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Abstract: Picolinic acid and picolinate compounds are a remarkable class of synthetic auxin herbi-
cides. In recent years, two new picolinate compounds, halauxifen-methyl (ArylexTM active) and
florpyrauxifen-benzyl (RinskorTM active), have been launched as novel herbicides. Using their struc-
tural skeleton as a template, 33 4-amino-3,5-dicholor-6-(5-aryl-substituted-1-pytazolyl)-2-picolinic
acid compounds were designed and synthesized for the discovery of compounds with potent herbi-
cidal activity. The compounds were tested for inhibitory activity against the growth of Arabidopsis
thaliana roots, and the results demonstrated that the IC50 value of compound V-7 was 45 times lower
than that of the halauxifen-methyl commercial herbicide. Molecular docking analyses revealed that
compound V-7 docked with the receptor auxin-signaling F-box protein 5 (AFB5) more intensively
than picloram. An adaptive three-dimensional quantitative structure–activity relationship model
was constructed from these IC50 values to guide the next step of the synthetic strategy. Herbicidal
tests of the new compounds indicated that compound V-8 exhibited better post-emergence herbicidal
activity than picloram at a dosage of 300 gha−1, and it was also safe for corn, wheat, and sorghum at
this dosage. These results demonstrated that 6-(5-aryl-substituted-1-pyrazolyl)-2-picolinic acid com-
pounds could be used as potential lead structures in the discovery of novel synthetic auxin herbicides.

Keywords: AFB5; docking; picolinic acid; synthesis; synthetic auxin herbicides; 3D-QSAR

1. Introduction

The world’s population is continuing to grow and is expected to reach 8 billion in
November 2022 [1]. Demand for food is also increasing but arable land increase is far
below the need of food from population increase [2]. Ensuring the unit production of
plants conducting photosynthesis in agricultural practice is one of the key measures to
meet the food demand [3]. The feeding and growth of agriculture pests in cultivated land
ecological systems could harm crop growth and reduce crop productivity. For instance,
weeds compete with crops for light, water, and nutrients, and influence crop growth and
productivity. Several measures have been taken to combat agricultural pests, such as
insect pests, fungi, and weeds; among them, chemical control is the most economic and
effective method. Synthetic herbicides play an important role in weed control and crop
yield enhancement; however, the large-scale and long-term application of some herbicides
compels weeds to generate resistance, which requires the continuous discovery of new
herbicidal molecules with low resistance, low toxicity, and high efficiency [4]. Synthetic
auxin herbicides with structures of phenoxyacetic acid, benzoic acid, pyridinoxyacetic
acid, pyridinecarboxylic acid, and 6-aryl-2-pyridinecarboxylate are important chemical
herbicides; from the international herbicide-resistant weed database [5], the number of
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weed species that are resistant to synthetic auxin herbicides is significantly increasing at
a slower rate than others [6] because of their unique mode of action and specific binding
sites in target proteins, indicating that they have great potential for the development
of new herbicides. In 2007, Tan et al. presented the crystal structure of the Arabidopsis
transport inhibitor response 1 (TIR1)-ASK1 complex and established the first structural
model of a plant hormone receptor and the mode of binding between auxins and a target
protein [7]. Their study guides researchers in exploring the mode of action of synthetic
auxin compounds and designing new computer-aided auxin molecules. Studies have
reported that 2-picolinic acid synthetic auxins herbicides have physiological functions
similar to those of IAA, 2,4-D, and other auxin analogs [8,9]; however, they bind to AFB5
rather than TIR1, which is a binding protein of IAA [9–12].

Picloram and clopyralid were commercialized as herbicides in the 1960s and 1975, at
application rates of 125–1120 and 105–500 gha−1, respectively. Subsequently, aminopy-
ralid, discovered by modifying picloram, was commercialized as a herbicide in 2006 with
application rates of 5–120 gha−1 [13]. In 2015, Jeffrey B. Epp et al. reported that 6-aryl-
2-picolinates exhibit excellent herbicidal activities by replacing the chlorine atom with a
phenyl group at position 6 of 2-picolinic acid herbicides, and they discovered two novel
picolinate herbicides, halauxifen-methyl and florpyrauxifen-benzyl [13–15]. Even though
these herbicides act on complex auxin-binding proteins, weeds inevitably generate resis-
tance with long-term extensive application; for instance, some weeds were observed to be
resistant to picloram [16,17]. In this work, we attempted to modify the chemical structure
of picloram to obtain highly effective herbicidal molecules.

In 2021, Yang et al. obtained 3-chloro-6-pyrazolyl-2-picolinic acids and their ester
derivatives by modifying clopyralid using substituted pyrazole rings [18]. Bioassay tests
indicated that compound c5 exhibited better postemergence herbicidal activity and broader
herbicidal activity at a dosage of 400 gha−1 than clopyralid. This indicates that the in-
troduction of pyrazolyl at position 6 of 2-picolinic acid could be a potential strategy for
discovering a novel synthetic auxin herbicide (Figure 1).
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Pyrazoles are aromatic five-membered heterocyclic ring molecules, and their structural
characteristics have garnered considerable attention among researchers for the incorpo-
ration of pyrazolyl with different substituents into various structures. Therefore, they
exist in a large number of biologically active molecules relevant to the pharmaceutical
and agrochemical industries [19]. To date, some molecules containing pyrazole have been
launched as herbicides, such as benzofenap, pyrazoxyfen, and cypyrafluone. Meanwhile,
molecules containing pyrazole have exhibited potential bioactivity in recent research and
patents [20–23] (Figure 2).
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Inspired by the discovery of 6-aryl-2-picolinate herbicides, we designed and syn-
thesized 33 4-amino-3,5-dichloro-6-pyrazolyl-2-picolinic acids with a phenyl-substituted
pyrazole replacing the chlorine atom at position 6 of picloram, in order to explore a new her-
bicidal molecule (Figure 3). The inhibition of Arabidopsis thaliana root growth, herbicidal
activities, and crop selectivity were tested, and the quantitative structure–activity relation-
ship (QSAR), molecular docking, and mode of action were also preliminarily explored.
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Figure 3. Design strategy of target compounds.

2. Results and Discussion
2.1. Chemistry

The general synthetic procedure is illustrated in Scheme 1. All materials were com-
mercially available. Intermediate II was prepared via a nucleophilic substitution reac-
tion in which the chlorine atom at position 6 of picloram was replaced by hydrazine
hydrate [24]. Intermediate III was obtained via a Claisen reaction between ethyl acetate
or ethyl di/trifluoroacetate and methyl ketones [25]. Moreover, intermediate IV was syn-
thesized via the Knorr cyclization reaction of intermediate II and intermediate III [26].
Owing to the unsymmetrical intermediate III, two region isomers are often obtained in this
reaction, and 5-aryl-pyrazolyl substituted product is 10 times more abundant than 3-aryl-
pyrazolyl substituted product when R1 is an electron-withdrawing group (R1 = CHF2; and
CF3). A possible reason for this is that the carbon atom on the carbonyl group connecting R1
is a more deficient electron and is more attractive to the nitrogen atom containing the lone
electron pair in 6-hydrazinyl-2-picolinitrile. When R1 was a non-substituted alkyl group
(R1 = Me), the regio-selectivity weakened and the ratio of the 5-aryl-pyrazolyl substituted
product to 3-aryl-pyrazolyl substituted product was in the range 3:1–5:1. Finally, the cyano
group in intermediate IV was hydrolyzed as a carboxylic acid group to yield the target
compound V [27]. All the target compounds were characterized through HRMS and NMR,
and their NMR spectra and data are shown in the Supplementary Materials.
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Scheme 1. Synthesis of compound V. Reagents and conditions: (a) potassium carbonate, hy-
drazine hydrate, tetrahydrofuran, 0–25 ◦C; (b) sodium hydride, ethyl acetate/ethyl ether, −5–25 ◦C;
(c) sulfuric acid, ethanol, 75 ◦C; (d) sulfuric acid, H2O, 100 ◦C.

2.2. Docking Analysis

Molecular docking was used to predict the binding modes and molecular interactions
of compound V by MOE (Version 2020.09). The binding energy was predicted based on the
structure and configurations of the compounds, as summarized in Table 1. The binding
energies of almost all target compounds were less than that of picloram, which indicated
that most of target compound V exhibited a higher affinity for AFB5. In particular, the
binding energy of compound V-7 (−8.59 kJ mol−1) was the lowest.

As shown in Figure 4, compound V-7, whose binding energy was −8.33 kJ mol−1,
exhibited hydrogen bonding with five amino acid residues: Arg449, Arg482, Arg123,
Phe127, and Asp126, whereas picloram with a binding energy of −6.53 kJ mol−1 exhibited
hydrogen bonding with three amino acid residues: Arg449, Val485, and Leu450, which
probably explained the difference of the binding energies between two molecules at a certain
level. In particular, the nitrogen atom at position 2 of the pyrazolyl ring in compound V-7
forms a hydrogen bond with residues Arg123 and Arg 482, which demonstrates that the
proposed design improved the modification of molecules.
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Table 1. Predicted binding energy of all target compounds, picloram, and halauxifen-methyl.

Compd. Score (kJ mol−1) Compd. Score (kJ mol−1)

V-1 −8.07 V-19 −7.77
V-2 −8.33 V-20 −7.58
V-3 −8.15 V-21 −7.04
V-4 −8.02 V-22 −7.88
V-5 −8.00 V-23 −7.90
V-6 −8.09 V-24 −7.81
V-7 −8.59 V-25 −8.07
V-8 −8.29 V-26 −7.97
V-9 −8.30 V-27 −7.90

V-10 −7.54 V-28 −7.36
V-11 −7.80 V-29 −7.53
V-12 −7.80 V-30 −7.62
V-13 −8.23 V-31 −7.44
V-14 −8.29 V-32 −6.81
V-15 −8.03 V-33 −7.28
V-16 −8.09 Picloram −6.53
V-17 −8.05 Halauxifen-methyl −7.25V-18 −8.11

Use London dG and GBVI/WSA dG as rescoring functions.
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Figure 4. AFB5 exhibits different auxin-binding affinities to compounds. Three-dimensional struc-
tures of AFB5 exhibit an almost identical fold with regard to secondary structure arrangements.
(a) Docking arrangements of compound V-7 to AFB5. (b) Docking arrangements of picloram to AFB5.
White sticks represent hydrogen atoms, red sticks represent oxygen atoms, blue sticks represent
nitrogen atoms and dark green sticks represent chlorine atoms. (c) Two-dimensional interaction of
compound V-7 to AFB5. (d) Two-dimensional interaction of picloram to AFB5.
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As reported by Jeffrey B. Epp et al., halauxinfen-methyl is metabolized into halauxifen
in plants [13]. In comparison with the binding to AFB5, as shown in Figure 5b, compound
V-7 and halauxifen overlapped well in the same position, and compound V-7 not only
exhibited more hydrogen bonding, but also formed hydrophobic interactions between
the benzene ring and the nearby phenylalanine because of the lengthening effect of the
pyrazolyl ring.
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Figure 5. (a) Docking arrangements of halauxifen to AFB5. (b) Superposition diagram of compound
V-7 and halauxifen docking arrangements to AFB5. White sticks represent hydrogen atoms, red sticks
represent oxygen atoms, blue sticks represent nitrogen atoms and dark green sticks represent chlorine
atoms. (c) Two-dimensional interaction of halauxifen to AFB5.

2.3. A. thaliana Root Growth Assays to Quantify Compounds Activity

A. thaliana is frequently used as a model plant to explore the preliminary effects of
novel compounds on plants [28], including phenotype and physiological indexes, and it
can also be used to study the mechanism of plant responses to chemicals at the protein and
gene levels. In this study, all target compounds were tested against A. thaliana root growth
in at least five concentrations for preliminary biological activity and the calculation of IC50
values. As summarized in Table 2, some compounds exhibited better inhibition than the
picloram and halauxifen-methyl commercial herbicides. In particular, compounds V-2 and
V-7 exhibited approximately 30- and 50-fold lower IC50 values than the commercial herbi-
cide halauxifen-methyl, respectively, indicating that the proposed strategy for modifying
picloram is probably successful in inhibiting A. thaliana root growth.
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Table 2. IC50 values of all compounds against A. thaliana root growth inhibition.

Compd. IC50 (µmol/L) Compd. IC50 (µmol/L)

V-1 2.1172 V-19 20.3215
V-2 0.0688 V-20 36.5507
V-3 1.1394 V-21 43.2911
V-4 1.4501 V-22 6.7232
V-5 2.1794 V-23 6.4282
V-6 1.8578 V-24 7.0823
V-7 0.0389 V-25 1.3623
V-8 1.4044 V-26 4.1381
V-9 0.8444 V-27 2.2558

V-10 25.2618 V-28 33.9772
V-11 7.1501 V-29 44.886
V-12 7.6716 V-30 23.0342
V-13 0.8872 V-31 27.6596
V-14 1.2416 V-32 73.1934
V-15 1.6909 V-33 57.9380
V-16 0.1850 Picloram 3.7240
V-17 0.6585 Halauxifen-methyl 1.7764V-18 0.7218

All target compounds were tested using at least five concentrations with triplicates to determine IC50 values.

Combined with the score and pIC50, as shown in Figure 6, the scatter plots of score and
pIC50 are generally fitted to a line, indicating that the docking model was well predicted.
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2.4. Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR)

Combined with the determination of IC50 values against A. thaliana root growth
inhibition and compound structure, a 3D-QSAR model was constructed using the CoMFA
strategy. The model was generated with all possible combinations of steric and electrostatic
fields for CoMFA [29]. To build the model, the cross-validated partial least squares (PLS)
method was used, which provides a leave-one-out cross-validated correlation coefficient q2

and determination coefficient r2. Based on the basic requirements of the criteria proposed
by the Golbraikh and Tropsha conditions, the model satisfying q2 > 0.5 and r2 > 0.6 is
considered to be acceptable and predictive.

As listed in Table 3, the CoMFA model satisfied the q2 > 0.5 and r2 > 0.6 criteria.
This model exhibited a q2 of 0.679; r2 of 0.848; standard error of estimate (SEE) of 0.337;
Fisher test value (F) of 44.660; and an optimum number of components (ONC) of 4. The
contributions of steric and electrostatic fields were 62.7 and 36.3%, respectively.
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Table 3. Statistical result of the CoMFA model.

Model q2 r2 SEE F ONC
Field Contribution (%)

S E

CoMFA 0.679 0.848 0.337 44.660 4 62.7 36.3

Leave-one-out cross-validated correlation coefficient (q2), determination coefficient (r2), error of estimate (SEE),
Fisher’s test value (F), optimum number of components (ONC), steric (S), and electrostatic (E).

2.4.1. Scatter Plots

As shown in Figure 7, the scatter plots of the actual and predicted inhibitory activities
of the training set compounds fit well to a line, indicating that the constructed CoMFA
model exhibits predictive capability.
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Figure 7. Scatter plots of the actual versus predicted pIC50 for the CoMFA model.

2.4.2. Contour Map Analysis

The CoMFA contour map was created using the StDev*Coeff mapping option, which
allows visualization of each field effect. Compound V-7, which had the lowest IC50 value,
was superimposed on the contour map. The contributions to the favorable and unfavorable
regions in each field were 80 and 20%, respectively.

In the steric contour map shown in Figure 8a, the green contour block indicates that the
presence of bulky steric groups in this area would be favorable for the biological activity of a
compound, whereas the yellow block indicates that the bulky groups would be unfavorable.
The green contour blocks appear in four parts around compound V-7, while the largest
green contour block appears at the fourth position of the benzene ring connected to the
pyrazole ring, which indicates the reason for the different activities between compounds
V-7 and V-1. Their substituents are chlorine atoms and methyl groups, respectively, and
chlorine atom groups exhibit larger occupation than methyl groups. In addition, it can be
observed in this figure that a small yellow contour block appears next to the largest green
contour block, indicating that the bulky groups in this area are unfavorable. This could
explain why compound V-7 was more active than compound V-32, because in comparison
with chlorine atoms, the tert-butyl group occupies a larger space, resulting in its invasion
of the area of the yellow contour block.

As shown in Figure 8b, the blue contours indicate that the electropositive groups are
favorable for increasing the activity of a compound, whereas the red contours indicate
that the electropositive groups are unfavorable for the activity of a compound. On the
side of the carbonyl group, a large red contour block appears, indicating the importance
of the carbonyl group at position 2 of the pyridine. The blue contour block next to the
trifluoromethyl group at position 3 of the pyrazolyl ring explains why compound V-7
exhibits higher activity owing to the presence of electronegative substituents in the blue
contour region.
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2.5. Greenhouse Activity Assay

Based on the design strategy and docking analysis, the herbicidal activities of the new
compounds were tested in a greenhouse against six common weeds, including three grami-
neous weeds: Setaria glauca (SG), Digitaria sanguinalis (DS), and Echinochloa crusgalli (EC);
three broadleaf weeds: Chenopodium album (CA), Abutilon theophrasti (AT), and Amaranthus
retroflexus (AR); and two commercial herbicides, picloram and halauxifen-methyl, were
selected as the control groups. As summarized in Table 4 and shown in Figure 9, most of the
compounds exhibited post-emergence inhibitory activities against the weeds mentioned
above. Generally, the inhibitory activities of almost all compounds on broadleaf weeds
are stronger than those on gramineous weeds, which is similar to the inhibitory activities
of picloram and halauxifen-methyl. This also indicates that the target compounds may
have similar mechanisms of action as commercial herbicides. Furthermore, compounds
V-1–V-18 with halogen-substituted phenyl exhibited better herbicidal activities than com-
pounds V-19–V-33 with alkyl-substituted phenyl. Notably, compound V-8 at a dosage of
300 gha−1 exhibits 100, 100, and 95% post-emergence injury values against CA, AT, and
AR, respectively, and 100, 40, and 100% pre-emergence injury values against CA, AT, and
AR, respectively. This illustrates that the herbicidal activity of compound V-8 was better
than that of picloram. Furthermore, there was a slight variance between the herbicidal
activities of compounds V and inhibition of A. thaliana root growth, possibly because of the
AFB5 difference in A. thaliana and the tested weeds.

Based on these results, the herbicidal activity of compound V-8 was tested on broadleaf
weeds at dosages of 300, 150, and 75 gha−1. As summarized in Table 5, the inhibition of
compound V-8 against the weeds gradually decreased with decreasing dosages in the
pre-emergence test; however, the decreasing trend was small. In the post-emergence test,
the inhibition of compound V-8 remained high at a dosage of 150 gha−1 compared with
that at a dosage of 300 gha−1. These results indicated that compound V-8 exhibited a better
herbicidal effect than picloram.
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Table 4. Herbicidal activities of all compounds.

Compd.
Dosage
(gha−1)

Post-Emergence Pre-Emergence

SG DS EC CA AT AR SG DS EC CA AT AR

V-1 300 50 10 0 80 0 90 70 0 0 0 0 20
V-2 300 0 0 0 75 10 90 15 0 0 95 0 95
V-3 300 10 0 0 100 65 100 60 0 0 0 0 60
V-4 300 20 0 0 95 90 95 30 40 0 100 0 95
V-5 300 25 0 0 90 10 80 30 0 0 60 0 60
V-6 300 60 20 15 100 0 100 35 10 0 30 0 75
V-7 300 0 0 0 100 0 100 10 0 0 90 20 85
V-8 300 40 0 20 100 100 95 20 0 0 100 40 100
V-9 300 70 0 50 90 0 80 20 0 0 10 0 20

V-10 300 85 50 0 100 10 70 80 60 0 60 10 20
V-11 300 70 0 0 60 0 40 60 40 0 90 20 30
V-12 300 0 0 0 40 0 0 30 0 0 0 20 0
V-13 300 0 0 0 80 60 85 0 0 0 20 0 60
V-14 300 40 0 0 100 60 100 0 0 0 90 0 25
V-15 300 35 0 0 75 0 95 0 0 0 0 0 0
V-16 300 35 0 0 50 55 95 0 0 0 100 0 80
V-17 300 40 0 0 85 20 90 10 0 0 0 0 90
V-18 300 50 0 0 85 50 90 0 0 0 0 0 0
V-19 300 50 0 0 10 25 0 0 0 0 0 0 0
V-20 300 30 0 0 10 20 0 0 0 0 0 0 30
V-21 300 55 0 0 10 15 0 0 0 0 0 0 0
V-22 300 20 0 0 10 10 0 0 0 0 0 0 0
V-23 300 40 0 0 10 0 0 0 0 0 0 0 0
V-24 300 30 0 0 0 0 0 0 0 0 0 0 0
V-25 300 40 0 0 10 0 15 0 0 0 30 0 0
V-26 300 50 0 0 40 0 0 10 0 0 30 0 0
V-27 300 60 0 0 0 0 0 0 0 0 0 0 0
V-28 300 70 0 0 10 50 0 0 0 0 0 0 0
V-29 300 60 0 0 0 10 15 0 0 0 0 0 0
V-30 300 20 0 0 0 10 0 0 0 0 0 0 0
V-31 300 20 0 0 0 10 0 0 0 0 0 0 0
V-32 300 70 0 0 10 10 0 0 0 0 0 0 0
V-33 300 30 0 0 0 0 0 0 0 0 0 0 0

Picloram 300 45 65 0 90 80 90 25 0 0 90 30 75
Halauxifen-

methyl 15 30 40 60 90 80 98 0 0 0 0 20 40

All compounds with picloram and halauxifen-methyl as controls were evaluated by percent visual injury value
against SG, DS, EC, CA, AT, AR under pre-emergence and post-emergence conditions.

Table 5. Herbicidal activities of compound V-8.

Dosage (gha−1)
Post-Emergence Pre-Emergence

CA AT AR CA AT AR

300 / / / 100.0 59.0 98.0
150 93.9 35.7 100 98.0 35.9 95.0
75 / / / 95.0 7.0 81.2

Evaluation of fresh weight inhibition in the aboveground against CA, AT, AR under pre-emergence and post-
emergence conditions.

To further investigate the crop selectivity of compound V-8, three common
crops—including corn, wheat, and sorghum under pre-emergence and post-emergence
conditions—were treated. As summarized in Table 6, compound V-8 was safe for wheat
while slightly damaging corn and sorghum under pre-emergence conditions; however, it
was completely safe for the three crops under post-emergence conditions.
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Table 6. Crop selectivity of compound V-8.

Dosage (gha−1)
Post-Emergence Pre-Emergence

Corn Wheat Sorghum Corn Wheat Sorghum

300 0 0 0 13.4 0 14.0
Fresh weight inhibition in the aboveground parts of corn, wheat, and sorghum under pre-emergence (pre) and
post-emergence (post) conditions.

In summary, these results demonstrated that the target compounds are potential
candidates for herbicide discovery research, and they need to be studied further.

3. Materials and Methods
3.1. Chemicals and Instruments

All the reagents and solvents were purchased from commercial suppliers (Beijing
InnoChem Science & Technology Co., Ltd., Beijing, China and Sinopharm Chemical Reagent
Co., Ltd., Beijing, China). All reactions were monitored using thin-layer chromatography
(TLC) run on silica gel glass plates (Qingdao Broadchem Industrial, Qingdao, China). 1H
and 13C NMR spectroscopy were recorded using a Bruker AM-500 spectrometer with
temperature control at 21–23 ◦C, using DMSO-d6 or CDCl3 as the solvent and tetramethyl
silane (TMS) as the internal reference. In the spectra, the chemical shifts (δ) were given in
parts per million (ppm). High-resolution mass spectra (HRMS) were determined with an
Agilent 6540 QTOF instrument.

3.2. Synthesis
3.2.1. General Synthetic Procedure of Intermediate II

In a 500 mL, three-necked, round-bottom flask, compound I (100 mmol) and anhydrous
potassium carbonate (200 mmol) were added to tetrahydrofuran (250 mL). Subsequently,
80% hydrazine hydrate (300 mmol) was slowly added to the reaction mixture while stirring
at 0 ◦C. After the addition, the reaction mixture was heated to 75 ◦C in an oil bath for 6 h
of reflux. Once the reaction was complete, the mixture was cooled to room temperature
and filtered. The obtained solid was washed with water to obtain intermediate II as an
off-white solid (yield 73%): 1H NMR (300 MHz, DMSO-d6) δ 9.63 (s, 1H), 7.18 (s, 2H), 4.53
(s, 2H).



Molecules 2023, 28, 1431 12 of 20

3.2.2. General Synthetic Procedure of Intermediate III

Two different procedures were used to synthesize 1,3-diketones in this study. (1) When
R1 was a methyl group, ethyl acetate was used as the reactant and solvent. In a 100 mL
round-bottom flask, 60% sodium hydride (28.8 mmol) was slowly added to 30 mL of ethyl
acetate under stirring at −5 ◦C. Thereafter, a mixture of methyl ketones (28.8 mmol) and
10 mL of ethyl acetate was added slowly to the reaction solution. After addition, the
entire system was warmed to room temperature and stirred for 6 h. The reaction was
quenched with aqueous hydrochloric acid (1 N, 30 mL), acidified to a pH range of 1–2, and
subsequently extracted using ethyl acetate (3 × 15 mL). The combined organic phases were
dried over anhydrous sodium sulfate and concentrated under a vacuum. The residue was
purified via flash column chromatography (n-hexane) to obtain intermediate III (yields
65.8–78.4%). (2) When R1 was a difluoromethyl or trifluoromethyl, the procedure was as
follows: in a 100 mL round-bottom flask, 60% sodium hydride (43.2 mmol) was slowly
added to 30 mL of ethyl ether with stirring at −5 ◦C. Thereafter, a mixture of methyl
ketones (28.8 mmol) and ester (34.56 mmol) was slowly added to the reaction solution.
After addition, the entire system was warmed to room temperature and stirred overnight.
The reaction was quenched with aqueous hydrochloric acid (1 N, 30 mL), acidified to a pH
range of 1–2, and extracted using ethyl acetate (3 × 15 mL). The combined organic phases
were dried over anhydrous sodium sulfate and concentrated under vacuum. The residue
was purified via flash column chromatography (n-hexane/ethyl acetate = 10:1) to afford
intermediate III (yields 87.6–92.2%).

3.2.3. General Synthetic Procedure of Intermediate IV

In a 50 mL round-bottom flask, intermediate III (5 mmol) was added to a solution of
intermediate II (5 mmol) in 20 mL of ethanol at room temperature. Thereafter, concentrated
sulfuric acid was slowly added to the stirred solution, and the reaction mixture was heated
to 75 ◦C in an oil bath and kept at reflux for 2 h. The reaction was cooled to room temper-
ature, quenched with a saturated sodium carbonate solution, and extracted using ethyl
acetate (3 × 15 mL). The combined organic phases were dried over anhydrous sodium
sulfate and concentrated under vacuum. The residue was purified via flash column chro-
matography (n-hexane/ethyl acetate = 6:1) to afford intermediate IV (yields 80.3–91.7%).

3.2.4. General Synthetic Procedure of Compound V

Intermediate IV (1.067 mmol) was dissolved in 80% aqueous sulfuric acid (10 mL) in a
25 mL round-bottom flask. Thereafter, the reaction solution was heated to 100 ◦C in an oil
bath and kept at reflux for 2 h. The reaction mixture was cooled to room temperature and
quenched with water. The white solid was collected through filtration and dried to achieve
the target compound V (yields 90.1–99.0%).

Compound V-1 4-Amino-3,5-dichloro-6-(3-methyl-5-(p-tolyl)-1H-pyrazol-1-yl)picolinic
acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 13.90 (s, 1H), 7.21 (s, 2H), 7.14 (d,
J = 8.1 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 6.47 (s, 1H), 2.25 (s, 3H), 2.25 (s, 3H). 13C NMR
(126 MHz, DMSO-d6) δ 165.94, 150.50, 149.53, 147.69, 147.12, 145.13, 138.41, 129.79, 127.35,
127.13, 113.10, 112.26, 106.17, 21.19, 13.79. HRMS calcd. for C17H14Cl2N4O2 ([M-H]−),
375.0416; found, 375.0413.

Compound V-2 4-Amino-3,5-dichloro-6-(3-(difluoromethyl)-5-(p-tolyl)-1H-pyrazol-1-
yl)picolinic acid. White solid. 1H NMR (300 MHz, DMSO-d6) δ 14.03 (s, 1H), 7.35 (s, 2H),
7.19 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.6 Hz, 2H), 7.10 (t, J = 54.35 Hz, 1H), 6.99 (s, 1H), 2.27 (s,
3H). 13C NMR (126 MHz, DMSO-d6) δ 165.70, 163.80, 161.84, 150.85, 148.00, 147.78, 147.54,
147.30, 146.49, 145.07, 130.24, 130.17, 125.32, 116.60, 116.43, 113.53, 113.01, 112.72, 111.67,
109.82, 104.16. HRMS calcd. for C17H12Cl2F2N4O2 ([M-H]−), 411.0227; found, 411.0239.

Compound V-3 4-Amino-3,5-dichloro-6-(5-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-
1-yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 14.04 (s, 1H), 7.40 (s,
2H), 7.25 (s, 1H), 7.21 (d, J = 8.9 Hz, 2H), 7.18 (d, J = 8.9 Hz, 2H), 2.28 (s, 3H). 13C NMR
(126 MHz, DMSO-d6) δ 165.73, 150.83, 147.51, 146.63, 146.38, 143.22, 142.92, 142.62, 142.32,
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139.77, 130.04, 127.85, 125.32, 124.88, 122.74, 120.60, 118.46, 113.17, 112.73, 104.51, 40.30,
21.22. HRMS calcd. for C17H11Cl2F3N4O2 ([M-H]−), 429.0133; found, 429.0143.

Compound V-4 4-Amino-3,5-dichloro-6-(5-(4-fluorophenyl)-3-methyl-1H-pyrazol-1-
yl)picolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.83 (s, 1H), 7.25 (s,
2H), 7.24–7.22 (m, 2H), 7.22–7.18 (m, 2H), 6.52 (s, 1H), 2.26 (s, 3H). 13C NMR (126 MHz,
DMSO-d6) δ 165.88, 163.36, 161.41, 150.61, 149.65, 147.36, 147.15, 144.06, 129.71, 129.64,
126.50, 116.37, 116.19, 112.90, 112.32, 106.68, 13.76. HRMS calcd. for C16H11Cl2FN4O2
([M-H]−), 379.0165; found, 379.0159.

Compound V-5 4-Amino-3,5-dichloro-6-(3-(difluoromethyl)-5-(4-fluorophenyl)-1H-
pyrazol-1-yl)picolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.98 (s, 1H),
7.40 (s, 2H), 7.35–7.33 (m, 2H), 7.28–7.24 (m, 2H), 7.13 (t, J = 54.3 Hz, 1H), 7.07 (s, 1H). 13C
NMR (126 MHz, DMSO-d6) δ 165.70, 163.80, 161.84, 150.85, 148.00, 147.78, 147.54, 147.30,
146.49, 145.07, 130.24, 130.17, 125.32, 116.60, 116.43, 113.53, 113.01, 112.72, 111.67, 109.82,
104.16. HRMS calcd. for C16H9Cl2F3N4O2 ([M-H]−), 414.9976; found, 414.9986.

Compound V-6 4-Amino-3,5-dichloro-6-(5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-
pyrazol-1-yl)picolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 14.07 (s, 1H), 7.46
(s, 2H), 7.38–7.36 (m, 2H), 7.35 (s, 1H), 7.31–7.27 (m, 2H). 13C NMR (126 MHz, DMSO-d6) δ
165.61, 164.01, 162.03, 150.97, 147.30, 146.07, 145.56, 143.29, 142.99, 142.69, 142.39, 130.44,
130.37, 124.81, 124.71, 124.68, 124.68, 122.67, 120.53, 118.39, 116.71, 116.54, 113.34, 112.67,
105.06. HRMS calcd. for C16H8Cl2F4N4O2 ([M-H]−), 432.9882; found, 432.9888.

Compound V-7 4-Amino-3,5-dichloro-6-(5-(4-chlorophenyl)-3-methyl-1H-pyrazol-1-
yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 13.50 (s, 1H), 7.43 (d,
J = 8.55 Hz, 2H), 7.28 (s, 2H), 7.21 (d, J = 8.55 Hz, 2H), 6.57 (s, 1H), 2.27 (s, 3H). 13C NMR
(126 MHz, DMSO-d6) δ 165.85, 150.66, 149.78, 147.28, 147.11, 143.85, 133.63, 129.34, 129.16,
128.79, 112.80, 112.39, 106.96, 13.76. HRMS calcd. for C16H10Cl3N4O2 ([M-H]−), 394.9869;
found, 395.0023.

Compound V-8 4-Amino-3,5-dichloro-6-(5-(4-chlorophenyl)-3-(difluoromethyl)-1H-
pyrazol-1-yl)picolinic acid. White solid. 1H NMR (300 MHz, DMSO-d6) δ 13.95 (s, 1H),
7.48 (d, J = 8.4 Hz, 2H), 7.40 (s, 2H),7.30 (d, J = 8.4 Hz, 2H), 7.14 (t, J = 54.3 Hz, 1H), 7.11 (s,
1H). 13C NMR (126 MHz, DMSO-d6) δ 165.65, 150.88, 148.08, 147.85, 147.62, 147.31, 146.41,
144.87, 134.49, 129.61, 129.54, 127.61, 113.47, 113.07, 111.62, 109.77, 104.43. HRMS calcd. for
C16H8Cl3F2N4O2 ([M-H]−), 430.9681; found, 430.9688.

Compound V-9 4-Amino-3,5-dichloro-6-(5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-
pyrazol-1-yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 14.06 (s, 1H), 7.51
(d, J = 8.5 Hz, 2H), 7.47 (s, 2H), 7.38 (s, 1H), 7.33 (d, J = 8.5 Hz, 2H). 13C NMR (126 MHz,
DMSO-d6) δ 165.61, 151.00, 147.34, 146.00, 145.36, 143.36, 143.06, 142.76, 142.46, 134.90,
129.75, 129.62, 126.99, 124.77, 122.63, 120.49, 118.35, 113.39, 112.58, 105.32. HRMS calcd. for
C16H7Cl3F3N4O2 ([M-H]−), 448.9587; found, 448.9592.

Compound V-10 4-Amino-3,5-dichloro-6-(5-(3-chlorophenyl)-3-methyl-1H-pyrazol-1-
yl)picolinic acid. Yellow solid. 1H NMR (500 MHz, Chloroform-d) δ 7.29 (s, 1H), 7.28 (d,
J = 7.75 Hz, 1H), 7.23 (dd, J = 8.0 Hz, 7.75 Hz, 1H), 6.99 (d, J = 7.75 Hz, 1H), 6.40 (s, 1H),
5.62 (s, 2H), 2.41 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 165.85, 150.64, 149.79, 147.23,
143.48, 133.82, 131.85, 131.13, 128.77, 127.35, 125.91, 112.85, 112.34, 107.27, 13.77. HRMS
calcd. for C16H10Cl3N4O2 ([M-H]−), 394.9869; found, 394.9873.

Compound V-11 4-Amino-3,5-dichloro-6-(5-(3-chlorophenyl)-3-(difluoromethyl)-1H-
pyrazol-1-yl)picolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.96 (s, 1H),
7.46–7.45 (m, 1H), 7.45 (s, 1H), 7.43–7.40 (m, 1H), 7.39 (s, 2H), 7.18 (s, 1H), 7.16–7.13 (m,
1H), 7.14 (t, J = 54.2 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 165.64, 150.87, 148.10,
147.87, 147.64, 147.38, 146.39, 144.50, 134.01, 131.28, 130.68, 129.58, 127.88, 126.30, 113.45,
113.04, 112.71, 111.60, 109.75, 104.81. HRMS calcd. for C16H8Cl3F2N4O2 ([M-H]−), 430.9681;
found, 430.9691.

Compound V-12 4-Amino-3,5-dichloro-6-(5-(3-chlorophenyl)-3-(trifluoromethyl)-1H-
pyrazol-1-yl)picolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 14.01 (s, 1H),
7.52–7.39 (m, 6H), 7.15 (d, J = 7.7 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 165.58, 151.00,
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147.29, 145.97, 144.98, 143.37, 143.07, 142.77, 142.47, 134.10, 131.36, 130.01, 129.95, 128.09,
126.36, 125.69, 124.74, 124.60, 122.60, 120.46, 118.33, 113.36, 112.67, 105.70. HRMS calcd. for
C16H7Cl3F3N4O2 ([M-H]−), 448.9587; found, 448.9592.

Compound V-13 4-Amino-6-(5-(4-bromophenyl)-3-methyl-1H-pyrazol-1-yl)-3,5-
dichloropicolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.85 (s, 1H),
7.56 (d, J = 8.2 Hz, 2H), 7.23 (s, 2H), 7.14 (d, J = 8.3 Hz, 2H), 6.57 (s, 1H), 2.27 (s, 3H). 13C
NMR (126 MHz, DMSO-d6) δ 165.90, 150.62, 149.77, 147.25, 143.89, 132.26, 129.41, 129.15,
122.28, 112.67, 112.30, 106.93, 13.76. HRMS calcd. for C16H10BrCl2N4O2 ([M-H]−), 440.9344;
found, 440.9348.

Compound V-14 4-Amino-6-(5-(4-bromophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl)-
3,5-dichloropicolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.92 (s, 1H), 7.62
(d, J = 8.5 Hz, 1H), 7.38 (s, 2H), 7.23 (d, J = 8.5 Hz, 1H), 7.13 (t, J = 54.2 Hz, 1H), 7.11 (s,
1H). 13C NMR (126 MHz, DMSO-d6) δ 165.61, 150.89, 148.10, 147.88, 147.65, 147.26, 146.41,
144.93, 132.45, 129.83, 127.97, 123.21, 113.47, 113.10, 112.64, 111.61, 109.76, 104.43. HRMS
calcd. for C16H8BrCl2F2N4O2 ([M-H]−), 476.9155; found, 476.9159.

Compound V-15 4-Amino-6-(5-(4-bromophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)-
3,5-dichloropicolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.92 (s, 1H), 7.57
(d, J = 8.5 Hz, 2H), 7.39 (s, 2H), 7.31 (s, 1H), 7.18 (d, J = 8.5 Hz, 2H). 13C NMR (126 MHz,
DMSO-d6) δ 165.58, 151.01, 147.27, 145.99, 145.42, 143.38, 143.08, 142.77, 142.48, 132.54,
129.95, 127.33, 124.76, 123.64, 122.62, 120.48, 118.34, 113.42, 112.58, 105.32. HRMS calcd. for
C16H7BrCl2F3N4O2 ([M-H]−), 494.9061; found, 494.9066.

Compound V-16 4-Amino-6-(5-(2-bromophenyl)-3-methyl-1H-pyrazol-1-yl)-3,5-
dichloropicolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.71 (s, 1H),
7.66 (dd, J = 7.9, 1.1 Hz, 1H), 7.31 (td, J = 7.5, 1.2 Hz, 1H), 7.26 (td, J = 7.7, 1.8 Hz, 1H),
7.16 (s, 2H), 7.15 (dd, J = 7.7, 1.8 Hz, 1H), 6.48 (s, 1H), 2.30 (s, 3H). 13C NMR (126 MHz,
DMSO-d6) δ 165.79, 150.43, 149.03, 146.67, 146.64, 143.25, 133.51, 132.02, 131.26, 130.98,
127.84, 123.02, 112.09, 111.70, 109.10, 13.83. HRMS calcd. for C16H10BrCl2N4O2 ([M-H]−),
440.9344; found, 440.9351.

Compound V-17 4-Amino-6-(5-(2-bromophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl)-
3,5-dichloropicolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.82 (s, 1H), 7.71
(dd, J = 7.7, 1.1 Hz, 1H), 7.38–7.27 (m, 4H), 7.22 (dd, J = 7.3, 2.0 Hz, 1H), 7.17 (t, J = 54.2 Hz,
1H), 6.98 (s, 1H). 13C NMR (126 MHz, DMSO-d6) δ 165.61, 150.66, 147.38, 147.15, 146.92,
146.85, 145.86, 144.28, 133.60, 132.27, 131.73, 129.98, 128.01, 123.25, 113.51, 112.45, 112.13,
111.66, 109.81, 106.57, 40.30. HRMS calcd. for C16H8BrCl2F2N4O2 ([M-H]−), 476.9155;
found, 476.9158.

Compound V-18 4-Amino-6-(5-(2-bromophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)-
3,5-dichloropicolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.91 (s, 1H), 7.73
(dd, J = 7.6, 1.5 Hz, 1H), 7.37 (m, 4H), 7.26(dd, J = 7.3, 2.0 Hz, 1H), 7.25 (s, 1H). 13C NMR
(126 MHz, DMSO-d6) δ 165.53, 150.77, 146.84, 145.45, 144.81, 142.67, 142.37, 142.07, 141.77,
133.62, 132.37, 132.08, 129.32, 128.07, 124.80, 123.36, 122.66, 120.52, 118.38, 112.78, 112.16,
107.41. HRMS calcd. for C16H7BrCl2F3N4O2 ([M-H]−), 494.9061; found, 494.9064.

Compound V-19 4-Amino-3,5-dichloro-6-(5-(4-isopropylphenyl)-3-methyl-1H-pyrazol-
1-yl)picolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.78 (s, 1H), 7.23 (s,
2H), 7.21 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 6.48 (s, 1H), 2.84 (hept, J = 6.9 Hz,
1H), 2.25 (s, 3H), 1.16 (d, J = 6.9 Hz, 6H). 13C NMR (126 MHz, DMSO-d6) δ 165.92, 150.52,
149.50, 149.12, 147.78, 147.12, 145.03, 127.36, 127.19, 113.23, 112.31, 106.24, 33.52, 24.05, 13.78.
HRMS calcd. for C19H17Cl2N4O2 ([M-H]−), 403.0729; found, 403.0734.

Compound V-20 4-Amino-3,5-dichloro-6-(3-(difluoromethyl)-5-(4-isopropylphenyl)-
1H-pyrazol-1-yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 13.95 (s, 1H),
7.36 (s, 2H), 7.27 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 7.11 (t, J = 54.3 Hz, 1H), 7.01 (s,
1H), 2.86 (hept, J = 6.9 Hz, 1H), 1.17 (d, J = 6.9 Hz, 6H). 13C NMR (126 MHz, DMSO-d6) δ
166.42, 150.45, 149.91, 147.80, 147.57, 147.34, 146.81, 145.97, 127.74, 127.38, 126.33, 113.63,
112.33, 112.16, 111.78, 109.93, 103.57, 33.56, 24.01. HRMS calcd. for C19H15Cl2F2N4O2
([M-H]−), 439.0540; found, 439.0550.
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Compound V-21 4-Amino-3,5-dichloro-6-(5-(4-isopropylphenyl)-3-(trifluoromethyl)-
1H-pyrazol-1-yl)picolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 13.98 (s, 1H),
7.43 (s, 2H), 7.34–7.21 (m, 5H), 2.87 (hept, J = 6.9 Hz, 1H), 1.17 (d, J = 6.9 Hz, 5H). 13C NMR
(126 MHz, DMSO-d6) δ 165.68, 150.89, 150.40, 147.31, 146.54, 146.48, 143.24, 142.94, 142.64,
142.34, 127.88, 127.47, 125.64, 124.88, 122.74, 120.60, 118.46, 113.28, 112.90, 104.60, 33.59,
23.97. HRMS calcd. for C19H14Cl2F3N4O2 ([M-H]−), 457.0446; found, 457.0461.

Compound V-22 4-Amino-3,5-dichloro-6-(5-(3,4-dichlorophenyl)-3-methyl-1H-pyrazol-
1-yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 13.89 (s, 1H), 7.62 (d,
J = 8.4 Hz, 1H), 7.55 (d, J = 2.0 Hz, 1H), 7.27 (s, 2H), 7.05 (dd, J = 8.4, 2.1 Hz, 1H), 6.68 (s,
1H), 2.27 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 165.86, 150.71, 149.88, 147.37, 147.00,
142.49, 131.98, 131.58, 131.50, 130.40, 129.41, 127.30, 112.65, 112.39, 107.61, 13.75. HRMS
calcd. for C16H9Cl4N4O2 ([M-H]−), 430.9450; found, 430.9460.

Compound V-23 4-Amino-3,5-dichloro-6-(5-(3,4-dichlorophenyl)-3-(difluoromethyl)-
1H-pyrazol-1-yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 14.03 (s, 1H),
7.69 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.42 (s, 2H), 7.23 (s, 1H), 7.14 (t, J = 54.2 Hz,
1H), 7.12 (dd, J = 8.4, 2.1 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 165.66, 150.96, 148.15,
147.92, 147.69, 147.41, 146.16, 143.52, 132.49, 132.21, 131.65, 130.02, 129.20, 127.62, 113.40,
113.12, 112.55, 111.54, 109.69, 105.15, 40.30. HRMS calcd. for C16H7Cl4F2N4O2 ([M-H]−),
466.9262; found, 466.9273.

Compound V-24 4-Amino-3,5-dichloro-6-(5-(3,4-dichlorophenyl)-3-(trifluoromethyl)-
1H-pyrazol-1-yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 14.11 (s,
1H), 7.74 (d, J = 2.1 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.48 (s, 1H), 7.45 (s, 2H), 7.14 (dd,
J = 8.4, 2.1 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 165.69, 151.02, 147.80, 145.74, 144.00,
143.38, 143.08, 142.78, 142.48, 132.90, 132.30, 131.73, 130.24, 128.55, 127.70, 124.69, 122.55,
120.41, 118.27, 113.33, 112.39, 105.99. HRMS calcd. for C16H6Cl4F3N4O2 ([M-H]−), 484.9176;
found, 484.9181.

Compound V-25 4-Amino-3,5-dichloro-6-(5-(4-ethylphenyl)-3-methyl-1H-pyrazol-1-
yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 13.22 (s, 1H),7.21 (s, 2H),
7.17 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.2 Hz, 2H), 6.48 (s, 1H), 2.56 (q, J = 7.6 Hz, 2H), 1.14
(t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 165.94, 150.51, 149.52, 147.72, 147.12,
145.09, 144.55, 128.60, 127.39, 127.34, 113.15, 112.27, 106.21, 28.22, 15.58, 13.78. HRMS calcd.
for C18H15Cl2N4O2 ([M-H]−), 389.0572; found, 389.0584.

Compound V-26 4-Amino-3,5-dichloro-6-(3-(difluoromethyl)-5-(4-ethylphenyl)-1H-
pyrazol-1-yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 14.05 (s, 1H), 7.37
(s, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 7.11 (t, J = 54.2 Hz, 1H), 7.00 (s, 1H),
2.59 (q, J = 7.6 Hz, 2H), 1.15 (t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 166.37, 150.46,
147.82, 147.59, 147.36, 146.76, 146.06, 145.36, 128.76, 127.77, 126.23, 113.63, 112.37, 112.18,
111.78, 109.93, 103.54, 40.28, 28.24, 15.51. HRMS calcd. for C18H13Cl2F2N4O2 ([M-H]−),
425.0384; found, 425.0394.

Compound V-27 4-Amino-3,5-dichloro-6-(5-(4-ethylphenyl)-3-(trifluoromethyl)-1H-
pyrazol-1-yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 13.95 (s, 1H),
7.41 (s, 2H), 7.26 (s, 1H), 7.24 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 2.59 (q, J = 7.6 Hz,
2H), 1.15 (t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 165.67, 150.86, 147.27, 146.61,
146.40, 145.88, 143.23, 142.94, 142.64, 142.34, 128.86, 127.89, 125.50, 124.86, 122.72, 120.58,
118.44, 113.25, 112.85, 104.55, 28.23, 15.48. HRMS calcd. for C18H12Cl2F3N4O2 ([M-H]−),
443.0289; found, 443.0306.

Compound V-28 4-Amino-3,5-dichloro-6-(3-methyl-5-(4-propylphenyl)-1H-pyrazol-
1-yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 14.14 (s, 1H), 7.21 (s,
2H), 7.15 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 6.48 (s, 1H), 2.51 (t, J = 7.6 Hz, 2H),
2.26 (s, 3H), 1.61–1.49 (m, 2H), 0.85 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ
165.94, 150.51, 149.52, 147.71, 147.12, 145.10, 142.99, 129.15, 127.37, 127.31, 113.11, 112.24,
106.20, 37.29, 24.17, 14.11, 13.79. HRMS calcd. for C19H17Cl2N4O2 ([M-H]−), 403.0729;
found, 403.0742.
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Compound V-29 4-Amino-3,5-dichloro-6-(3-(difluoromethyl)-5-(4-propylphenyl)-1H-
pyrazol-1-yl)picolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 14.18 (s, 1H), 7.25
(s, 2H), 7.19 (t, J = 1.7 Hz, 4H), 7.10 (t, J = 54.2 Hz, 1H), 6.99 (s, 1H), 2.51 (t, J = 7.6 Hz, 2H),
1.60–1.50 (m, 2H), 0.85 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 165.75, 150.74,
147.93, 147.71, 147.47, 147.31, 146.83, 146.11, 143.88, 129.34, 127.69, 126.20, 113.59, 112.88,
111.74, 109.89, 103.65, 37.28, 24.12, 14.10. HRMS calcd. for C19H15Cl2F2N4O2 ([M-H]−),
439.0540; found, 439.0554.

Compound V-30 4-Amino-3,5-dichloro-6-(5-(4-propylphenyl)-3-(trifluoromethyl)-1H-
pyrazol-1-yl)picolinic acid. Yellow solid. 1H NMR (500 MHz, DMSO-d6) δ 14.13 (s, 1H), 7.42
(s, 2H), 7.26 (s, 1H), 7.22 (s, 4H), 2.57–2.50 (m, 2H), 1.56 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H). 13C
NMR (126 MHz, DMSO-d6) δ 165.66, 150.87, 147.28, 146.62, 146.41, 144.31, 143.23, 142.93,
142.64, 142.33, 129.41, 127.82, 125.56, 124.87, 122.74, 120.60, 118.46, 113.22, 112.83, 104.55,
37.28, 24.09, 14.07. HRMS calcd. for C19H14Cl2F3N4O2 ([M-H]−), 457.0446; found, 457.0459.

Compound V-31 4-Amino-6-(5-(4-(tert-butyl)phenyl)-3-methyl-1H-pyrazol-1-yl)-3,5-
dichloropicolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 13.89 (s, 1H), 7.36 (d,
J = 8.4 Hz, 2H), 7.24 (s, 2H), 7.15 (d, J = 8.4 Hz, 2H), 6.49 (s, 1H), 2.25 (s, 3H), 1.24 (s, 9H).
13C NMR (126 MHz, DMSO) δ 165.94, 151.39, 150.54, 149.50, 147.82, 147.13, 144.88, 127.04,
126.08, 113.27, 112.35, 106.27, 40.14, 34.86, 31.39, 13.78. HRMS calcd. for C20H19Cl2N4O2
([M-H]−), 417.0885; found, 417.0903.

Compound V-32 4-Amino-6-(5-(4-(tert-butyl)phenyl)-3-(difluoromethyl)-1H-pyrazol-
1-yl)-3,5-dichloropicolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 13.92 (s, 1H),
7.77 (s, 2H), 7.42 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 7.11 (t, J = 54.2 Hz, 1H), 7.05 (s,
1H), 1.25 (s, 9H). 13C NMR (126 MHz, DMSO-d6) δ 166.91, 152.13, 150.16, 147.67, 147.44,
147.21, 146.77, 145.76, 127.43, 126.25, 126.04, 113.66, 111.81, 111.78, 111.45, 109.97, 34.93,
31.35. HRMS calcd. for C20H17Cl2F2N4O2 ([M-H]−), 453.0697; found, 453.0713.

Compound V-33 4-Amino-6-(5-(4-(tert-butyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-
1-yl)-3,5-dichloropicolinic acid. White solid. 1H NMR (500 MHz, DMSO-d6) δ 13.99 (s,
1H), 7.43 (d, J = 8.5 Hz, 2H), 7.32 (s, 2H), 7.27 (d, J = 8.6 Hz, 3H), 1.25 (s, 9H). 13C NMR
(126 MHz, DMSO-d6) δ 166.52, 152.57, 150.42, 146.40, 146.30, 143.03, 142.73, 142.43, 142.13,
127.57, 126.35, 125.51, 125.37, 124.93, 122.79, 120.65, 118.52, 112.35, 111.71, 104.46, 34.97,
31.32. HRMS calcd. for C20H16Cl2F3N4O2 ([M-H]−), 471.0602; found, 471.0620.

3.3. Homology Modeling of AFB5

The crystal structure of A. Thaliana AFB5 protein has not yet been verified; therefore,
we conducted homology modeling based on TIR1 as the template protein from Protein Data
Bank (PDB) coded 3C6O: chain B. The sequence of AFB5 obtained from TAIR (https://www.
arabidopsis.org/, accessed on 10 October 2022) has a similarity of 50.98% with that of TIR1;
therefore, it is feasible to construct the AFB5 protein structure upon TIR1 through homology
modeling. The AFB5 protein was evaluated using SAVES6.0 (SAVESv6.0—Structure Val-
idation Server (ucla.edu)) and SWISS MODEL (https://swissmodel.expasy.org/assess/,
accessed on 15 October 2022) after optimizing the individual residues of the modeled
protein using MOE. As shown in Figure 10, the Ramachandran plot showed 96.59% of all
backbone dihedral angles in favored areas; 95.61% of the residues had an averaged 3D-1D
score of ≥0.2, and the number of non-bond interactions formed between pairs of different
atomic types on the side chain in the 3.5 nm range overall quality factor was 88.59 (≥0.2).
The QMEAN value was −2.62, whereas the GMQE value was 0.80, which verified that the
AFB5 protein modeled using MOE is of good quality.

3.4. Molecular Docking

Two-dimensional structures of picolinic acid derivatives were generated using Chem-
Draw Professional 16.0; their configurations were minimized and protonated, and charge
was applied to the 3D structures using MOE2020. Thereafter, the protein was protonated,
charge was added, and 4.5 Å of water molecules near the pocket was eliminated before
molecular docking. The docking pocket and key residues were reported by Calderón

https://www.arabidopsis.org/
https://www.arabidopsis.org/
https://swissmodel.expasy.org/assess/
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Villalobos, which were put forward to the dock. The side chains near the pocket were set as
free rotation, and refinement was set as an induced fit. London dG and GBVI/WSA dG
were used as the rescoring functions. A total of 500 conformations of each compound were
generated to predict their best possible binding pose and output 20 tops-core optimum con-
figurations, which could be browsed on MOE, balancing score, and key binding residues to
choose one conformation and output as the final conformation.
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3.5. Biological Assay
3.5.1. Root Growth Assays to Quantify Compounds Activity

The designed and synthesized compounds possess skeleton 2-picolinic acid and could
exhibit the same inhibition on Arabidopsis thaliana root growth as auxin. Therefore, they
were assayed for their influence on Arabidopsis thaliana root growth to explore preliminary
bioactivity and evaluate their IC50 values. Arabidopsis thaliana seeds were surface-sterilized
and spotted onto 1/2× Murashige and Skoog medium containing 0.7% agar, 3% sucrose,
and compounds at the indicated concentrations in petri dishes. Subsequently, the dishes
were transferred to the dark at 4 ◦C for 48 h. After that, the dishes were placed vertically
into the incubator for 7 d at 22 ◦C for 16 h:8 h (day/night). The root lengths of 7-day-old
seedlings were measured using IMAGEJ after the images were acquired.

The inhibition rates of root growth were determined as follows:

P =
L0 − L

L0
× 100%,

where P denotes the inhibition rate, and L and L0 are the average length of the A. thaliana
root in the presence of compounds and in untreated controls, respectively.

Determination of the IC50 values was performed using an Internet tool: MLA—”Quest
Graph™ IC50 Calculator.” AAT Bioquest, Inc., 4 November 2022, https://www.aatbio.com/
tools/ic50-calculator.

3.5.2. 3D-QSAR

Thirty-seven compounds, including thirty-three target compounds and four Yang
compounds, were used for the 3D-QSAR study. Their structures and inhibitory activities
are listed in Table 2. To develop the CoMFA model, all the compounds mentioned were
used as a training set based on the structural and bioactive diversity using the DIVERSITY
function of SYBYL-X 2.0 (Tripos, Inc., St. Louis, MO, USA). The compound structures in
the test set sufficiently represent the diversity of the entire dataset. A training set was used
to construct the model.

https://www.aatbio.com/tools/ic50-calculator
https://www.aatbio.com/tools/ic50-calculator
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All compounds in the training set were drawn in ChemDraw and superimposed
and aligned on the maximum common substructure of 6-(5-aryl-substituted-pyrazolyl)-
2-picolinic acid derivatives using the alignment function in SYBYL-X 2.0. Based on the
hypothesis that the common alignment core contributes equally to the bioactivity of the
compounds, the conformational angles for the maximum common substructures of the
most active compound V-7 as the template for the alignment were copied and applied to
the remaining compounds in the whole dataset. Figure 8 shows the most active compound
V-7 as the template, and the structural alignment of the training set for the 3D-QSAR study.

CoMFA was performed using the Lennard-Jones potential for the steric field and the
Coulombic potential for the electrostatic field in SYBYL-X 2.0. The aligned compounds
were placed in a 3D cubic lattice with 2.0 Å grid spacing in the x, y, and z directions, and
these potentials were determined for each compound. A sp3 carbon probe with a van der
Waals radius of 1.52 Å and a point charge of +1.0 was used at each lattice point of the
grid box for the calculation of the steric and electrostatic fields. To avoid overpower due
to the large steric and electrostatic energy values, the default energy cutoff value was set
at 30 kcal/mol. The attenuation coefficient was set to a default value of 0.3. Regression
analysis was performed using the cross-validated PLS method. To develop the final model
by performing a PLS analysis, the first run was conducted through the cross-validation to
obtain the ONC, and thereafter, the final run yielded the non-cross-validated r2 value.

3.5.3. Greenhouse Herbicidal Activity Assay

Herbicidal activities were evaluated at the Collaborative Innovation Center for Green
Pesticides, Zhejiang A&F University (Hangzhou, China), and the soil for herbicidal activity
tests was collected from a local planted field. All compounds were dissolved in 100% DMSO
and thereafter diluted with 0.1% Tween-80 solution to obtain the appropriate concentrations
before use. The pre- and post-emergence herbicidal activities of the compounds were
evaluated against six weeds, including three dicotyledonous weeds: SG, DS, and EC, and
three gramineous weeds: CA, AT, and AR. In a greenhouse, the weed seeds were planted
in a plastic pot with a diameter of 8.0 cm at the mouth of the pot, covered with 0.2–0.5 cm
of soil after seeding, and the bottom was watered and cultured in a plant culture room at a
temperature of 13 ± 8 ◦C. For the post-emergence herbicidal activity assays, the spray was
applied at the 2–4 leaf stage of the weeds. For the pre-emergence herbicidal activity assay,
the spray was applied 24 h after weed seeding. After the weed treatments, the weeds were
transferred to a greenhouse for cultivation with standard management. Weed growth and
toxic symptoms were observed regularly after treatment, and weed inhibitory activities
were visually evaluated (two duplicates per experiment) 20 days after treatment to obtain
the percent visual injury value. In the further herbicidal activity assay of compound V-8,
fresh weight inhibition (three triplicates per experiment) in the aboveground was applied
rather than visual observation. All sprays were performed using a Biotest Spray Tower
(3WPSH-500E, Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture
and Rural Affairs).

3.5.4. Crop Selectivity

In the greenhouse, three representative crops (corn, wheat, and sorghum) were used
to evaluate the crop selectivity of the compounds using the procedure described above.

4. Conclusions

In this study, 33 4-amino-3,5-dicholor-6-(5-aryl-substituted-1-pyrazolyl)-2-picolinic
acid compounds were designed and synthesized via a four-step synthetic route with
good yields based on the splicing of the active fragments, wherein the phenyl-substituted
pyrazolyl replaced the chlorine atom at position 6 of picloram. The docking analysis
demonstrated that some compounds might be bioactive owing to their tighter affinity to
AFB5 of A. thaliana. The primary bioassay for inhibiting A. thaliana root growth demon-
strated that the IC50 value of compound V-7 was 45-fold less than that of the commercial
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picloram herbicide. Based on this, a 3D-QSAR model was constructed and fitted well to the
relationship between the bioactivity and structure, which could be used to design new lead
compounds. The herbicidal activity tested in greenhouses demonstrated that compound
V-8 exhibited better post-emergence herbicidal activity against broadleaf weeds at a dosage
of 300 gha−1 than picloram. A crop selectivity test indicated that compound V-8 exhibited
excellent crop safety against corn, wheat, and sorghum at a dosage of 300 gha−1 under
post-emergence conditions. Nevertheless, the actual herbicidal activity of the compounds
was different from the primary bioactive results, while the docking analysis was fit to A.
thaliana root growth assays, which may be due to the biological differences between weeds
and A. thaliana; therefore, the results were acceptable. These results demonstrated that the
replacement of the chlorine atom at position 6 of picloram by phenyl-substituted pyrazolyl
is favorable for improving the herbicidal activity of skeleton picloram, and compound V-8
might be a potential lead structure for the discovery of novel synthetic auxin herbicides.
Furthermore, these results provide new perspectives and insights for the future design of
compounds with similar structures. Further studies on structural optimization and active
mechanisms are currently in progress in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28031431/s1. 1H and 13C NMR spectra of compounds
V-1–V-33.
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