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Abstract: Cancer is responsible for lifelong disability and decreased quality of life. Cancer-associated
changes in metabolism, in particular carbohydrate, lipid, and protein, offer a new paradigm of
metabolic hits. Hence, targeting the latter, as well as related cross-linked signalling pathways, can
reverse the malignant phenotype of transformed cells. The systemic toxicity and pharmacokinetic
limitations of existing drugs prompt the discovery of multi-targeted and safe compounds from natural
products. Mushrooms possess biological activities relevant to disease-fighting and to the prevention
of cancer. They have a long-standing tradition of use in ethnomedicine and have been included as an
adjunct therapy during and after oncological care. Mushroom-derived compounds have also been
reported to target the key signature of cancer cells in in vitro and in vivo studies. The identification
of metabolic pathways whose inhibition selectively affects cancer cells appears as an interesting
approach to halting cell proliferation. For instance, panepoxydone exerted protective mechanisms
against breast cancer initiation and progression by suppressing lactate dehydrogenase A expression
levels and reinducing lactate dehydrogenase B expression levels. This further led to the accumulation
of pyruvate, the activation of the electron transport chain, and increased levels of reactive oxygen
species, which eventually triggered mitochondrial apoptosis in the breast cancer cells. Furthermore,
the inhibition of hexokinase 2 by neoalbaconol induced selective cytotoxicity against nasopharyngeal
carcinoma cell lines, and these effects were also observed in mouse models. Finally, GL22 inhibited
hepatic tumour growth by downregulating the mRNA levels of fatty acid-binding proteins and
blocking fatty acid transport and impairing cardiolipin biosynthesis. The present review, therefore,
will highlight how the metabolites isolated from mushrooms can target potential biomarkers in
metabolic reprogramming.

Keywords: cancer; conjugated linoleic acid; GL22; grifolin; metabolic reprogramming; neoalbaconol;
panepoxydone; (22E, 24R)-6β-methoxyergosta-7,9(11), 22-triene-3β,5α-diol

1. Introduction

The quest for new small molecules and the repurposing of others is ongoing for disease
treatment. It should be noted that 90% of existing therapeutic drugs are small molecules
and that the latter provide much hope for the treatment of both communicable and chronic
diseases [1].With an estimated number of new cancer cases on the rise and cancer being
the top leading cause of death globally, small molecules make an important component of
targeted drugs in cancer therapy [2,3]. Several small molecules have been approved by the
Federal Drug Administration for cancer treatment, which targets disrupted kinases, epige-
netic regulatory proteins, DNA damage repair enzymes, and proteasomes [2].The search
for new molecules continues as the existing therapies are unable to contain the burden of
the disease. Cancer cells undergo numerous changes in their metabolic pathways, involv-
ing energy and biosynthetic processes, so that they can proliferate. Hence, the metabolic
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pathways appear as interesting targets for a broad spectrum of therapeutic approaches [4].
Mushroom-derived secondary metabolites from edible and medicinal species can affect
multiple cancer-related processes. In Japan and China, medicinal mushrooms are approved
adjuncts to standard cancer treatment [5]. Hence, this review will investigate the status of
mushroom-derived molecules in targeted cancer therapy, with a focus on their mechanisms
of action and potential for use.

2. Glucose Metabolism and the Warburg Effect

In normal cells, pyruvate produced during glycolysis enters the mitochondria and
undergoes an oxidative transformation to form acetyl coenzyme A which then fuels the
tricarboxylic acid cycle (TCA), or Krebs cycle, to produce carbon dioxide and water [6].
However, in the absence of oxygen, pyruvate is reduced to lactate in the anaerobic gly-
colysis pathway, and cancer cells resort to lactic acid fermentation, even in the presence
of oxygen. This shift is termed the Warburg effect or aerobic glycolysis [4,7–11]. In fact,
neoplasia is the result of this metabolic selection and deregulation of metabolic fluxes con-
stitute an emerging hallmark of cancer [12]. The latter is characterised by the upregulation
of glucose transporters, glycolytic enzymes such as hexokinase (HK), phosphofructoki-
nase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and monocarboxylate
transporters [13]. In addition, pathways downstream of oncogenes, such as phosphoinosi-
tide 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR),
hypoxia-inducible factor (HIF), and c-MYC, and tumour suppressors, such as phosphatase
and tensin homolog (PTEN), liver kinase B1, and von Hippel-Lindau, possibly mediated
by AMP-activated protein kinase (AMPK) and p53 have been reported [4,14,15]. Recurrent
mutations in genes that encode the enzymes aconitase, isocitrate dehydrogenase (IDH), suc-
cinate dehydrogenase (SDH), and fumarate hydratase (FH) are also observed in neoplastic
cells [16].

Several authors have argued that targeting deranged energy metabolism of tumours,
in particular, their hyperbolic addition to glycolysis may provide effective approaches
to hinder tumourigenesis [4,7,17–19]. This is primarily because this metabolic autonomy
emerges early in metastatic colonisation, and the metabolic profile of cancer cells differs
significantly from normal cells [6,20]. Furthermore, low oxygen concentration is the first
substrate limitation confronting the clonogenicity of transformed cells and short inter-
mittent pulses of hypoxia select cells with a pronounced glycolytic phenotype, and this
disordered metabolism also results in the generation of biochemical equivalents in the
form of adenosine triphosphate (ATP) to maintain energy homeostasis and electrochemi-
cal gradients in cancer cells [9,20,21]. These metabolic dependencies also allow dividing
cells to use intermediate glucose metabolites to fuel the pentose phosphate pathway, de
novo lipogenesis, the serine biosynthesis pathway, the glycogen shunt, the hexosamine
biosynthetic pathway, and de novo glutamine synthesis to double their biomass, and
they also confer direct signalling functions to tumour cells to modulate reactive oxygen
species (ROS) and chromatin state [22,23]. Moreover, mutations in IDH, SDH, and FH
were found to accumulate structural analogues of alpha-ketoglutarate that may inhibit
the activity of prolyl hydroxylases and promote the expression of HIF target genes, and
this biochemical fingerprint is also imperative to maintain cancer stem cells and to induce
their differentiation [7,24,25]. Lastly, lactate is the only metabolic compound involved
in all the main sequela of cancer and lactagenesis was reported to (i) inhibit lactic acid
secretion from T cells and reduce their proliferation and cytokine production by 95% [26];
(ii) serve as an energy vehicle in oxidative cancer cells [6,15,26]; (iii) regulate cancer-derived
exosome release, uptake, and physiology [27]; (iv) induce blood vessel invasion in response
to tumour induced angiogenic factors [17,28]; (v) promote invasion and metastasis by
stimulating the production of hyaluronan and the expression of its membrane receptor
CD44 [29]; (vi) positively correlate with radio-resistance and reduce the cellular uptake of
several anticancer drugs such as doxorubicin, mitoxantrone, and vincristine [30,31]; and
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(vii) sustain the conversion of glyceraldehyde-3-phosphate to 1,3-biphosphoglycerate by
regenerating nicotinamide adenosine diphosphate [32].

3. Evolution of Small Molecules from Natural Resources

Natural compounds have been reported to have suppressive effects on the initia-
tion, promotion, and progression of human cancers, and 60% of successful antineoplastic
agents in clinical use are derived from naturally occurring compounds and their synthetic
analogues [33,34]. For instance, paclitaxel, a diterpenoid isolated from Taxus brevifolia, is cur-
rently used in the treatment of breast, ovarian, and lung cancer, and other Food-and-Drug-
Administration-approved anticancer drugs include vinblastine—a tubulin/microtubule
formation inhibitor and camptothecin—a topoisomerase I inhibitor [35–37]. Until now, an
increasing number of natural compounds have also been demonstrated to counteract aber-
rant metabolism in cancer cells. Kueck et al. [38] have reported that resveratrol, a stilbene
extracted from grapes, induced autophagocytosis in ovarian cancer cells by blocking the
phosphorylation of AKT and mTOR, while Gomez et al. [39] have highlighted that resvera-
trol inhibited PFK activity in breast cancer cells by promoting its dissociation to a low active
dimer [33] (Figure 1). Furthermore, Vanamala et al. [40] have outlined that resveratrol also
decreased the activity of glucose-6-phosphate dehydrogenase, transketolase, and phospho-
gluconate dehydrogenase in colorectal cancer cells. Hensley et al. [41] have reported that
curcumin, a polyphenol extracted from Curcuma longa and being tested for the prevention
and treatment of oral, head and neck, lung, and pancreas cancer, as well as osteosarcoma,
glioblastoma, and chronic lymphocytic leukemia in clinical trials, decreased glucose trans-
porter 4, hexokinase 2 (HK2), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, and
pyruvate kinase M2 at the mRNA and protein levels via AMPK-mediated regulation in
oesophageal cancer cells [42,43] (Figure 1). Pereira et al. [44] have documented that this
polyphenol also modulated the expression of transcription factors and growth factors as up-
stream regulators of tumour cellular bioenergetics in clinical trials. Moreira et al. [45] have
highlighted that epigallocatechin gallate (EGCG), a green tea polyphenol used to prevent
colorectal cancer progression in patients with curative resections, inhibited glucose uptake
and the active secretion of lactic acid in a pilot trial and Wu et al. [33] have reported that
the reversible inhibition of fatty acid synthase by EGCG was not accompanied by off-target
effects (Figure 1). Other anticancer metabolic modulators include quercetin—a flavonoid
that inhibited glycogen synthesis in pancreatic adenocarcinoma cells and berberine—an
isoquinoline quaternary alkaloid that downregulated triose phosphate isomerase, aldolase
A, and enolase 1 in breast cancer cells [46,47] (Figure 1). Synthetic compounds have also
targeted key enzymes and transporters involved in metabolic rearrangements undertaken
by cells in oncogenesis but their clinical success has been impaired by their pharmacokinetic
limitations and adverse effects [7,12,48,49]. On the other hand, natural compounds have
shown an ideal favourable profile, and this highlights the need to explore other bioresources
and assay their bioactive metabolites to target other energy-relevant regulators in cancer.

Currently, 270 species of mushrooms are reported to be potentially useful for human
health and the mushrooms credited with success against neoplasia belong to the genus
Agaricus, Albatrellus, Antrodia, Calvatia, Clitocybe, Cordyceps, Flammulina, Fomes, Funlia, Gano-
derma, Inocybe, Inonotus, Lactarius, Laetiporus, Phellinus, Pleurotus, Russula, Schizophyllum,
Suillus, Trametes, and Xerocomus, and compounds isolated from these mushrooms have
targeted each of the cancer hallmarks recently listed by Hanahan and Weinberg [50] in
tumour cell systems and animal assays [51–56]. For example, Kang et al. [57] have demon-
strated that ergosterol peroxide isolated from Inonotus obliquus inhibited the growth of
human colorectal cancer cell lines HCT116, HT-29, SW620, and DLD-1 by suppressing
the nuclear levels of beta-catenin which ultimately resulted in reduced transcription of
c-MYC, cyclin D1, and cyclin-dependent kinase-8 (Figure 2). Furthermore, ergosterol per-
oxide administration also suppressed tumour growth in the colon of AOM/DSS-treated
mice. Liu et al. [58] have observed DNA fragmentation, phosphatidylserine externalisation,
caspase-3, -8, and -9 activation, mitochondrial membrane potential depolarisation, and
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cytochrome c release when HepG2 cells were treated with suillinthatwas derived from the
mushroom Suillusplacidus (Figure 2). Similarly, Nakamura et al. [59] have documented
that caffeic acid phenethyl ester from Agaricus bisporus induced the maturation of dendritic
cells via nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase, and p38
mitogen-activated protein kinase signalling pathways (Figure 2). Cheng et al. [60] have
outlined that pachymic acid and polyporenic acid C have suppressed angiogenesis in hu-
man pancreatic adenocarcinoma cell line BxPc-3 by abrogating matrix metalloproteinase-7
synthesis (Figure 2). Lastly, Xu et al. [61] have shown that ganoderic acid T inhibited 95-D
lung cancer cell migration by promoting cell aggregation and downregulating matrix met-
alloproteinase 2 and matrix metalloproteinase 9gene expression (Figure 2). Nevertheless,
the number of myco-chemical structures under investigation for antimetabolic purposes
is very poor and is at an infancy stage, and this review will offer an integrated view on
the ability of these agents to target metabolic reprogramming and will also enable their
potential as metabolic modulators in cancer to be critically ascertained.
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4. Mushroom-Derived Compounds Targeting Disrupted Metabolism in Cancer
4.1. Neoalbaconol Induced Energy Depletion and Multiple Types of Cell Death by Targeting
PDK-1-PI3K/AKT Signalling Pathway

Albatrellusconfluens is a member of the Albatrellaceae family and is mainly distributed
in North America, Europe, and eastern Asia [52,62]. Several biologically active sec-
ondary metabolites with anticancer potential have been isolated from this polypore mush-
room [63–65]. Recently, neoalbaconol (NA), a small-molecule with a drimane-type sesquiter-
penoid structure, was extracted from the fruiting body of this fungus [66] (Figure 3).

Deng et al. [66] demonstrated that NA can significantly inhibit the proliferation of
nasopharyngeal carcinoma cell lines (C666-1, HK1, SUNE1, HNE2-LMP1, CNE1-LMP1, and
5-8F), breast cancer cell lines (ZR75-1, MX-1, T47D, MAD-MB-231, MDA-MB-453, and MCF-
7), colon cancer cell lines (HCT116 and SW620), leukaemia cell line (K562), prostate cancer
cell line (DU145), lung adenocarcinoma epithelial cell line (A549), and melanoma cell line
(A375) in a time- and dose-dependent manner. The latter did not affect the proliferation of
immortalised normal cell lines (human keratinocyte HaCaT, human nasopharynx epithelial
NP69, and mouse fibroblast NIH/3T3) at high doses. This underscored the selectivity of
the constituent isolated from A. confluens toward cancer cells with C666-1, HK1, and ZR75-1
cells reported to being more sensitive to NA. Flow cytometry, protein, and confocal and
electron microscope assays have shown that apoptosis and necroptosis were responsible
for the death-inducing efficacy of NA and the cleavage of poly (ADP-ribose) polymerase-1
by caspases, and the interaction and colocalisation of endogenous receptor-interacting
protein 1 and receptor-interacting protein 3 were observed in C666-1 cells. This is because
by docking into the ATP-binding pocket of phosphoinositide-dependent kinase 1 (PDK1)
and inhibiting its kinase activity, NA inhibited the PI3K/AKT/mTOR pathway and its
downstream metabolic regulator HK2 and autophagy, which was activated by c-JUN N-
terminal kinases to provide a survival advantage, was unable to reverse the NA-induced
energy depletion stress and cell death.
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Furthermore, Deng et al. [66] also evaluated the in vivo efficacy of the secondary
metabolite (100 mg/kg/day) in C666-1 induced tumours in athymic nude mice. The
average tumour volume was 2.4 times smaller in the NA-treated group compared with the
vehicle-treated group. None of the mice showed signs of toxicity and the average tumour
weight of the NA-treated group and control group was 0.65 ± 0.23 g and 1.26 ± 0.32 g,
respectively, at the treatment end point. Consistent with the in vitro data, the in vivo data
outlined the efficacy of NA in suppressing tumour progression by inhibiting the AKT
signalling pathway (Figure 4).

4.2. GL22 Suppressed Tumour Growth by Altering Lipid Homeostasis and Triggering Cell Death

Ganoderma is a cosmopolitan genus of polypore fungi in the family Ganodermataceae
and is commonly known as Ling Chu, Ling Zhi, reishi, and the mushroom of immortal-
ity [51,52,67–69]. These species contain polysaccharides, fatty acids, steroids, triterpenoids,
and alkaloids as bioactive constituents and have been traditionally administered through-
out Asia for centuries as a cancer treatment and are highly sought-after and of great
economic value [70].

Wang et al. [71] isolated GL22, a triterpene farnesyl hydroquinone hybrid, from the
fruiting body of G. leucocontextum, and Liu et al. [72] evaluated the bioactivity of this com-
pound (Figure 3). They reported that GL22 displayed growth-inhibitory activity against
Huh7.5 cells with a half-maximal inhibitory concentration (IC50) value of 8.9 µM and
haematoxylin and eosin staining has revealed that a Huh7.5 xenograft tumour treated with
GL22 displayed enlarged intercellular spaces and decreased cell density relative to the
control. This natural compound exerted inhibitive effects in cell line experiments and ani-
mal modelling by altering cellular lipid homeostasis. In fact, GL22 treatment significantly
decreased the expression levels of peroxisome proliferator-activated receptor alpha and
peroxisome proliferator-activated receptor gamma, which subsequently led to the down-
regulation of the mRNA levels of fatty acid-binding protein 1, fatty acid-binding protein 4,
and fatty acid-binding protein 5. These intracellular lipid chaperones reversibly bind fatty
acids and coordinate their import, transport, storage, and export, and by antagonising the
transcriptional levels of fatty acid binding proteins, GL22 blocked fatty acid transport. This
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GL22-mediated immobilisation of free fatty acids led to a sharp increase in the average
number and size of lipid droplets, and this observation was consistent with impaired
cardiolipin biosynthesis. This signature phospholipid of the mitochondria is involved
in mitochondrial biogenesis, mitochondrial bioenergetics, and mitochondrial dynamics,
and the GL22-induced abnormality in cardiolipin content altered the mitochondrial shape
and size and caused membrane integrity damage and fragmentation of the mitochondrial
cristae. This eventually triggered mitochondrial dysfunction, reduced ATP production, and
decreased aerobic respiration in Huh7.5 cells.
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RTK: receptor tyrosine kinase, PI3K: phosphoinositide 3-kinase, PIP2: phosphatidylinositol-4,5-
biphosphate, PTEN: phosphatase and tensin homolog, PIP3: phosphatidylinositol-3,4,5-triphosphate,
NA:neoalbaconol, PDK1: phosphoinositide-dependent kinase 1, AKT:protein kinase B, TSC2: tuber-
ous sclerosis 2, mTOR: mammalian target of rapamycin, SK6: p70 S6 kinase, HK2: hexokinase 2,
JNK: c-JUN N-terminal kinase.

Furthermore, GL22 treatment induced apoptosis in liver cancer cells by upregulating
the levels of p53 and Bcl-2-associated X protein and downregulating the level of Bcl-
2. Similarly, the hallmarks of the mitochondrial-mediated intrinsic apoptotic pathways,
which include caspase 3, caspase 9, and poly (ADP-ribose) polymerase cleavage, and the
hallmarks of the death receptor-mediated extrinsic apoptotic pathways, which include
caspase 8 cleavage, were activated by GL22 treatment (Figure 5).
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4.3. Grifolin Reversed DNMT1-Mediated Metabolic Reprogramming Induced by Epstein-Barr
Virus Latent Membrane Protein 1

Epstein-Barr virus (EBV) is responsible for lymphoid and epithelial malignancies,
and this oncovirus infection is characterised by the expression of latent genes, which
include Epstein-Barr nuclear antigens, Epstein-Barr nuclear antigen leader protein, latent
membrane protein 1 (LMP1), latent membrane protein 2, non-coding EBV-encoded RNAs,
and viral microRNA [73]. Among them, LMP1 is a driver oncogene in nasopharyngeal
carcinoma and plays an imperative role in its pathogenesis by upregulating HK2, activating
the fibroblast growth factor 2/fibroblast growth factor receptor 1 signalling pathway, and
increasing the expression of glucose transporter 1 through the mTORC1/NF-κB signalling
pathway [74–76].

Luo et al. [77] have documented that aerobic fermentation in CNE1-LMP1 cells was
markedly enhanced by 90% compared to LMP1-negative CNE1 cells, and this is primarily
because LMP1 downregulated the PTEN/AKT signalling pathway in a DNA methyl-
transferase 1 (DNMT1)-dependent manner. Furthermore, LMP1 also switched glucose
metabolism from oxidative phosphorylation to aerobic glycolysis in nasopharyngeal car-
cinoma cells by promoting DNMT1 mitochondrial translocation, which further led to an
increase in the methylation/unmethylation (M/U) ratio of DNA fragments in the mito-
chondrial DNA D-loop region and a decrease in the DNA levels of MT-COXII, MT-ATP6,
and MT-ND6 that encode cytochrome c oxidase subunit II, ATP synthase F0 subunit 6,
and NADH dehydrogenase 6, respectively. These observations were consistent with the
metabolic flux measurements, which showed that the 13C-labelled lactate level was signifi-
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cantly increased and the 13C-labelled TCA cycle metabolite levels, which included 13C-α-
ketoglutarate, 13C-citrate, 13C-fumarate, and 13C-malate, were significantly decreased in
CNE1-LMP1 cells compared with CNE1 cells.

Grifolin, a farnesyl phenolic compound extracted from the mushrooms A. confluens
and Boletus pseudocalopus, which previously suppressed the growth and metastasis of HeLa,
MCF-7, SW480, K562, and MG63 tumour cell lines, was reported to decrease the amount
of glucose used for lactate production in LMP1-positive cells by targeting DNMT1 to
demethylate and reactivate the PTEN gene (Figure 3). Furthermore, grifolin treatment
significantly attenuated DNMT1 retention in the mitochondria of CNE1-LMP1 cells, and the
M/U ratio of the mitochondrial DNA D-loop region was consequently decreased in these
cells. Similarly, grifolin promoted subunit assembly to form oxidative phosphorylation
complexes, and it also ensured that more nicotinamide adenine dinucleotide is used by
complex I to enhance respiration in CNE1-LMP1 cells (Figure 6).
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Figure 6. Grifolin-induced mode of action. Grifolin restores oxidative phosphorylation in nasopharyn-
geal carcinoma cells by reactivating the PTEN gene and reducing the M/U ratio of the mitochondrial
DNA D-loop region. EBV-LMP1: Epstein-Barr virus latent membrane protein 1, DNMT1:DNA methyl-
transferase 1, PTEN: phosphatase and tensin homolog, AKT:protein kinase B, COXII cytochrome
oxidase subunit II, ATP6:ATP synthase membrane subunit 6, ND6:NADH ubiquinone oxidoreductase
core subunit 6, M/U ratio:methylation and unmethylation ratio.

Luo et al. [77] also reported that grifolin can phenocopy the effect of DNMT1 inhibitor
5-AZA-2-deoxycytidine and, unlike this epidrug, grifolin is chemically stable and not
accompanied by serious side effects and, thus, can be used as a safe alternative to improve
tumour control.

4.4. Conjugated Linoleic Acid Exhibited Proapoptotic Effects by counteracting Altered
Lipid Metabolism

Agaricus is the type genus of the family Agaricaceae in the phylum Basidiomycota
and is distributed worldwide [78–80]. These saprobic mushrooms are often gregarious
in forests, pasture land, grass land, rubbish dumps, manure heaps, and alluvial soil and
include economically important species, such as A. bisporus, which is also known as white
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button mushroom, table mushroom, cultivated mushroom, portobello mushroom, and
crimini mushroom [78,81–84]. This genus of macrofungi is widely used and extensively
studied for its dietetic, ethnopharmacological, and medicinal properties, and the literature
abounds on the topic [85–90].

Chen et al. [91] have identified conjugated linoleic acid (CLA) as the main constituent
of an ethyl acetate extract of A. bisporus,and they reported that CLA decreased breast cancer
cell proliferation by inhibiting aromatase activity(Figure 3). Adams et al. [92] investigated
the anticancer potential of CLA in androgen-sensitive LNCaP and androgen-insensitive PC3
and DU145 prostate cancer cell lines. The mushroom extract decreased cell proliferation in
all cell lines tested in a dose-dependent manner compared with untreated control cells, and
the magnitude of response was similar between the cell lines. The Cell Death Detection
ElisaPlus Photometric Enzyme Immunoassay and the Annexin V Assay results highlighted
that the mushroom extract induced DNA fragmentation and phosphatidylserine transloca-
tion in the prostate cancer cell lines, but LNCaP cells were more prone to the proapoptotic
effects of CLA, and this underscored that the antiproliferative activity is different from the
proapoptotic activity of the extract because the cell lines under study responded equally
in the Real-Time Proliferation Assay. Furthermore, Adams et al. [92] also evaluated the
prostate cancer protective effects of A. bisporus in vivo by using male athymic mice injected
with either PC3 or DU145 prostate cancer cells, andthe LNCaP cell line was not used for
animal experiments because it did not form tumours when implanted. The in vivo studies
have shown that the oral intake of the mushroom extract decreased PC3 tumour weight
and DU145 tumour weight by 68.6% and 44.5%, respectively, compared with the pair-fed
control mice. Histological examinations of PC3 and DU145 tumours have revealed that
cell proliferation decreased by 45% and 25.3%, respectively, in the mushroom-extract-fed
group compared with the control, and the level of apoptosis was significantly increased in
DU145 tumours.

The in vitro results were in line with the in vivo results, and the microarray analysis
suggested several mechanisms for the CLA effect on prostate cancer cell proliferation and
apoptosis. The CLA-rich mushroom extract upregulated the expression of FAS/APO-1
gene which plays a central role in the physiological regulation of apoptosis by 2.84-fold
and downregulated the expression of KIT gene, which is involved in the proliferation and
survival of cells by four-fold. Similarly, the extract inhibited diacylglycerol production
and eventually increased apoptosis through increased production of arachidonic acid
and ceramide and also decreased cyclooxygenase-2 protein expression and subsequently
suppressed the conversion of arachidonic acid to prostaglandin E2, which fosters cancer
progression by (1) blocking apoptosis through the activation of the PI3K/AKT/PPAR
signalling pathway, (2) increasing angiogenesis through vascular endothelial growth factor
activation, (3) inducing immune suppression by increasing interleukin 10 production, and
(4) increasing cancer cell proliferation through the activation of rat sarcoma virus/rapidly
accelerated fibrosarcoma/mitogen-activated protein kinase kinase/extracellular signal-
regulated kinase signalling pathway. The aforesaid effects on lipid metabolism were
accompanied by the inhibition of isocitrate dehydrogenase 2 (IDH2) and the increased
expression of FH. The three-fold decrease in IDH2 expression normalised the TCA cycle in
prostate cancer cells, and the 4.3-fold increase in FH expression inhibited fumarate build-up
in prostate cancer cells and deactivated the angiogenic factor hypoxia-inducible factor
1-alpha (Figure 7).

Adams et al. [92] also observed that the ethyl acetate extract downregulated the
expression of the endothelin 1 gene, which is commonly upregulated in hypoxia by three-
fold. Furthermore, the extract also upregulated the expression of immune-related genes,
such as those encoding interleukin 15, S100 calcium binding protein A8, S100 calcium
binding protein A9, and lectin, galactosidase-binding soluble, 1 proteins.
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4.5. (22E, 24R)-6β-methoxyergosta-7,9(11),22-triene-3β,5α-diol as a Potential Non-Competitive
Inhibitor of HK2

Bao et al. [93] identified two new steroids: tetraoxycitricolic acid (1) and (22E, 24R)-6β-
methoxyergosta-7,9(11),22-triene-3β,5α-diol (2) from a solvent extract of G. sinense(Figure 3).
The structure-based virtual ligand screening has shown that the steroid 2 had the highest
binding affinity to HK2, and the microscale thermophoresis technique revealed that steroid
2 displayed an equilibrium dissociation constant of 114.5 ± 2.7 µM, which has added further
credibility to this observation. Furthermore, the molecular docking result highlighted that
steroid 2 occupied half of the product releasing pathway, and two hydrogen bonds were
predicted between threonine 536 and 3-hydroxyl group and arginine 539 and 5-hydroxyl
group, respectively, and key hydrophobic interactions between methionine 555 and the
terminal isopropyl group were also observed. Similarly, in vitro studies have shown that
steroid 2 exhibited inhibitory effects against HK2 with an IC50 value of 2.06 ± 0.15 µM via
a non-competitive inhibition. Lastly, steroid 2 exhibited four-fold selectivity against human
pancreatic ductal adenocarcinoma (PDAC) SW1990 cells and normal African green monkey
kidney cells, and the IC50 value of steroid 2 against the PDAC cell line was 5.05 ± 0.17 µM,
which was less than that of known inhibitors, such as metformin and benserazide.

4.6. Panepoxydone Exerted Antiproliferative Effects by Downregulating LDHA Expression and
Reinducing LDHB Expression

Arora et al. [94] have shown the IC50 values of panepoxydone (PP), a natural NF-κB
inhibitor isolated from the edible mushroom Lentinus crinitus, as 4 µM in MCF-7 breast
cancer cell line and 5 µM, 8 µM, and 15 µM in triple negative breast cancer (TNBC) cell lines
MDA-MB-453, MDA-MB-468, and MDA-MB-231, respectively (Figure 3). Furthermore,
they have argued that the PP treatment reduced the viability of the breast cancer cell lines by
targeting deregulated energy processing because the cell metabolism assays revealed that
MCF-7, MDA-MB-453, MDA-MB-468, and MDA-MB-231 cells showed decreases in oxygen
consumption rate (OCR), and MDA-MB-453 and MDA-MB-231 cells showed decreases
in extracellular acidification rate (ECAR) after 24 h of exposure to the fungal secondary
metabolite. The OCR to ECAR ratio, which is an indicator of oxidative phosphorylation,
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was also increased in TNBC cells. The ATP-based bioluminescence assay also confirmed
the PP-mediated energy depletion stress in MCF-7 and TNBC cells.

In fact, the PP-induced alterations in the breast cancer cells bioenergetics fostered
protective mechanisms against cancer initiation and progression by abrogating lactate
dehydrogenase A (LDHA) expression levels and inducing the re-expression of lactate
dehydrogenase B (LDHB) through demethylation of the enzyme promoter to similar levels
observed in normal human mammary epithelial cells, which further led to the accumulation
of pyruvate, the activation of the respiratory chain, the generation of more electrons from
the chain, and enhanced levels of ROS which then decreased the mitochondrial membrane
potential, damaged the mitochondrial membrane, and triggered the mitochondrial pathway
of apoptosis. Similarly, LDHB overexpression also reduced cell migration in MCF-7 and
TNBC cells by 2–3-fold relative to empty vector cells (Figure 8).
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Figure 8. Action of PP in breast cancer. PP downregulates LDHA expression and upregulates LDHB
expression. The ROS generated during oxidative phosphorylation decreases the ∆ψm and this leads
to energy crisis and cell death. TCA cycle: tricarboxylic acid cycle, ROS: reactive oxygen species,
ATP: adenosine triphosphate, PP:panepoxydone, LDHA: lactate dehydrogenase A, LDHB: lactate
dehydrogenase B, ∆ψm: mitochondrial membrane potential.

It is important to note that Arora et al. [94] highlighted that the non-productive
mitochondrial respiration and mitochondrial pathway-induced apoptosis caused by PP are
in conjunction with studies conducted with FX-11, 3-BrPA, and 2-DG.

5. Conclusions

The remodelling of cancer metabolism and bioenergetics is a universal alteration in
oncogenesis and these metabolic enzymes are interesting targets of cancer therapy. The
ongoing search for energy-relevant regulators in cancer led to metabolites isolated from
mushrooms. Unlike the synthetic metabolic inhibitors, these mushroom-derived com-
pounds have demonstrated excellent differential toxicity and pharmacological properties.
They have also modulated a wider range of aberrantly regulated metabolic keynodes
in cancer and were needed in relatively lower doses to exhibit therapeutic effects. This
ideal favourable profile supports the feasibility of these molecules in anticancer therapies
and chemopreventive strategies. Hence, a future area of research should focus on long-
term, double-blind, and placebo-controlled clinical trials to delineate their possible roles
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in the prevention and management of cancer. There is also a need to explore scalable
synthetic routes for the production and supply of these compounds especially if clinical
trials are successful.
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