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Abstract: A bowl-shaped molecule can be self-assembled by condensing a triscationic hexaaldehyde
compound and three equiv. of a dihydrazide linkers in pure water. The molecular bowl is thus
composed of a triscationic π-electron deficient platform, as well as a hexagonal rim that contains six
acylhydrazone functions. When the counteranions are chloride, the solid-state structure reveals that
this molecular bowl undergoes dimerization via N–H···Cl hydrogen bonds, forming a cage-like dimer
with a huge inner cavity. This molecular bowl can employ its cavity to accommodate a hydrophobic
guest, namely 1-adamantanecarboxylic acid in aqueous media.

Keywords: self-assembly; dynamic covalent chemistry

1. Introduction

Synthesizing cyclic host molecules and using their pockets or cavities for guest recog-
nition have attracted great attention in the community of host-guest chemistry [1,2]. These
hosts are often in the form of rings [3,4], cages [5], and bowls. In the literature, even although
a number of cyclic molecules including cyclodextrins(CDs), [6–8] calixrenes(CAs) [9], and
resorcin[n]arenes [10–15], as well as a variety of metallocavitands [16–25], have been
claimed as bowl-shaped hosts, in fact, they are topologically not different from rings, except
that the “peripheral walls” of these bowls have two rims with different sizes. A veritable
molecule bowl is supposed to contain a bottom platform, on which a macrocyclic peripheral
wall is grafted [26]. This host is therefore able to take advantage of both the “platform” and
the “peripheral wall” to provide noncovalent interactions to bind guests. Compounds that
best fit the definition of a bowl-shape should be curved π-conjugated molecules such as
buckybowls, namely corannulene, sumanene, etc. [27–29], in which the bottom and the
edges of the bowl structure are seamlessly merged. The derivatives of such bowl-shaped
molecules have shown moderate affinity towards fullerenes which takes advantage of
shape complementarity as well as concave-convex π-π interaction [30–32]. The preparation
and functionalization of this kind of bowl-shaped conjugated molecules, however, are
time-consuming and suffered from low yields. In order to obtain host molecules containing
purely organic elements (i.e., C, H, O and N) with decent yields without the need of te-
dious synthetic procedures, chemists also developed dynamic covalent approaches [33–40]
relying on reversible organic reactions. For example, disulfide bond formation was em-
ployed by Otto et al. [41–46] to accomplish self-assembly in weakly basic aqueous me-
dia. Imine [47–54] formation, has been considered as one of more often used dynamic
approaches, because its precursors, namely aldehydes and amines are relatively more
synthetic accessible, compared to thiol derivatives in disulfide approaches. Unfortunately,
this labile bond is apt to undergo hydrolysis in water and therefore not amenable to use
in aqueous media. This intrinsic drawback could be overcome by using an α-substituted
imine, namely acylhydrazone [55–59]. This more robust dynamic bond has been used in
the self-assembly of rings [60–65], cages [66–70], catenanes [37,71,72] as well as knots [73].
We thus envision that it might be possible to obtain bowl via acylhydrazone condensation.
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Herein, by condensing a triscationic hexaformyl precursor and a bishydrazide in water,
a purely organic triscationic bowl was self-assembled in a [1 + 3] manner. In solid state,
two bowl molecules form a dimer, driven by the hydrogen bonding interactions between
the amide functions of the rim of each bowl and the chloride couteranions. The bowl is
capable of accommodating a sparingly soluble guest, namely 1-adamantanecarboxylic acid
in water.

2. Results and Discussion

A tricationic hexaformyl compound 23+·3Cl− (1.0 mM) and a bishydrazide 3 (3.0 mM)
was combined in D2O at room temperature. After 4 h, the 1H NMR spectrum (Figure 1A)
was recorded, in which a set of simple resonances was observed, indicating that a highly
symmetrical product, namely a bowl-shaped molecule 13+·3Cl− was obtained in a [1 + 3]
condensation manner. The resonance of the methylene unit a splits into two peaks, indi-
cating that within the framework of 13+, the two protons in each of the methylene units
become diastereotopic. The successful self-assembly of the bowl 13+ was further convinced
by high resolution electrospray ionization mass spectrometry (HR-ESIMS). Two peaks
were observed at m/z = 437.1750 and 673.2422, corresponding to the molecular cations
of the bowl without and with one counteranion, namely [1]3+ and [1 + Cl]2+, respectively
(Figure S7, Supplementary Materials). 13+·3Cl− was isolated in a 30% yield as a pure solid
sample by means of counteranion exchange. However, the isolated pure 13+·3Cl− is only
sparingly soluble in water, whose solubility may be improved by addition of DMSO.
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Figure 1. Partial 1H NMR spectra (500 MHz, 298 K, D2O / DMSO-d6 = 9:1, pD = 3) of 13+·3Cl− (A) 
before and (B) after addition of guest 4, and (C) guest 4. In both (B,C), excess amount of 4 was 
suspended in solutions, guaranteeing that it is saturated. 

Figure 1. Partial 1H NMR spectra (500 MHz, 298 K, D2O/DMSO-d6 = 9:1, pD = 3) of 13+·3Cl−

(A) before and (B) after addition of guest 4, and (C) guest 4. In both (B,C), excess amount of 4 was
suspended in solutions, guaranteeing that it is saturated.

Single crystals of 13+·3Cl− were obtained by slowly diffusing dioxane into an aqueous
solution of the self-assembled product. Single-crystal X-ray diffraction analysis unambigu-
ously convinces the formation of the bowl-shaped host 13+ with a C3v symmetry (Figure 2).
The plane defined by each of the three phenyl “walls” in the 23+ residue orientates in an
almost perpendicular manner, with respect to the tri(4-pyridyl)triazinyl (TPT) “platform”.
The three phenyl “walls” are bridged with each other by three 3 residues. The upper rim
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of the bowl thus forms a large hexagonal opening, in which the longer and shorter edges
are 14.1 and 5.9 Å, respectively (Figure 2B). The bowl 13+ features three approximately
pentagonal windows. Both the imine and amide protons point to a direction away from
the bowl cavity, allowing them to form hydrogen bonds with the Cl− counteranions. Six
Cl− counteranions insert into the space between the amide rims of the two bowl molecules.
The occurrence of hydrogen bonds is convinced by the corresponding close contacts, i.e.,
Cl−Hamide distances are around 2.4 Å. Driven by hydrogen bonds, two bowl molecules
thus form a triangular prismatic bowl dimer with a D3h symmetry. The two TPT platforms
are separated by a distance of 16.4 Å. The volume of cavity of a bowl dimer is estimated to
around 2000 Å3 (regard the cavity as a hexagonal prism approximately).
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Figure 2. The (A) side on view and (B) top view of the single-crystal X-ray diffraction structures
of 13+·3Cl−. C = grey, H = white, O = red, N = blue, Cl = green. Disordered solvent molecules are
omitted for the sake of clarity. Only amide protons are shown because they are engaged in strong
hydrogen bonding interactions.

The capability of 13+ to accommodate guests in water was then investigated. Upon
addition of a guest 4, namely 1-adamantanecarboxylic acid, the resonances of the bowl 13+

recorded in aqueous DMSO (D2O/DMSO-d6 = 9:1) underwent modest shifts (Figure 1B).
NOESY cross peaks (Figure S12, Supplementary Materials) between proton signals of 13+

and 4 unambiguously shows their complexation in solution. Only one set of resonances
were observed corresponding to both the bowl and the guest, indicating that the host-guest
complex undergoes relatively fast exchange with the their “free” states on the 1H NMR
timescale. Since guest 4 (pKa = 4.9) is sensitive to pH changes, we also conducted the
titration experiments in acidic (pD = 3) and basic conditions (pD = 9). In pD = 3 aqueous
DMSO solution, the changes in the chemical shifts of the bowl 13+ were similar to that of the
changes recorded in non-buffered aqueous DMSO solution. For example, the resonances of
the pyridinium protons in the TPT base of 13+ were observed to undergo downfield shifts
by around 0.1 ppm. In pD = 9 aqueous DMSO solution, however, the chemical shifts of
the host remained unchanged upon the titration of 4, and 13+ started to precipitate out
when more than 1.5 equiv. of 4 was introduced, as the signals of 13+ gradually decreased
during titration. The resonances of the guests underwent upfield shifts in both cases,
indicating that the guests were encapsulated within the bowl cavity which provided a
shielded magnetic environment (Figure 1B). We envisioned that in basic conditions where
4 exists in its deprotonated form, binding of the first guest is thermodynamically favored
due to hydrophobic interaction as well as Coulombic attraction between host and guest.
Nevertheless, binding of the second guest is inhibited due to repulsion between negatively
charged guest molecules. The mismatch between the host cavity (~1000 Å3) and the
deprotonated guest volume (172 Å3) [74] results in a very weak binding, which explains
the insignificant change in the resonance of the bowl 13+ in basic conditions. In acidic or
unbuffered aqueous solutions where the majority of 4 exists in its neutral form, binding of
more than one guest molecule is possible. Due to the insufficient solubility of both host
and guest as well as their weak association constant, the attempts to accurately determine
the guest/host binding stoichiometry by using Job plot were unsuccessful [75]. However,
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based on the C3v symmetry of the host cavity and Rebek’s 55% rule [76], we assumed that
the bowl-shaped cavity of 13+ can accommodate up to three molecules of guest 4, and such
“fully” filled complexation can lead to the observable shifts of the proton signals of the
molecular bowl upon addition of 4.

3. Materials and Methods

All reagents and solvents were purchased from commercial sources and used without
further purification. Manipulations were performed under a normal laboratory atmosphere
unless otherwise noted. Nuclear magnetic resonance (NMR) spectra were recorded at
ambient temperature using Bruker AVANCE III 400/500 or Agilent DD2 600 spectrom-
eters, with working frequencies of 400/500/600 and 100/125/150 MHz for 1H and 13C,
respectively. Chemical shifts are reported in ppm relative to the residual internal non-
deuterated solvent signals (CDCl3: δH = 7.26 ppm, δC = 77.16 ppm, D2O: δH = 4.79 ppm,
DMSO-d6: δH = 2.50 ppm, δC = 39.52 ppm). High-resolution mass spectra (HRMS) were
measured using a SHIMADZU liquid chromatograph mass spectrometry ion trap time of
flight (LCMS-IT-TOF) instrument. X-Ray crystallographic data were collected on a Bruker
APEX-II CCD diffractometer.

4. Conclusions

In summary, a bowl-shaped molecule was successfully self-assembled by condensing
a tricationic hexaaldehyde and three bishydrazide linker in water. The molecular bowl is
composed of a planar triscationic base, on which a triangular rim containing six acylhy-
drazone functions is grafted. Taking advantage of hydrophobic effect, the cavity of this
bowl is able to accommodate a hydrophobic guest in water. Using this bowl-shaped host
as a molecular vessel to encapsulate substrates and catalyze their reactions are ongoing in
our lab.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28030976/s1. Scheme S1: Synthetic route of 23+·3Cl−;
Figure S1: 1H NMR spectrum of 23+·3Cl−; Figure S2–S7: NMR characterizations of 13+·3Cl−;
Figure S8: ESI-HRMS of 13+·3Cl−.; Figure S9: 1H NMR spectra of self-assembled products at differ-
ent precursors concentrations; Figure S10–S11: 1H NMR titration of 13+·3Cl− and 4 in non-buffered
solution; Figure S12: NOESY spectrum of the host-guest complex; Figure S13–S16: 1H NMR titration
of 13+·3Cl− and 4 in buffer solutions; Figure S17: Different crystallographic views of 13+·3Cl− [77–79].
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