophagy in HCC. Moreover,
studies have shown that reduced ASPP2 expression results in EMT, and is associated with
poor survival in hepatocellular carcinoma patients [60]. Therefore, ASPP2 plays important
roles in the development of HCC, which may be a potential target for the treatment of HCC.
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Figure 5. Down-regulation of intact N-glycopeptide KNQSSEDILR_N4H5F1S1 in urinary EVs from
patients with HCC relative to NC; the N-glycosite is N478 on Apoptosis-stimulating of p53 protein 2
(ASPP2_HUMAN, Q13625). (a) Paired precursor ions. (b,c) N-glycan and peptide backbone graphical
fragmentation maps annotated with the matched fragment ions. (d) The MS/MS spectrum with the
matched fragment ions.

Interestingly, there were 5 glycoproteins with both upregulated and downregulated site-
specific glycans. For example, on Alpha-2-macroglobulin-like protein 1 (A2ML1_HUMAN,
A8K2U0), intact N-glycopeptide LGHI867NFTISTK_N2H5F0S0 was quantified with up-
regulation while THHW857NITAVK_N2H8F0S0 was significantly downregulated. Fur-
thermore, there were N-glycosites with both upregulated and downregulated glycans.
For example, on glycoprotein Vasorin (VASN_HUMAN, Q6EMK4), on the same glyco-
sylation site N500, the upregulated intact N-glycopeptide500NLSGPDK_N2H5F0S0 and
500NLSGPDK_N3H6F0S0 as well as downregulated 500NLSGPDK_N3H5F0S1 were ob-
served (Figure 6). VASN was found to be highly expressed in the cells and tissues of
HCC, and at a high level in the serum samples of HCC patients [61]. Being a transmem-
brane glycoprotein, VASN regulates cellular responses to vascular lesion, and exosomal
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VASN from HepG2 cells could promote the migration of human umbilical vein endothelial
cells (HUVEC) [62]. These results suggest that VASN may play an important role in the
HCC pathogenesis.
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Figure 6. Simultaneous up- and down-regulation on alpha-2-macroglobulin-like pro-
tein 1 (A2ML1_HUMAN, A8K2U0) and vasorin (VASN_HUMAN, Q6EMK4) with different
intact N-glycopeptides.

2.5. Gene Ontology Analysis of the Differentianl Expressed Intact N-glycopeptides

To further investigate the biological information of the differentially expressed N-
glycoproteins identified in the urinary EVs, GO analysis was carried out using DAVID
Bioinformatics Resources 6.8 for the differentially expressed intact N-glycopeptides. As is
shown in Figure 7a, they are mainly localized on the cell, extracellular region, organelle and
membrane regions in cellular components. However, upregulation was more circulated
in the extracellular region and protein-containing complex region, down-regulation was
also circulated in the cell junction region. As far as molecular function is concerned, it
was shown that most of them participate in catalytic activity, molecular function regulator
and binding, while up-regulation also played a role in transporter activity and molecular
transducer activity (Figure 7b). In the aspect of biological process, both up-regulation
and down-regulation are involved in the cellular process, metabolic process, cellular
component organization or biogenesis, and biological regulation (Figure 7c). The effect of
site-specific glycoforms on these important biological processes and molecular functions
needs further investigation.
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Despite the valuable results of this study, our research also has several limitations.
Firstly, the HCC patient sample size was relatively small, the glycoproteins identified
in urinary EVs as potential candidate biomarkers for HCC diagnosis should be further
validated in larger samples. Secondly, the candidate glycoproteins were not validated by
Western blot or other technologies, therefore, there is a need to evaluate the precision and
robustness of the identified candidate glycoproteins as non-invasive biomarkers for HCC
in any further study.
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3. Materials and Methods
3.1. Patients and Sample Collection

This study was approved by the Ethics Committee of the Second Hospital of Jilin
University and written informed consent was obtained from all the participants. Urine
samples were obtained from 21 HCC patients (Table S1) as well as seven normal controls.
The diagnosis of HCC was determined pathologically and immunohistochemically accord-
ing to the WHO classification. The first morning urine samples were collected and kept
for less than 1 h at room temperature followed by centrifugation at 2000× g for 10 min to
remove cell debris and large apoptotic bodies, and then stored at − 80 ◦C until use.

3.2. Isolation of Extracellular Vesicles from Urine by EVTRAP

First, pooled urine samples were made by aspirating equal volumes of urine samples
from HCC patients or from NC before EV isolation. Then, 10 mL of the pooled urine
samples were used for EV isolation by EVTRAP method as we previously described [39].
In brief, EVTRAP beads was mixed with the urinary sample at a beads-to-urine ratio of 1:50
(v/v). The sample was incubated for 1 h with end-over-end rotation at room temperature,
then a magnetic separator was used to remove the solution. Next, 150 µL of fresh 100 mM
TEA solution was used twice to elute the EVs from beads, and the eluate was dried out in a
vacuum centrifuge (Labconco, SpeedVac).

3.3. Enzyme Digestion and Protein Extraction of Urinary EVs

The dried urinary EVs were lysed to extract proteins using a phase-transfer- surfactant
(PTS)-aided procedure as previously reported [63]. First, 100 µL of lysis buffer (50 mM
Tris-HCl, 12 mM SDC, 12 mM SLS, 10 mM TCEP, 40 mM CAA, and 1% phosphatase
inhibitor mixture in in 50 mM Tris·HCl) was used to solubilize the dried EVs. Second, the
solution was boiled at 95 ◦C for 10 min and diluted five-fold with 50 mM TEAB. Then, the
proteins were digested with Lys-C at an enzyme/proteome ratio of 1:100 (w/w) for 3 h at
37 ◦C. Afterwards, trypsin was added to a final 1:50 (w/w) enzyme/proteome ratio for
overnight digestion at 37 ◦C. The digested peptides were acidified with trifluoroacetic acid
to a final concentration of 0.5% trifluoroacetic acid, and 500 µL of ethyl acetate was added.
After vortexing for 2 min it was centrifuged at 20,000× g for 2 min to obtain aqueous and
organic phases. The aqueous phase was collected and desalted using the Sep-pak C18
column (Waters). Each sample was split into 5% and 95% aliquots for the proteomic and
glycoproteomic experiments, respectively.

3.4. Stable Isotopic Dimethyl Labeling and Enrichment of N-glycopeptides from Urinary EVs

For glycoproteomic analysis, the 95% portion of each peptide sample was first labeled
with isotopomeric dimethyl labels, then the N-glycopeptide enrichment was performed
by the HILIC method. The stable isotope dimethyl labeling was performed as previously
described with slight modifications [64]. Briefly, 200 µL of 100 mM TEAB (pH = 8.0) was
first used to reconstitute the above desalted EV peptides, and 16 µL of CD2O (4%, v/v)
and CH2O (4%, v/v) was added to the peptides derived from HCC and NC, respectively.
After shaking for 1 min, 16 µL of 0.6 M NaBD3CN/NaBH3CN solution was added, and
the solutions were incubated for 1 h in a shaker at room temperature. Next, 40 µL of 1M
Tris (pH = 7.0) was used to terminate the reaction and 32 µL of formic acid was added to
further quench the reaction. Afterward, the obtained light- and heavy-labeled peptides
were mixed at a 1:1 ratio, desalted and dried in the SpeedVac.

The N-glycopeptides enrichment was performed with the centrifugation-assisted click
maltose–HILIC approach as previously reported [65]. In brief, the dried dimethyl labeled
peptide sample was reconstituted in loading buffer (80% ACN/1% TFA). Next, the peptide
sample was mixed with the click maltose material in a new tube to a final volume of
200 µL and incubated for 1 h at room temperature. Then the mixture was pipetted into a
200 µL tip with a 1 mm Teflon disk blocking in the tip, and after centrifugation, the loading
buffer was spun-out from HILIC tip, and the HILIC tip was washed twice with 200 µL 80%
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ACN/1% TFA. Finally, the enriched N-glycosylated peptides were eluted with 100 µL of
30% ACN/0.1% FA and dried with a vacuum freeze centrifuge.

3.5. LC−MS/MS Analysis

The dried peptides and glycopeptides were resuspended in 15 µL of 0.1% formic acid
(FA) and 2% ACN solution. LC-MS/MS analysis was performed using a Dionex UltiMate
3000 RSLCnano system (Thermo Fisher Scientific, Bremen, Germany) coupled with an
Orbitrap Fusion Lumos Tribrid spectrometer (Thermo Fisher Scientific, Bremen, Germany).
The samples were separated on a 15 cm in-house packed column (150 µm i.d.) containing
C18 AQ beads (1.9 µm, Dr. Maisch, GmbH, Germany). Mobile phase A was composed of
98% H2O and 2% ACN and mobile phase B was composed of 80% ACN and 20% H2O,
both containing 0.1% FA. For the proteomic analysis, the flow rate was maintained at
600 nL/min with a linear 100 min gradient. The elution gradient was kept at 1% mobile
phase B for 10 min, and then increased linearly from 1% to 34% mobile phase B over
60 min, followed by increasing linearly from 34% to 90% mobile phase B over 15 min. After
remaining at 90% mobile phase B for 12 min, the content of mobile phase B was returned
to 1% and maintained for 3 min. The mass spectrometer was operated in data-dependent
mode. Full mass scan MS spectra (m/z 350−1800) were acquired by the Orbitrap mass
analyzer with a resolution of 240,000. The AGC target for MS1 was set as 4 × 105 and a
maximum injection time of 50 ms. The most intense ions above a threshold ion count of
4 × 103 and charge state ≥2 were selected and fragmented using HCD fragmentation with
30% normalized collision energy. The dynamic exclusion was set for 60 s with a 10 ppm
mass window. Fragment ion spectra were acquired in the linear IT with an AGC of 2 × 104

and a maximum injection time of 35 ms for IT MS2 detection. For the glycoproteomic
analysis, the elution gradient was kept at 4% mobile phase B for 3 min, and then increased
linearly from 4% to 34% mobile phase B over 60 min, followed by increasing linearly from
34% to 90% mobile phase B over 23 min. After remaining at 90% mobile phase B for 10 min,
the content of mobile phase B was returned to 1% and maintained for 4 min. The flow rate
was maintained at 800 nL/min. The parent ion is selected in the Orbitrap cell (FTMS) at a
resolution of 120,000. Up to the top 20 most abundant isotope patterns with a charge ≥ +2
from the survey scan (350–1500 m/z) were selected with an isolation window of 1.6 m/z
and fragmented by HCD with normalized collision energies of 27. The AGC target value
for MS1 and MS2 scan modes was set to 5 × 105 and 1 × 105, respectively. System control
and data collection were carried out by Xcalibur software.

3.6. Protein Identification

RAW files were searched against the Uniprot human database (www.uniprot.org,
accessed on 20 March 2022) using MaxQuant (version 2.2) and the default search parameter
settings: 10 ppm and 20 ppm mass tolerance for precursor and fragment ions, respectively;
fixed modifications: carbamidomethylation of cysteine (+57.0214 Da); variable modifica-
tions: oxidation of methionine (+15.9949 Da); fully Trypsin/P digestion with up to two
missed cleavages. The false discovery rates (FDR) of proteins and peptides were set at 0.01.

3.7. Intact N-glycopeptideIdentification and Quantification

Database search and intact N-glycopeptides identification was performed using
GPSeeker as previously described [40]. In brief, the human proteome DB (UniProt,
20,375 entries) and the human N-glycome DB (75,888 entries) were used to build the
theoretical customized human intact N-glycopeptides databases [66], and the LC-MS/MS
raw dataset was searched against the four databases independently. To search matching pre-
cursor and fragment ions, the isotope peak abundance cut-off, isotope peak mass-to-charge
ratio (m/z) deviation and isotope peak abundance deviation were set to 40%, 20 ppm and
50%, respectively. The search of intact N-glycopeptide spectrum matches (GPSMs) included
the following parameters: Y1 ion, Top5; the minimum percentage of matched fragment
ions of the peptide backbone, ≥10%; the minimum matched fragment ion of the N-glycan

www.uniprot.org
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moiety, ≥1; TopN hits, n = 2 with Top1 hit(s) having the lowest P score; G-bracket, ≥1;
and GF score, ≥1. For each dataset, the GPSMs from the target and decoy searches were
combined and ranked with the increasing order of the P score; a cutoff P score was chosen
to obtain spectrum-level FDR ≤1%. Target GPSMs with FDR control were subjected to
duplicate removal to obtain the final intact N-glycopeptide IDs. GPSeekerQuan software
was used to quantify the differentially expressed intact N-glycopeptides (DEGPs) from
HCC relative to NC samples. For each intact N-glycopeptide ID, GPSeekerQuan searched
its paired precursor ion with a mass difference of 4.01344 Da and an isotopic peak m/z
tolerance of 20 ppm. For each precursor ion, the summed abundance of Top 3 isotopic
peaks was used for relative quantitation. For each intact N-glycopeptide ID, all the six
isotopic peaks in the pair are required to be observed to obtain the relative ratio (HCC/NC).

3.8. Bioinformatics Analysis

The functional gene enrichment analysis and Vesiclepedia database search was per-
formed with the FunRich software (version 3.1.3) [67]. Gene ontology data were analyzed
using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) bioin-
formatics tool (version 6.8, https://david.ncifcrf.gov, accessed on 20 March 2022) [68].

4. Conclusions

In this study, we performed a comprehensive glycoproteomic profiling of urinary
EVs at the intact N-glycopeptide level to screen potential biomarkers for the diagnosis
of HCC. Combined with DB search using GPSeeker, 756 intact N-glycopeptides with
154 N-glycosites, 158 peptide backbones, and 107 N-glycoproteins were identified. Out
of 756 intact N-glycopeptides, 344 DEGPs were identified, corresponding to 308 upreg-
ulated and 36 downregulated N-glycopeptides, respectively. Compared to NC, several
aberrated glycoproteins were identified in urinary EVs from patients with HCC. The glyco-
proteins LG3BP, PIGR and KNG1 are upregulated in HCC-derived EVs, while ASPP2 is
downregulated. The findings demonstrated that specific site-specific glycoforms in these
glycoproteins from urinary EVs could be potential and efficient non-invasive candidate
biomarkers for HCC diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031293/s1, Figure S1: Evaluation of the urinary EVs
isolated by EVTRAP method derived from normal controls (NC); Figure S2: The eight most common
N-glycan monosaccharide compositions vs. the occurrence number of intact N-glycopeptide IDs iden-
tified in this study; Figure S3: Upregulation of intact N-glycopeptide NVTLLSR_N2H9F0S0 in urinary
EVs from patients with HCC relative to NC; the N-glycosite is N828 on Glutamyl aminopeptidase
(AMPE_HUMAN, Q07075); Figure S4: Upregulation of intact N-glycopeptide WNNTGCQALP-
SQDEGPSK_N2H5F0S0 in urinary EVs from patients with HCC relative to NC; the N-glycosite is
N499 on polymeric immunoglobulin receptor (PIGR_HUMAN, P01833); Figure S5: Downregulation
of intact N-glycopeptide SVNVSLTQEELDSGLDELSVR_N4H5F0S0 in urinary EVs from patients
with HCC relative to NC; the N-glycosite is N463 on A-kinase anchor protein 2 (AKAP2_HUMAN,
Q9Y2D5). Table S1: Clinical characteristics of the HCC patient enrolled in this study; Table S2: Pro-
teins identified in the urinary EVs by the proteomic study; Table S3: Detail information of the intact
N-glycopeptides in the urinary EVs identified by the N-glycoproteomic study; Table S4: Differentially
expressed intact N-glycopeptides quantitated with ≥2.0- or ≤0.5-fold change in urinary EVs form
HCC (relative to normal control).
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