Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.G.; Zhang, J.L.; Kintner-Meyer, M.C.W.; Lu, X.C.; Choi, D.W.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.L.; Hu, Y.S.; Chen, L.Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360. [Google Scholar] [CrossRef]
- Fang, C.; Huang, Y.H.; Zhang, W.X.; Han, J.T.; Deng, Z.; Cao, Y.L.; Yang, H.X. Routes to High Energy Cathodes of Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1501727. [Google Scholar] [CrossRef]
- Zhao, H.-S.; Qi, Y.-L.; Liang, K.; Zhu, W.-K.; Wu, H.-B.; Li, J.-B.; Ren, Y.-R. Phosphorus-doping and oxygen vacancy endowing anatase TiO2 with excellent sodium storage performance. Rare Met. 2021, 41, 1284–1293. [Google Scholar] [CrossRef]
- Zhao, H.; Qi, Y.; Liang, K.; Li, J.; Zhou, L.; Chen, J.; Huang, X.; Ren, Y. Interface-Driven Pseudocapacitance Endowing Sandwiched CoSe2/N-Doped Carbon/TiO2 Microcubes with Ultra-Stable Sodium Storage and Long-Term Cycling Stability. ACS Appl. Mater. Interfaces 2021, 13, 61555–61564. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, Y.F.; Yao, H.R.; Wang, P.F.; Zhang, X.D.; Li, H.L.; Yang, X.N.; Gu, L.; Li, Y.C.; Wang, T.; et al. A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery. Adv. Energy Mater. 2019, 9, 1803978. [Google Scholar] [CrossRef]
- Guo, S.H.; Yu, H.J.; Jian, Z.L.; Liu, P.; Zhu, Y.B.; Guo, X.W.; Chen, M.W.; Ishida, M.; Zhou, H.S. A High-Capacity, Low-Cost Layered Sodium Manganese Oxide Material as Cathode for Sodium-Ion Batteries. Chemsuschem 2014, 7, 2115–2119. [Google Scholar] [CrossRef]
- Han, M.H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energ Environ. Sci. 2015, 8, 81–102. [Google Scholar] [CrossRef]
- Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-Type Electrode Materials for Sodium-Ion Batteries. Adv. Sci. 2017, 4, 1600275. [Google Scholar] [CrossRef]
- Chen, M.; Chen, L.; Hu, Z.; Liu, Q.; Zhang, B.; Hu, Y.; Gu, Q.; Wang, J.L.; Wang, L.Z.; Guo, X.; et al. Carbon-Coated Na3.32 Fe2.34 (P2O7)2 Cathode Material for High-Rate and Long-Life Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1605535. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H.; Su, D.; Notten, P.H.L.; Wang, G. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 2018, 11, 3979–3990. [Google Scholar] [CrossRef]
- Nie, P.; Yuan, J.; Wang, J.; Le, Z.; Xu, G.; Hao, L.; Pang, G.; Wu, Y.; Dou, H.; Yan, X.; et al. Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 20306–20312. [Google Scholar] [CrossRef]
- Knight, J.C.; Therese, S.; Manthiram, A. Chemical extraction of Zn from ZnMn2O4-based spinels. J. Mater. Chem. A 2015, 3, 21077–21082. [Google Scholar] [CrossRef]
- Luo, W.; Allen, M.; Raju, V.; Ji, X. An Organic Pigment as a High-Performance Cathode for Sodium-Ion Batteries. Adv. Energy Mater. 2014, 4, 1400554. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, D.; Yang, B.; Zhang, C.; Cao, M. Oxygen Vacancy Engineering in Na3V2(PO4)3 for Boosting Sodium Storage Kinetics. Adv. Mater. Interfaces 2021, 8, 2100188. [Google Scholar] [CrossRef]
- Puspitasari, D.A.; Patra, J.; Hung, I.M.; Bresser, D.; Lee, T.-C.; Chang, J.-K. Optimizing the Mg Doping Concentration of Na3V2–xMgx(PO4)2F3/C for Enhanced Sodiation/Desodiation Properties. ACS Sustain. Chem. Eng. 2021, 9, 6962–6971. [Google Scholar] [CrossRef]
- Broux, T.; Fauth, F.; Hall, N.; Chatillon, Y.; Bianchini, M.; Bamine, T.; Leriche, J.B.; Suard, E.; Carlier, D.; Reynier, Y.; et al. High Rate Performance for Carbon-Coated Na3V2(PO4)2F3 in Na-Ion Batteries. Small Methods 2019, 3, 1800215. [Google Scholar] [CrossRef]
- Deng, L.; Yu, F.-D.; Xia, Y.; Jiang, Y.-S.; Sui, X.-L.; Zhao, L.; Meng, X.-H.; Que, L.-F.; Wang, Z.-B. Stabilizing fluorine to achieve high-voltage and ultra-stable Na3V2(PO4)2F3 cathode for sodium ion batteries. Nano Energy 2021, 82, 105659. [Google Scholar] [CrossRef]
- Park, Y.U.; Seo, D.H.; Kwon, H.S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H.I.; Kang, K. A New High-Energy Cathode for a Na-Ion Battery with Ultrahigh Stability. J. Am. Chem. Soc. 2013, 135, 13870–13878. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J. Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2014, 2, 8668–8675. [Google Scholar] [CrossRef]
- Qi, Y.; Mu, L.; Zhao, J.; Hu, Y.-S.; Liu, H.; Dai, S. pH-regulative synthesis of Na3(VPO4)2F3 nanoflowers and their improved Na cycling stability. J. Mater. Chem. A 2016, 4, 7178–7184. [Google Scholar] [CrossRef]
- Cai, Y.; Cao, X.; Luo, Z.; Fang, G.; Liu, F.; Zhou, J.; Pan, A.; Liang, S. Caging Na3V2(PO4)2F3 Microcubes in Cross-Linked Graphene Enabling Ultrafast Sodium Storage and Long-Term Cycling. Adv. Sci. 2018, 5, 1800680. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Liu, B.; Zhang, Y.; Liang, X.; Xia, X. Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage. Adv. Energy Mater. 2020, 10, 2000927. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, H.; Sun, D.; Tang, Y.; Wang, H. A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes. J. Mater. Chem. A 2020, 8, 21387–21407. [Google Scholar] [CrossRef]
- Xin, M. Effect of Cu and Mn doping on optical properties of ZnS:Cu, Mn nanoparticles synthesized by the hydrothermal technique. J. Sulfur Chem. 2021, 43, 206–214. [Google Scholar] [CrossRef]
- Bhat, A.A.; Tomar, R. Mn and Ce doping in hydrothermally derived CaSnO3 perovskite nanostructure. A facile way to enhance optical, magnetic and electrochemical properties. J. Alloys Compd. 2021, 876, 160043. [Google Scholar] [CrossRef]
- Vanetsev, A.; Põdder, P.; Oja, M.; Khaidukov, N.M.; Makhov, V.N.; Nagirnyi, V.; Romet, I.; Vielhauer, S.; Mändar, H.; Kirm, M. Microwave-hydrothermal synthesis and investigation of Mn-doped K2SiF6 microsize powder as a red phosphor for warm white LEDs. J. Lumin. 2021, 239, 118389. [Google Scholar] [CrossRef]
- Yi, H.M.; Ling, M.X.; Xu, W.B.; Li, X.F.; Zheng, Q.; Zhang, H.M. VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties. Nano Energy 2018, 47, 340–352. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.R.; Xu, H.Y. Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 4525–4534. [Google Scholar] [CrossRef]
- Liang, K.; Wang, S.; Zhao, H.; Huang, X.; Ren, Y.; He, Z.; Mao, J.; Zheng, J. A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries. Chem. Eng. J. 2022, 428, 131780. [Google Scholar] [CrossRef]
- Fuentes, R.O.; Figueiredo, F.M.; Marques, F.M.B.; Franco, J.I. Influence of microstructure on the electrical properties of NASICON materials. Solid State Ion. 2001, 140, 173–179. [Google Scholar] [CrossRef]
- Barker, J.; Saidi, M.Y.; Swoyer, J.L. A comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J. Electrochem. Soc. 2004, 151, A1670–A1677. [Google Scholar] [CrossRef]
- Song, W.X.; Ji, X.B.; Chen, J.; Wu, Z.P.; Zhu, Y.R.; Ye, K.F.; Hou, H.S.; Jing, M.J.; Banks, C.E. Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries. Phys. Chem. Chem. Phys. 2015, 17, 159–165. [Google Scholar] [CrossRef]
- Song, W.X.; Cao, X.Y.; Wu, Z.P.; Chen, J.; Zhu, Y.R.; Hou, H.S.; Lan, Q.; Ji, X.B. Investigation of the Sodium Ion Pathway and Cathode Behavior in Na3V2(PO4)2F3 Combined via a First Principles Calculation. Langmuir 2014, 30, 12438–12446. [Google Scholar] [CrossRef]
- Song, W.X.; Ji, X.B.; Wu, Z.P.; Yang, Y.C.; Zhou, Z.; Li, F.Q.; Chen, Q.Y.; Banks, C.E. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. J. Power Sources 2014, 256, 258–263. [Google Scholar] [CrossRef]
- Toupin, M.; Brousse, T.; Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Zhang, L.L.; Ma, D.; Li, T.; Liu, J.; Ding, X.K.; Huang, Y.H.; Yang, X.L. Polydopamine-Derived Nitrogen-Doped Carbon-Covered Na3V2(PO4)2F3 Cathode Material for High-Performance Na-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 36851–36859. [Google Scholar] [CrossRef]
- Shen, C.; Long, H.; Wang, G.C.; Lu, W.; Shao, L.; Xie, K.Y. Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. J. Mater. Chem. A 2018, 6, 6007–6014. [Google Scholar] [CrossRef]
- Li, Y.; Liang, X.; Chen, G.; Zhong, W.; Deng, Q.; Zheng, F.; Yang, C.; Liu, M.; Hu, J. In-situ constructing Na3V2(PO4)2F3/carbon nanocubes for fast ion diffusion with high-performance Na+-storage. Chem. Eng. J. 2020, 387, 123952. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Guo, J.Z.; Sun, Z.H.; Zhao, X.X.; Wang, X.T.; Liang, H.J.; Zhao, B.; Li, W.H.; Pan, X.M.; Wu, X.L. Aliovalent-Ion-Induced Lattice Regulation Based on Charge Balance Theory: Advanced Fluorophosphate Cathode for Sodium-Ion Full Batteries. Small 2021, 17, 2102010. [Google Scholar] [CrossRef] [PubMed]
- Kaliyappan, K.; Liu, J.; Xiao, B.W.; Lushington, A.; Li, R.Y.; Sham, T.K.; Sun, X.L. Enhanced Performance of P2-Na0.66(Mn0.54Co0.13Ni0.13)O2 Cathode for Sodium-Ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition. Adv. Funct. Mater. 2017, 27, 1701870. [Google Scholar] [CrossRef]
- Shen, W.; Li, H.; Guo, Z.Y.; Li, Z.H.; Xu, Q.J.; Liu, H.M.; Wang, Y.G. Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries. Rsc. Adv. 2016, 6, 71581–71588. [Google Scholar] [CrossRef]
- Zhu, C.B.; Song, K.P.; van Aken, P.A.; Maier, J.; Yu, Y. Carbon-Coated Na3V2(PO4)3 Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li Cathodes. Nano Lett. 2014, 14, 2175–2180. [Google Scholar] [CrossRef]
- Aragon, M.J.; Lavela, P.; Ortiz, G.F.; Tirado, J.L. Benefits of Chromium Substitution in Na3V2(PO4)3 as a Potential Candidate for Sodium-Ion Batteries. Chemelectrochem 2015, 2, 995–1002. [Google Scholar] [CrossRef]
- Shin, J.; Yang, J.; Sergey, C.; Song, M.S.; Kang, Y.M. Carbon Nanofibers Heavy Laden with Li3V2(PO4)3 Particles Featuring Superb Kinetics for High-Power Lithium Ion Battery. Adv. Sci. 2017, 4, 1700128. [Google Scholar] [CrossRef]
- Zheng, S.Y.; Zhong, G.M.; McDonald, M.J.; Gong, Z.L.; Liu, R.; Wen, W.; Yang, C.; Yang, Y. Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries. J. Mater. Chem. A 2016, 4, 9054–9062. [Google Scholar] [CrossRef]
- Yi, T.f.; Shi, L.; Han, X.; Wang, F.; Zhu, Y.; Xie, Y. Approaching High-Performance Lithium Storage Materials by Constructing Hierarchical CoNiO2@CeO2 Nanosheets. Energy Enviro. Mater. 2020, 4, 586–595. [Google Scholar] [CrossRef]
- Yi, T.f.; Qiu, L.Y.; Mei, J.; Qi, S.Y.; Cui, P.; Luo, S.; Zhu, Y.R.; Xie, Y.; He, Y.B. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 2020, 65, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.C.; Li, Y.T.; Park, K.; Goodenough, J.B. Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples. Chem. Mater. 2016, 28, 6553–6559. [Google Scholar] [CrossRef]
- Wu, L.Y.; Dong, S.Y.; Pang, G.; Li, H.S.; Xu, C.Y.; Zhang, Y.D.; Dou, H.; Zhang, X.G. Rocking-chair Na-ion hybrid capacitor: A high energy/power system based on Na3V2O2(PO4)2F@PEDOT core-shell nanorods. J. Mater. Chem. A 2019, 7, 1030–1037. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, R.; Zhu, W.; Liang, K.; Wei, P.; Li, J.; Liu, W.; Ren, Y. Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode. Molecules 2023, 28, 1409. https://doi.org/10.3390/molecules28031409
Su R, Zhu W, Liang K, Wei P, Li J, Liu W, Ren Y. Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode. Molecules. 2023; 28(3):1409. https://doi.org/10.3390/molecules28031409
Chicago/Turabian StyleSu, Renyuan, Weikai Zhu, Kang Liang, Peng Wei, Jianbin Li, Wenjun Liu, and Yurong Ren. 2023. "Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode" Molecules 28, no. 3: 1409. https://doi.org/10.3390/molecules28031409
APA StyleSu, R., Zhu, W., Liang, K., Wei, P., Li, J., Liu, W., & Ren, Y. (2023). Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode. Molecules, 28(3), 1409. https://doi.org/10.3390/molecules28031409