
Citation: Wang, N.; Li, S.; Li, Z.;

Gong, Y.; Li, X. A

Zn(II)–Metal–Organic Framework

Based on 4-(4-Carboxy Phenoxy)

Phthalate Acid as Luminescent

Sensor for Detection of Acetone and

Tetracycline. Molecules 2023, 28, 999.

https://doi.org/10.3390/

molecules28030999

Academic Editor: Peizhou Li

Received: 30 December 2022

Revised: 14 January 2023

Accepted: 17 January 2023

Published: 19 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

A Zn(II)–Metal–Organic Framework Based on 4-(4-Carboxy
Phenoxy) Phthalate Acid as Luminescent Sensor for Detection
of Acetone and Tetracycline
Nairong Wang, Shanshan Li, Zhenhua Li, Yuanyuan Gong and Xia Li *

Department of Chemistry, Capital Normal University, Beijing 100048, China
* Correspondence: xiali@cnu.edu.cn

Abstract: As hazardous environmental pollutants, residual tetracycline (TC) and acetone are
harmful to the ecosystem. Therefore, it is necessary to detect the presence of these pollutants
in the environment. In this work, using Zn (II) salt, 4-(4-carboxy phenoxy) phthalic acid (H3L),
and 3,5-bis(1-imidazolyl) pyridine (BMP), a new metal–organic framework (Zn-MOF) known
as [Zn3(BMP)2L2(H2O)4]·2H2O was synthesized using a one-pot hydrothermal method. The Zn-
MOF has a three-dimensional framework based on the [Zn1N2O2] and [Zn2N2O4] nodes linked
by a tridentate bridge BMP ligand and an L ligand with the µ1:η1η0/µ1:η1η0/µ0:η0η0 coordination
mode. There were two kinds of left- and right-handed helix chains, Zn1-BMP and Zn1-BMP-Zn1-L.
The complex was stable in aqueous solutions with pH values of 4–10. The Zn-MOF exhibited a
strong emission band centered at 385 nm owing to the π*→π electron transition of the ligand. It
showed high luminescence in some common organic solvents as well as in the aqueous solutions
of pH 4–10. Interestingly, TC and acetone effectively quenched the luminescence of the Zn-MOF
in aqueous solution and enabled the Zn-MOF to be used as a sensor to detect TC and acetone. The
detection limits of TC and acetone were observed to be 3.34 µM and 0.1597%, respectively. Even
in acidic (pH = 4) and alkaline (pH = 10) conditions, the Zn-MOF showed a stable luminescence
sensing capability to detect TC. Luminescence sensing of the Zn-MOF for TC in urine and aquaculture
wastewater systems was not affected by the interfering agent. Furthermore, the mechanism of sensing
TC was investigated in this study. Fluorescence resonance energy transfer and photoinduced electron
transfer were found to be the possible quenching mechanisms via UV–Vis absorption spectra/the
excitation spectra measurements and DFT calculations.

Keywords: luminescent sensor; tetracycline; acetone; metal–organic framework

1. Introduction

Environmental pollutants easily spread into the soil, air, and water environments
due to their high solubility and mobility. The high prevalence of these pollutants in the
ecosystems is gravely threatening the environment and human health and has become a
global concern [1]. The massive use of antibiotics and pesticides has led to the emergence
of super-resistant bacteria [2]. Residual solvent molecules in the environment can also
cause cancer, malformation, neurotoxicity, and other health problems [3]. Belonging to
the class of broad-spectrum antibiotics, tetracycline (TC) is widely used in treating hu-
man and animal bacterial infections due to its low toxicity, low cost, and excellent oral
absorption. However, TC is not fully absorbed during animal metabolism and enters the
environment with feces. Hence, large amounts of TC residues are often found in soil and
water environments [4–6]. In addition, acetone is a typical volatile organic solvent widely
used in cosmetics, adhesives, and other commercial products. Long-term exposure to ace-
tone may damage the liver, kidneys, and nerves, causing inflammation [7–9]. Acetone is
readily found in industrial wastewater environments. Currently, high-performance liquid
chromatography (HPLC), capillary electrophoresis (CE), and immunoassay are common
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methods for detecting environmental pollutants such as tetracycline and acetone [10–12].
However, these methods generally require expensive and sophisticated instruments, com-
plex pre-processing procedures, and skilled technicians, which are not conducive to rapid
and routine monitoring [13–16]. Therefore, it is crucial to develop a fast and simple method
for detecting TC and acetone.

Metal–organic frameworks (MOFs), a group of porous materials composed of inor-
ganic metal ions and organic bridging ligands, have sparked a lot of academic interest
in recent years [17–19]. MOFs have flexible structural designs, highlighting a specific
surface area and highly ordered pores. Therefore, MOFs have been widely explored for
the storage and separation of various gases as well as catalytic [20–23], biomedical [24],
magnetic [25,26], and chemical sensing applications [27–29]. Luminescent metal–organic
frameworks, as an important family of MOF materials, have made outstanding contri-
butions in detecting harmful pollutants such as antibiotics, solvent molecules, pesticides,
explosives, and other pollutants due to their superior luminescence ability [30–34]. In
recent years, MOFs have also made positive advances in detecting tetracycline and ace-
tone. Huang et al. synthesized an Fe-modified MXene-derived MOF that can be used as a
high-performance acetone sensor [35]. Gan et al. proposed fluorescent Eu-MOF designed
to detect TC rapidly in food samples [36]. Zn(II) ion with d10 electronic configuration
possesses not only various coordination modes but also attractive luminescence properties
when bound to functional ligands. Due to these characteristics, the Zn-MOFs have been
reported as sensors for detecting antibiotics, metal ions, and small molecules [37–39]. For
example, {[Zn(L)0.5(bpea)]·0.5H2O·0.5DMF}n has been reported to be an effective lumines-
cence sensor for nitrofurazone (NFT) in aqueous solutions with an LOD of 0.35 µM [40].
[Zn2(tdca)2(bppd)2]·2DMF can be used as a sensitive luminescence probe for the detec-
tion of Cd2+ [41].

In general, the preparation of luminescent MOFs requires the selection of ligands with
luminescence properties and functional groups with the ability to modify the luminescence
properties, in addition to different photoactive metal ions [15]. The luminescence properties
of MOFs can be adjusted by introducing organic ligands with aromatic groups or conjugated
π-systems through conjugation effects [42]. Due to their strong coordination, aromatic
carboxylic acid ligands are the best candidates to form MOFs. 4-(4-carboxy phenoxy)
phthalic acid (H3L) is a V-type semi-rigid carboxylic acid. The two benzene rings of the
ligands can rotate through ether groups and exhibit some conformational flexibility [43].
In addition, it contains three carboxylic acid groups, with the metal center in different
ligand coordination ways. It makes the formation of MOFs easy to obtain and with great
structural diversity. It has been reported that a series of Zn(II) complexes constructed by
the H3L ligand have 3D frameworks and good luminescence properties, which provide
the possibility for the synthesis of the luminescent Zn-MOF [44]. The introduction of
N-containing heterocyclic organic ligands can enrich the design of the complex. 3,5-bis(1-
imidazolyl) pyridine (BMP) is a rigid nitrogenous heterocyclic ligand with large conjugated
groups that readily form coordination bonds with metals and increase the stability of
the structure [45,46].

Here, in this work, the H3L ligand and BMP ligand were used to synthesize new MOFs
by employing the hydrothermal method: [Zn3(BMP)2L2(H2O)4]·2H2O. The Zn-MOF is a
three-dimensional microporous framework and showed strong and stable luminescence
in a solid-state and aqueous solution. The luminescence properties of the Zn-MOF in
common solvents and aqueous solutions with different pH values were investigated. The
application of the Zn-MOF as a sensor in detecting tetracycline and acetone was also
explored in this study (Scheme 1).
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Scheme 1. The construction and luminescence sensing of the Zn-MOF.

2. Results and Discussion
2.1. The Crystal Structure of [Zn3(BMP)2L2(H2O)4]·2H2O

The Zn-MOF featured a 3D structure, which was crystallized in a monoclinic system
with a P21/n space group. The asymmetric unit of the Zn-MOF consists of three Zn(II) ions,
two L ligands, two BMP ligands, four coordinated water molecules, and two free water
molecules. The Zn(II) ions have two different coordination modes. The Zn1 ions had a total
of four coordinations: two coordinations with two O atoms from two L ligands and two
coordinations with N atoms from BMP ligands, to form a slightly distorted tetrahedron
geometry [Zn1N2O2] (Figure 1a). The bond length range of Zn1-O is 1.933(2)–1.946(2) Å and
the bond length range of Zn1-N is 2.010(3)–2.024(2) Å. The Zn2 ions had six coordinations
in the [Zn2N2O4] octahedral configuration, which were formed by linking to four O atoms
from four water molecules and two nitrogen atoms from two BMP ligands. The Zn2-O bond
distances vary from 2.079(2) to 2.118(2) Å and the Zn2-N bond length is 2.140(2) Å. Each
BMP is a three-coordination ligand connected with three different Zn(II) ions in µ3:η1η1η1

coordination mode to form a two-dimensional Zn-BMP network. The L ligand acted
as a bridging ligand to link two adjacent Zn1 ions through the µ1:η1η0/µ1:η1η0/µ0:η0η0

coordination mode along the a-axis extension, and the Zn-BMP network further formed
a three-dimensional structure (Figure 1b). Notably, the three-dimensional framework
consisted of two types of helical chains (left-handed and right-handed) having a repeating
unit [Zn1-BMP] which consisted of two BMP ligands and two Zn1 ions with a pitch of
15.8197 Å (Figure 1c). [Zn1-BMP-Zn1-L] was composed of a BMP ligand, an L ligand, and
two Zn1 ions with a pitch of 15.6548 Å (Figure 1d).
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2.2. Morphological Properties and Thermal Stability of the Zn-MOF

The morphology of the Zn-MOF was described using optical microscopy and SEM.
The Zn-MOF was colorless and had transparent blocky crystals and featured a 3D structure
with a rough surface (Figure S1 in Supplementary Materials). The Zn-MOF’s thermal
stability was investigated using TGA on samples by raising the temperature from 25 to
800 ◦C at a rate of 10 ◦C/min. The TGA data indicated that the Zn-MOF exhibited good
thermal stability (Figure S2). As the temperature increased, the complex began to lose
weight continuously. The Zn-MOF complex showed a mass loss of 8.12% from 70 ◦C to
235 °C, which was caused by the loss of free water molecules and coordinated water
molecules (calculated value: 8.15%). When the temperature reached 280 ◦C, a sudden
weight loss occurred, and the organic ligands in the Zn-MOF began to decompose. No
further weight loss was observed after 510 ◦C. A total loss of 77.88% was observed until
the temperature reached 510 ◦C when the decomposition of the Zn-MOF was completed
(calculated value: 81.55%). The residual weight corresponded to the formation of ZnO.

2.3. The Solid-State Photoluminescence of the Zn-MOF

The solid-state photoluminescence of the H3L, BMP, and Zn-MOF were examined at
room temperature (Figure 2). The spectrum shows that H3L and BMP ligands exhibited
a maximum emission wavelength at 408nm (λex = 358 nm) and 389 nm (λex = 323 nm),
respectively, while the Zn-MOF exhibited a broad emission band with a maximum emission
wavelength of 385nm (λex = 305 nm), which might be explained by the ligand’s π*→ π

electron transition.
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Figure 2. The solid-state emission spectra of the H3L/BMP ligands and the Zn-MOF.

2.4. Luminescence of the Zn-MOF in Water with Different pH

One of the essential considerations for sensing applications is the stability of MOFs in
aquatic environments. The Zn-MOF sample was immersed in water and aqueous solutions
with pH of 4, 6, 9, 11, and 12 for 72 h. Comparing the PXRD patterns of the Zn-MOF
sample in various aqueous solutions to the pattern obtained for the Zn-MOF crystal,
there were no differences (Figure 3a). This verified that the structure of the Zn-MOF was
unaltered. This result demonstrated the high chemical stability of the produced Zn-MOF in
aqueous solutions over a broad pH range. Meanwhile, Zn-MOF was also the subject of a
luminescence experiment in water at pH 1–14. The Zn-MOF powder (3 mg) was dispersed
in aqueous solutions (3 mL) with various pH values, and the light-emitting properties
were measured. As shown in Figure 3b, under strongly acidic conditions (pH < 3), the H3L
ligand may not have coordinated well with metal Zn2+ ions, which resulted in different
degrees of a decrease in fluorescence intensity. After the pH value of the solution exceeded
12 (pH > 12), the luminescence intensity of the Zn-MOF diminished sharply. However, at the
emission wavelength of 385 nm, the luminescence intensity of the Zn-MOF remained nearly
constant for pH values between 4 and 12. In addition, compared with the solid emission
spectrum of the Zn-MOF, the emission band in aqueous solution was also observed to have
the maximum value at 385 nm with relatively high intensity (Figure S3). This indicated
that the prepared Zn-MOF maintained good luminescence properties in water. The stable
luminescence properties suggested that the Zn-MOF could be a regular and potentially
helpful material as a luminescent sensor in aqueous solutions.
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2.5. The Luminescence Properties of the Zn-MOF in Solvents and Sensing for Acetone

The luminescence of the Zn-MOF was investigated in the presence of common organic
solvents to explore the stability of the Zn-MOF in a solvent environment. The Zn-MOF
(3 mg) was dispersed in 3 mL of common solvents (water, acetone, dichloromethane,
methanol, ethanol, DMA, DMF, DMSO, acetonitrile, etc.) to form suspensions. The lumi-
nescence spectra of these suspensions were obtained at an excitation of 305 nm. As shown
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in Figure 4, the Zn-MOF showed excellent luminescence performance in some commonly
used organic solvents. However, it is worth noting that the luminescence of the Zn-MOF
in acetone nearly disappeared, suggesting that the Zn-MOF can be used as a luminescent
sensor to detect acetone molecules.
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To further explore the influence of the acetone molecule on the luminescence intensity
of the Zn-MOF, acetone solution was added to the suspension to perform luminescence
titration experiments. Acetone solution in the quantity of 10 µL was added dropwise to a
beaker containing a 3 mg sample, and the luminescence intensity of the system at 385 nm
was monitored. As shown in Figure 5, when the volume of the acetone solution increased
from 0 µL to 300 µL, the luminescence intensity of the Zn-MOF gradually decreased. When
300 µL of acetone solution was added, the luminescence quenching efficiency (QE) of the
Zn-MOF was observed to be 67%. The luminescence intensity of the Zn-MOF had a specific
linear relationship with the volume fraction of acetone added as per the following linear
equation: I0/I−1 = KSVV.
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Here, I0 and I are the luminescence intensity before and after adding acetone, respec-
tively; V is the volume fraction of acetone in water; and KSV is the slope of the linear
equation [9]. The correlation coefficient (R2) was found to be 0.9907. The limit of detection
(LOD) of the Zn-MOF for acetone was calculated as 0.1597%, indicating that the Zn-MOF
can detect acetone molecules in a low concentration range.

To explore the selective detection of the Zn-MOF for the acetone molecule, the Zn-
MOF sample (3 mg) was immersed in different organic solvents (ethyl acetate, ethanol,
methanol, methyl ethyl ketone, dichloromethane, etc.). An equal amount of acetone was
then added for the anti-interference experiment. As shown in Figure S4, it was found that
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only the presence of acetone molecules in organic solvents weakened the luminescence of
the Zn-MOF, and the quenching effect of acetone on the luminescence of the Zn-MOF was
not affected by the interfering solvents.

2.6. Luminescence Sensing of the Zn-MOF to TC

Residual TC has been identified as a major organic contaminant in water. Being present
in aquatic ecosystems, this non-degradable contaminant is harmful to the environment
and human health. Therefore, the creation of reliable and efficient techniques to identify
TC pollutants in water is urgently needed. So, the luminescence sensing of the Zn-MOF
to TC was investigated. The Zn-MOF samples (3 mg) were soaked in different antibiotics
(1× 10−3 mol/L, 3 mL), such as penicillin (PEN), chloramphenicol (THI), griseofulvin (GRI),
erythromycin (ERY), streptomycin (STR), and kanamycin (KANA). The solutions were then
subjected to ultrasound treatment for 30 min to obtain a uniform suspension. Figure 6a
shows that TC weakened the luminescence of the Zn-MOF when different antibiotics were
added to the suspension of the Zn-MOF. Moreover, upon introducing TC to the mixture
of the Zn-MOF and the alternative antibiotic, the luminescent emission of the Zn-MOF
was significantly quenched (Figure 6b). Therefore, the prepared Zn-MOF showed good
selectivity and sensitivity to the detection of TC in the presence of other antibiotics.
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To explore the effect of TC on the luminescence intensity of the Zn-MOF, a luminescence
titration experiment was performed by gradually adding TC to a suspension of the Zn-
MOF and monitoring the emission intensity at 385 nm (Figure 6c). When the volume of
TC solution (2 × 10−4 mol/L) was increased from 0 to 220 µL, the emission intensity of the
Zn-MOF gradually decreased. A good linear relationship between luminescence intensity
and TC concentration was visible at low concentrations (Figure 6d). The calculated KSV was
1.97 × 105 M−1, and the R2 was 0.9918. In addition, the LOD for TC was estimated to be
3.34 µM. In addition, taking pH = 4 or 10 as an example, the fluorescence sensing ability of the
Zn-MOF to TC in acidic and alkaline conditions was also tested. The LOD of TC in slightly
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acidic and alkaline aqueous solutions (pH = 4 and 10) was calculated using fluorescence
titration and was found to be 5.17 µM and 7.27 µM, respectively (Figure 7). It indicated that
the Zn-MOF had the ability to detect TC in the aqueous system of pH 4–10. These results
demonstrated the high selectivity and anti-interference capability of the prepared Zn-MOF for
TC detection.
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The most crucial aspects when evaluating a sensor material for practical applications
are response time and recyclability. Measurements of the time-dependent luminescence
were carried out to confirm the response rate of the Zn-MOF. The emission of the Zn-MOF
was immediately quenched by exposure to TC for 10.11s (Figure S5a), indicating rapid
detection of TC with the luminescence of the Zn-MOF. Moreover, the recovery performance
of the Zn-MOF as a TC luminescent sensor was evaluated to fulfil the recyclability require-
ments for potential practical applications. Therefore, a recycling experiment was conducted
to assess the recycling and regeneration capabilities of the Zn-MOF. Firstly, the suspension
containing TC was centrifuged and dried to recover the Zn-MOF powder, which was then
washed with ethanol to remove the TC. The luminescence of the Zn-MOF was recorded.
The experimental results showed that the luminescence intensity of the Zn-MOF was not
affected much after four recycling cycles (Figure S5b). This indicated that Zn-MOF could
be reused for sample detection after simple solvent washing.

2.7. Luminescence Sensing of the Zn-MOF for TC in Urine and Aquaculture Wastewater Systems

Antibiotics in urine have become an important biomarker for studying human expo-
sure to antibiotics. Therefore, the presence of TC was detected in human urine using the
prepared Zn-MOF. The Zn-MOF was immersed in the urine with TC and without TC for
three days, which also included some interfering agents (NaCl, hippuric acid, creatinine,
glucose, urea, L-cysteine, etc.). The results of the experiments are shown in Figure 8a. It
was found that only the presence of TC in urine quenches the luminescence of the Zn-MOF,
and the quenching effect of TC on the luminescence of the Zn-MOF was not affected by
the interfering agents, confirming that the Zn-MOF has high selectivity for sensing TC.
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Elevated levels of TC in water bodies due to the large-scale use of tetracycline antibiotics
in the pharmaceutical and aquaculture industries pose an increased ecological risk to the
environment. Therefore, it is necessary to detect TC in aquaculture wastewater plants. TC
was added to a suspension of the Zn-MOF containing some inorganic material and addi-
tional antibiotics (sulfadiazine (SDZ) and sulfamethazine (SMZ)). It was found that only
the presence of TC in aquaculture wastewater quenches the luminescence of the Zn-MOF,
and the quenching effect of TC on the luminescence of the Zn-MOF was not affected by the
interfering agents (Figure 8b). It was observed that the Zn-MOF had high selectivity for
the detection of TC. These findings suggest that the prepared Zn-MOF has the potential to
detect TC for practical applications.
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2.8. The Luminescence Sensing Mechanism

The luminescence sensing mechanism of the Zn-MOF was investigated. Firstly, the
PXRD pattern of the Zn-MOF immersed in TC and acetone solution for 48 h was obtained.
It can be seen from Figure 9a that the peak positions and intensities of the spectra, before
and after the detection of TC and acetone solutions, remained unchanged. This indicates
that the structure of the Zn-MOF remained intact after the luminescence experiment.
This implies that the prepared Zn-MOF was stable in TC and acetone solutions, and the
luminescence quenching of the Zn-MOF by TC and acetone cannot be attributed to the
collapse of the framework.
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(b) excitation and emission spectra of the Zn-MOF and UV absorption spectra of TC and acetone.

The targeted substrates for detection, TC, and acetone were studied using UV–Vis
absorption. Figure 9b shows that TC had a broad absorption band in the range of 300–400 nm
and acetone had a strong absorption band in the field of 200–300 nm. The Zn-MOF was
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observed to have a strong emission band at 385 nm and an excitation band at 305 nm.
Therefore, the UV absorption spectra of TC and acetone overlapped with the excitation spectra
of the Zn-MOF complex, indicating that the luminescence quenching of the Zn-MOF by TC
and acetone was caused by the fluorescence resonance energy transfer (FRET). This suggests
that the absorption of incident light by TC and acetone was competitive with that of the
prepared Zn-MOF [47,48].

Similarly, photoinduced electron transfer (PET) was also considered as a possible
luminescence quenching mechanism. DFT calculations were also performed to investigate
the detection mechanism of the Zn-MOF for TC and acetone (Figure 10). According to
DFT, the LUMO of H3L (−1.17 eV) and the LUMO of BMP (−1.96 eV) were higher than the
LUMO of TC (−2.31 eV) but lower than that of acetone (−0.37 eV). Since the LUMO level
of the TC was in a lower energy state, the properties of H3L and BMP ligands mentioned
above enabled the transfer of excited electrons from the framework of the Zn-MOF to TC
(LUMO energy from −1.17 eV to −2.31 eV). Therefore, according to these findings, both
FRET and PET processes can be considered as the reasonable quenching mechanisms.
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3. Materials and Methods
3.1. Materials

Every reagent was bought from a store and utilized straight away. Using an elemen-
tal Vario EL analyzer, elemental analyses (C, H, and N) were performed. The KBr pellet
method was used to record infrared (IR) spectra using a Bruker Tensor37 spectrophotometer.
On a PANalytical X’pert PRO MPD diffractometer using CuKα radiation (λ = 1.5406 Å),
experimental powder X-ray diffraction (PXRD) was performed. Using a nitrogen environ-
ment and a heating rate of min−1 from room temperature to 800 ◦C, thermogravimetric
analysis (TGA) was performed using an HCT-2 thermal analyzer. An FL7000 fluorescence
spectrophotometer was used to record the solid and liquid fluorescence spectra at room
temperature. Using a U-3900H spectrophotometer, UV–Vis spectroscopy was carried out.

3.2. Synthesis of the Zn-MOF

A 25 mL Teflon cup containing Zn(Ac)2 (0.2 mmol), H3L (0.1 mmol), BMP (0.2 mmol),
NaOH (0.4 mL, 1 mol·L−1), and water (10 mL) was heated at 120 ◦C for 72 h, then cooled to
room temperature. For C52, H44, Zn3 N10O20, elemental analysis (%) C, 47.09; N, 10.57; H,
3.32; found (%) C, 47.12; N, 10.61; H, 3.34. IR(KBr pellet, cm−1), 3590 (w), 3449 (w), 3246 (m),
3131 (s), 1612 (s), 1562 (m), 1522 (m), 1379 (s), 1314 (w), 1256 (m), 1235 (s), 1155 (m), 1075 (s),
1012 (s), 964 (w), 948 (s), 847 (m), 814 (w), 789(w), 764 (s), 737 (s), 691 (m), 648 (m), 517 (w),
452 (w). The CCDC Number of Zn-MOF was detailed in the Appendix A.
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3.3. X-ray Crystallographic Study

The Cu Kα (λ = 0.154184 nm) was used in an X-ray diffractometer to gather the crystal
data. The SHELXL 97 and SHELXL 97 programs were used to solve the structure. The
coordinates of the hydrogen atoms were established using the theoretical hydrogenation
approach and were then adjusted using the full-matrix least-squares method. The crystal-
lographic data are summarized in Table S1, and the selected bond lengths and angles are
presented in Table S2.

3.4. Luminescence Measurements

The Zn-MOF powder sample (3 mg) was added to deionized water (3 mL); then, the
solution was ultrasonicated for 30 min to form a uniform suspension. The suspension
was added to a quartz cuvette. The luminescence emission spectra were recorded at the
excitation of 305 nm after each incremental addition of 10 µL TC solution (2 × 10−4 mol/L)
at room temperature.

The quenching constant was calculated using the Stern-Volmer (SV) equation:
I0/I−1 = KSV [A]. Here, KSV is the quenching constant; [A] is the molar concentration

of TC; and I0 and I are the luminescence before and after TC addition strength.
The LOD of the Zn-MOF for TC can be determined as follows:
LOD = 3σ/KSV. Here, LOD is the limit of detection, and σ is the standard deviation of

the three repeated luminescence measurements of the Zn-MOF in a blank aqueous solution.

4. Conclusions

A new Zn-MOF, [Zn3(BMP)2L2(H2O)4]·2H2O, was designed and synthesized using
BMP and H3L ligands. The synthesized Zn-MOF had a three-dimensional framework
in which the BMP ligand adopted the µ3:η1η1η1 coordination mode, while the L ligand
adopted the µ1:η1η0/µ1:η1η0/µ0:η0η0 coordination mode. The Zn-MOF exhibited excellent
luminescence in solids and solutions, and the luminescence properties remained stable
at pH values ranging from 4 to 10. The Zn-MOF fabricated in this study can be used
as a luminescent sensor to detect acetone and TC in water. The detection limits of the
Zn-MOF were found to be 3.34 µM and 0.1597% for TC and acetone, respectively. TC
could be detected by the Zn-MOF in urine and aquaculture wastewater systems. The
luminescence quenching mechanisms of the Zn-MOF were investigated in detail using
experimental methods and theoretical calculations. These findings suggest that the Zn-
MOF is an excellent luminescent material that can be used for detecting environmental
pollutants such as TC and acetone.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28030999/s1: Figure S1: (a) Optical microscopy image and
(b) SEM image of the Zn-MOF; Figure S2: TGA curve of the Zn-MOF; Figure S2: The emission spectra
of the Zn-MOF in solids and water; Figure S3: The luminescence intensity of the Zn-MOF in different
interfering solvents with and without acetone; Figure S4: (a) Time response of the Zn-MOF to TC
and (b) recycling experiment; Figure S5; Table S1: The crystal data of the Zn-MOF; Table S2: Selected
bond lengths [Å] and angles [◦] for the Zn-MOF.
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