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Abstract: Solid lipid nanoparticles (SLNs) are lipid-based colloidal systems used for the delivery of
active compounds. Although SLNs have many benefits, they show important issues due to physical
and chemical instability phenomena during storage. For these reasons, it is highly desirable to have a
dried SLN formulation available. Therefore, the aim of the project was to identify suitable methods
to obtain a dry powder formulation from an SLN suspension. The nanoparticle suspension was dried
using both freeze- and spray-drying techniques. The suitability of these methods in obtaining SLN
dry powders was evaluated from the analyses of nanotechnological parameters, system morphology
and thermal behavior using differential scanning calorimetry. Results pointed out that both drying
techniques, although at different yields, were able to produce an SLN dry powder suitable for
pharmaceutical applications. Noteworthily, the freeze-drying of SLNs under optimized conditions
led to a dry powder endowed with good reconstitution properties and technological parameters
similar to the starting conditions. Moreover, freeze–thaw cycles were carried out as a pretest to study
the protective effect of different cryoprotectants (e.g., glucose and mannitol with a concentration
ranging from 1% to 10% w/v). Glucose proved to be the most effective in preventing particle growth
during freezing, thawing, and freeze-drying processes; in particular, the optimum concentration of
glucose was 1% w/v.

Keywords: solid lipid nanoparticles; spray-drying; freeze-drying; differential scanning calorimetry

1. Introduction

We are currently living in the golden age of pharmaceutical nanocarriers, and we
are witnessing a maturation stage of the original idea of nanotechnology applied to the
formulation of innovative pharmaceutical carriers. We are aware that nanoformulations
are extremely valuable tools for drug delivery applications, and the vaccination against
COVID-19 has been an important test case. The current challenge is how to optimize
the nanocarriers to ensure that they are safe, effective, and scalable, so that they can be
manufactured at an industrial level and advance to clinical use.

In this context, lipid nanoparticles have gained ground; the usage of these systems
has brought important innovations in the pharmaceutical field [1–3], as they show many
advantages such as low cost, high-scale production, chemical versatility, and bioacceptabil-
ity due to the use of GRAS (Generally Recognized as Safe) ingredients [4–7]. In particular,
they are able to achieve a targeted and prolonged release, avoiding rapid drug degradation
over time [8–10].

One of the key challenges associated with the development of SLN preparation is to
remove the high amount of water (70–95%) in order to achieve maximum physical and
chemical stability [11–14] and to optimize the formulation to be administered through
specific routes such as the pulmonary route of administration [15].
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Spray- and freeze-drying are the most used techniques to convert liquid nanosuspen-
sion into dry nanoparticles.

Spray-drying, the less expensive technique, is widely used to convert a liquid into a
dry system in a one-step process and to achieve fine powders [16]. This technique is widely
used in pharmaceutical field since it is rapid, low-cost, continuous, and scalable for the
production of dry powders [17,18].

While the physical state of a solid in suspension is not affected by high temperatures
during the spray-dying process, drying of solid lipid nanoparticles can be more challenging
because they may melt during the process [19].

In some studies reported in the literature, the spray-drying of SLN from different
lipid types, such as tristearin and Compritol 888 ATO, was evaluated [20–22]. Interestingly
the results showed that the particles could be embedded in matrices without losing their
nanoparticulate properties. The authors of these studies assumed that the temperatures to
which the particles were exposed were well below their melting temperatures and, thus,
did not have an effect on the physical state of the lipids during drying.

Another strategy to overcome the problem of excessive heating is the use of an organic
solvent in order to decrease the temperature required for solvent evaporation. However,
these solvents are highly flammable; therefore, their use is severely limited.

On the other hand, freeze-drying is commonly used to convert lipid emulsions into
solids of sufficient physical stability for distribution and storage. The process involves the
removal of water from the SLN by the aid of sublimation and desorption under vacuum.
Freeze-drying offers many advantages, such as long-term physical and chemical stability,
and ease of reconstitution, while the biggest shortcoming of the method is the increase in
particle size due to aggregation of lipid nanoparticles [23].

In order to overcome this important limitation, cryoprotectants, compounds able to
immobilize the nanocarriers within their glassy matrix, have been successfully used in
preventing the aggregation of the nanoparticles and protecting them against the mechan-
ical stress of ice crystals. The most used cryoprotectants in freeze-drying of lipid-based
nanoparticles are sugars such as glucose and mannitol [24–26]. The stabilization effect of
these substances depends on their concentration, and it has been observed that an increase
in the cryoprotectant concentration beyond a certain level could destabilize the nanoparticle
suspension [27,28].

On the basis of previous considerations, the aim of the work was the evaluation of
freeze- and spray-drying techniques as methods to obtain a dry powder formulation from
a model SLN suspension.

Both methods required the optimization of the experimental parameters in order to
obtain powders with acceptable physicochemical and structural characteristics.

With regard to the lyophilization process, the most used cryoprotectants at different
concentrations were evaluated to obtain stable dried nanoparticles with a short reconstitu-
tion time in water.

Some important parameters involved in the spray-drying technique were optimized
to obtain a SLN dry powder characterized by suitable physicochemical characteristics. In
particular, the best condition to avoid both aggregation phenomena on the drying chamber
walls and the fusion of lipid nanoparticles due to high temperatures was evaluated.

The suitability of these two different techniques to produce a dry SLN powder was
evaluated through an analysis of the nanotechnological parameters (mean particle size,
polydispersity index, and zeta potential), determined before and after the drying processes,
and through an analysis of the system morphology by fluorescence microscopy (FM) and
transmission electron microscopy (TEM). In particular, the first technique was shown to be
the most suitable to characterize the spray-dried batches, while the second was applied to
evaluate the morphology of the lyophilized samples. Lastly, the evaluation of the thermal
behavior of the nanoparticle suspension, determined before and after drying, gave us
important indications regarding the process effectiveness.
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2. Results and Discussion
2.1. Influence of Spray-Drying Parameters on Yield Value

Multiple studies in the scientific literature have provided many examples regarding
the importance of spray-drying in nanotechnological processes [29,30]. This technique
has demonstrated its ability to optimize the particle size, shape, surface roughness, and
surface composition of polymeric nanoparticles by modifying critical process parameters
and formulation variables.

Unfortunately, the application of this drying technique to lipid nanoparticle suspen-
sions is not a simple task. In fact, it can potentially cause aggregation or fusion of the
nanoparticles due to high temperatures and shear forces. Furthermore, high temperatures
may also be responsible for drug degradation phenomena, thus causing a reduction in/loss
of drug therapeutic activity. A potential strategy to control these unfavorable features is
represented by the modification, during the drying process, of some important parameters
such as the feed composition, the inlet (Tin) and outlet (Tout) temperatures, and the aspira-
tion rate (ASP) [31]. A scientific study reported in literature demonstrated the key role of
Tin in influencing the physical state of the lipids during drying [32]. The authors of this
study pointed out that the temperatures to which the particles were exposed were well
below the melting temperatures of the solid lipids, thereby obtaining a dry powder with
suitable features. In another study, Freitas and Müller demonstrated that a melting tem-
perature of at least 65 ◦C is necessary to obtain a valid SLN dry powder from an aqueous
suspension [22]. The authors hypothesized that, during spraying, the evaporated moisture
produced a film around the droplets, able to absorb most of the heat. This could explain
why no increase in temperature or consequent degradation of the heat-sensitive materials
was observed. The use of an ethanol–water mixture as feed solution is a strategy used to
decrease the temperature required for solvent evaporation [22].

In the present work, we formulated aqueous SLNs dispersions (batch D) and hydroal-
coholic SLNs dispersions (batches A, B, and C) using the lipid Compritol 888 ATO, which
has a melting point of about 72 ◦C, in order to keep the process temperatures as low as
possible. The results expressed as process yield (RP%) are reported in Table 1. Batches A1
and A2 showed the best results in terms of RP%: 45.0 ± 0.5 and 58.33 ± 0.9, respectively.
The differences observed between the two batches refer to the aspiration rate values. As a
general rule, a higher ASP% value was responsible for the aspiration of the smaller lipid
nanoparticles, while a low aspiration rate prolonged the residence time of the nanoparticles
in the apparatus chamber. Strategically the ASP% values were set around 70% and 50%,
thus avoiding the total aspiration of the nanoparticles.

Table 1. Variables and yield of the spray-drying process. d (µm): nozzle diameter; Tin: inlet
temperature; Tout: outlet temperature; p: air pressure; ASP: aspiration; Ψ: flow rate; Rp: process
yield; V: sprayed volume; SD: standard deviation.

Batch Feed
(% w/w) EtOH:H2O V (mL) d

(µm)
P

(atm) Tin (◦C) Tout
(◦C)

ASP
(%)

Ψ
(mL/min) Rp (%) ± SD

A1 60:40 100 700 6 60 29–30 70 3 45.0 ± 0.5

A2 60:40 100 700 6 60 25–26 50 3 58.33 ± 0.9

B1 50:50 100 700 6 60 32–33 70 3 43.71 ± 0.2

B2 50:50 100 700 6 60 34–35 50 3 56.82 ± 0.2

C1 40:60 100 700 6 60 34–35 70 3 38.16 ± 0.2

C2 40:60 100 700 6 60 34–35 50 3 44.31 ± 0.1

D1 0:100 100 700 6 110 69–70 70 3 21.0 ± 0.1

D2 0:100 100 700 6 110 69–70 50 3 24.84 ± 0.2

Furthermore, the results clearly pointed out that the difference between Tin and Tout
affected the residual moisture of the product; hence, a higher difference between the two
values correlated to more residual moisture. All hydroalcoholic SLN suspensions were
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processed at 60 ◦C, with a Tout of around 30–35 ◦C and a maximum temperature load of
15–20 ◦C. Instead, the aqueous SLN suspensions were processed at 110 ◦C, reaching an
outlet of 69–70 ◦C, with a maximum internal temperature of 49–50 ◦C. The addition of
ethanol enabled the lowering of Tin values (from 110 ◦C to 60 ◦C); upon increasing the water
percentage in the feed, we observed a noteworthy decrease in RP%, probably due to the
residual moisture. These results are in accordance with data reported in the literature [22].

Characterization of Spray-Dried Nanoparticles

The characterization of nanoparticles was performed using photon correlation spec-
troscopy (PCS). As reported in Table 2, the technological parameters of the spray-dried
nanoparticles changed considerably compared to the initial conditions. A slight increase
in the polydispersity index (PDI) was observed, while the particle size showed values
of ~1 µm due to the formation of macroaggregates during spraying. With regard to the
zeta potential (ZP), the results showed positive values due to the positive charge of the
added surfactant.

Table 2. Technological parameters of the pre-spray-dried and post-spray-dried samples.

Batches Average Size (nm) PDI ZP (mV)

Initial conditions

A1 228.2 0.278 −28.2

A2 220.0 0.250 −31.5

B1 234.5 0.264 −28.4

B2 237.1 0.283 −28.3

C1 209.5 0.252 −32.1

C2 221.9 0.300 −36.71

D1 159.1 0.268 −37.8

D2 167 0.253 −38.2

After spray-drying

A1 1000 0.362 +48.0

A2 1000 0.266 +22.2

B1 1000 0.368 +46.3

B2 1000 0.282 +39.3

C1 1000 0.280 +62.8

C2 1000 0.351 +42.2

D1 1000 0.343 +43.0

D2 1000 0.301 +50.8

Figure 1 shows the results of the fluorescence microscopy analysis carried out on the
raw materials (Lutrol F68 and Compritol 888 ATO) and on batch A2, which gave the best
result in terms of RP% value.

Lutrol F68 appeared as a mixture of crystals and amorphous spherical particles with
sizes around 30 µm, while Compritol 888 ATO consisted of spherical particles of about
100 µm (Figure 1). Noteworthily, batch A2 was characterized by well-structured spherical
nanoparticles with a mean diameter of around 1 µm, while no traces of initial raw materials
were present. These results are in line with the PCS analyses.
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Figure 1. Fluorescence microscopy (FM) micrographs of raw materials, Lutrol F68 and Compritol 888
ATO (4′,6-diamidino-2-phenylindole; DAPI, 40×) and A2 batch (DAPI, blue image, and brightfield,
40×).

DSC thermograms of spray-dried SLNs were carried out following the program
described in Table 8 of Section 3. Results showed that batches A1 and A2 (60%:40% w/w
EtOH:H2O) were well-structured compared to others. In fact, the peak intensity relating to
the Compritol 888 ATO was decreased, probably due to the different forms of crystallization
of the nanostructured lipid (Figure 2) [33].

2.2. Characterization of Lyophilized Nanoparticles

The aqueous SLN dispersions were processed for the lyophilization. The maintenance
of a nanotechnological parameters, particularly the nanoparticle size, after freeze-drying is
considered a good indication of a successful freeze-drying cycle [34,35]. Therefore, we paid
attention to select the optimal reconstitution method and cryoprotectant concentration, to
obtain stable dried nanoparticles with a short reconstitution time in water. Many methods
could be used to achieve the resuspension of freeze-dried nanoparticles as manual shaking,
vortexing, or sonication. Usually, freeze-dried products are rehydrated immediately after
the addition of water, although a long reconstitution time could be obtained as in the case
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of collapsed formulations [36]. In this preliminary study, manual shaking was chosen as the
simplest reconstitution method. The results demonstrated that mannitol in different con-
centrations (1–10% w/v) were not effective as cryoprotectant. In fact, all samples dispersed
after lyophilization showed a significant increase in both mean particle size, ranging from
308 to 1293.9 nm, and PDI values that were around 1.000. On the contrary, very promising
results were obtained using glucose as cryoprotectant at the same tested concentrations.
These data are in agreement with the literature [14]. As reported below (Figure 3), the data
demonstrated that concentrations between 1% and 4% (w/v) glucose (with the exception of
2%) were the best to obtain a cryoprotectant effect for SLNs during lyophilization.
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represents the peak temperature (expressed as ◦C).
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The results showed that freeze-drying of SLNs, under optimized conditions, produced
a dry powder with good reconstitution properties; moreover, the technological parameters
of post-freeze-dried SLNs were similar than of the initial conditions.

The morphology of reconstituted SLN (sample G1) was investigated by TEM (trans-
mission electron microscopy) to corroborate the previous data (Figure 4). In agreement
with the PCS analyses, TEM image showed that the lipid nanoparticles had a spherical
appearance with a particle size around 350 nm.
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Figure 4. Transmission electron microscopy (TEM) of reconstituted SLN (sample G1).

Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) was employed to assess the thermotropic
behavior of raw materials (Compritol 888 ATO and Lutrol F68) and SLNs before, during,
and after lyophilization.

According to PCS data, glucose appears to be an effective cryoprotectant for SLN.
In order to prevent the caramelization of glucose [37] and its incorporation into SLNs
by interfering with thermal peaks relating to SLNs, attention was paid to select the most
suitable scanning program. SLNs freeze-dried with the addition of 1% w/v glucose (SLN
G1) were chosen as the reference concentration for this preliminary study. The scanning
program (Table 7 of Section 3), consisting of a heating scan from 25 ◦C to 170 ◦C and a
cooling scan from 170 ◦C to 25 ◦C (Figure 5), was chosen to observe the formation and
the behavior of the caramel due to the high process temperature. Moreover, the scanning
program was performed using two different experimental conditions: pierced or inverted
lid [38,39]. The thermotropic parameters are reported in Table 3.
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Table 3. Enthalpy variations (∆H) and peak temperatures of the first scan and second scan of G1

lyophilized SLN obtained through inverted lid and pierced lid procedures.

Sample ∆H (J/g)
Compritol 888 ATO

∆H (J/g)
Lutrol F68

∆H (J/g)
Glucose

Peak T (◦C)
Compritol 888 ATO

Peak T (◦C)
Lutrol F68

Peak T (◦C)
Glucose

Pierced lid scan 2 −113.63 −49.71 —- 71.16 50.99 —-

Pierced lid scan 1 −108.98 −108.98 −119.71;
−22.88 71.51 50.05 141.73;

146.31

Inverted lid scan 2 −120.22 —- —- 69.60 —- —-

Inverted lid scan 1 −98.52 −140.29 −76.29 71.07 47.42 80.32

In the inverted lid technique, the first scan showed broad and poorly resolved peaks,
probably due to the formation of a caramel-like product derived from the reaction between
glucose and residual humidity [37]. Moreover, the main peak relating to glucose moved to
lower temperature (80 ◦C), while other small peaks were observed during all temperature
scans up to 170 ◦C. From the second scan thermogram, the calorimetric peak of Compritol
888 ATO appeared broader than its original morphology due to the transformation of bulk
lipid into SLNs, while all other signals disappeared.

In the pierced lid procedure, the first scan showed a double peak relating to glucose due
to its polymorphic variation induced by freeze-drying and interaction with SLNs [40,41].
Moreover, it was observed that glucose exerted less of an effect on Lutrol F68 and Compritol
888 ATO peaks. In the second scan, these last peaks were preserved, while the calorimetric
peak of glucose disappeared due to its melting and decomposition. Subsequently, this
technique was adopted to evaluate all freeze-dried SLN samples using another scanning
program (Table 8, Section 3). The scanning program, consisting of a heating scan from
25 ◦C to 85 ◦C and a cooling scan from 85 ◦C to 25 ◦C, was chosen to observe the thermal
behaviors between SLN and raw materials (Lutrol F68 and Compritol 888 ATO).

Furthermore, calorimetric curves of freeze-dried SLNs without and with glucose
at different concentrations (1%, 3%, and 4% w/v) were performed to demonstrate the
importance of cryoprotectant during lyophilization process and select the most suitable
concentration (Figure 6, Table 4).
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Table 4. Enthalpy variations (∆H) and peak temperatures of Lutrol F68, Compritol 888 ATO, and
lyophilized SLNs.

Sample ∆H (J/g)
Lutrol F68

∆H (J/g)
Compritol 888 ATO

Peak T (◦C)
Lutrol F68

Peak T (◦C)
Compritol 888 ATO

Lutrol F68 −120.80 —- 52.49 —-

SLN G4 −24.58 −106.62 51.06 70.82

SLN G3 −24.89 −105.73 51.05 70.79

SLN G1 −50.02 −113.62 51.02 71.26

SLN G0 −62.64 −114.64 50.06 71.49

Compritol 888 ATO —- −127.67 —- 71.64

The calorimetric curve of raw Compritol 888 ATO showed a sharp peak at 72 ◦C,
corresponding to its melting point, and a shoulder at about 65 ◦C; instead, the peak relating
to the raw Lutrol F68 was observed at 52 ◦C.

The curve of freeze-dried SLNs with cryoprotectant at 1% w/v (SLN G1) showed that
Lutrol F68 signal was similar to raw Lutrol F68 in term of morphology and peak temperature
with an enthalpy comparable to G0. On the contrary, the Compritol 888 ATO signal was
similar to G0 with the exception of the pre-transition shoulder, which appeared thinner.

The curves of freeze-dried SLNs with cryoprotectant at 3% and 4% w/v (SLN G3
and SLN G4) showed that the Compritol 888 ATO signal had a sharp peak at 72 ◦C and a
post-transition shoulder at 73 ◦C; instead, the Lutrol F68 signal completely disappeared.

As reported in the literature, these results demonstrated that glucose interacted with
SLNs, reducing both the enthalpy and the peak temperatures of the signal attributable to
Compritol in a dose-dependent manner. This action was due to several defensive mecha-
nisms of the cryoprotectant, such as the reduction in the cooperation of lipid components
and the formation of a high-viscosity glass matrix that prevents damage by ice crystals [42].
However, it was interesting to note that the morphology of G3 and G4 peaks was different
from that of the initial peak; this could have been due to possible damage caused by higher
concentrations of cryoprotectant [43]. Moreover, PCS data proved that 1% glucose was the
most effective concentration in preventing particle growth during freezing. We confirmed
this result by reconstitution studies. Briefly, we diluted the freeze-dried products with
the same volume of water lost during the lyophilization process, and then we shook the
mixture for a minute. In order to underline the key effect of the cryoprotectant on the
crystalline structure of the nanoparticles during freeze-drying, the calorimetric curves of
pre- and post-lyophilized SLNs were compared (Figure 7, Table 5).
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Table 5. Enthalpy variations (∆H) and peak temperatures of rapidly resuspended SLNs and pre-
lyophilization SLN.

Sample ∆H (J/g) Peak T (◦C)

SLN G4 −24.58 74.74

SLN G3 −21.74 74.35

SLN G1 −23.66 72.86

SLN G0 −25.82 74.00

SLN pre-lyo −100.86 71.68

All post-freeze-dried samples, except SLN G1, showed low enthalpy and calorimeter
curves completely changed compared to pre-freeze-dried SLNs. This could have been due
to polymorphism and the addition of gradually higher glucose concentrations [40,41].

As previously reported, there are many methods to achieve the resuspension of freeze-
dried nanoparticles, such as manual shaking, vortexing, or sonication. Therefore, we
compared and evaluated them in order to choose the most suitable method to obtain stable
nanoparticles with a short reconstitution time in water.

The influence of the resuspension method on the thermotropic behavior of SLN G1 was
performed using the previous program (Table 9 of Section 3) comparing manual shaking,
24 h long vortexing, and ultrasonication (2 min, cycle 1, 100% amplitude) (Figure 8, Table 6).
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Table 6. Enthalpy variations (∆H) and peak temperatures of resuspended SLNs with various methods
and pre-lyophilization SLN.

Sample ∆H (J/g) Peak T (◦C)

SLN G1 vortexed −51.58 74.22

SLN G1 manually shaken −23.66 72.86

SLN G1 ultrasonicated −59.83 71.64

SLN pre-lyo −100.86 71.68



Molecules 2023, 28, 1545 12 of 16

SLN G1 ultrasonicated showed a main peak at 71.64 ◦C and a shoulder at a higher
temperature, while the thermotropic morphology of SLN G1 vortexed was completely
different, showing a broad shoulder around 70 ◦C and a main peak at 74 ◦C. Instead, SLN G1
manually shaken possessed the main peak at a higher temperature than pre-lyophilization
SLN, as well as a lower enthalpy than SLN resuspended using other methods.

Although vortex and ultrasonication methods showed a better enthalpy than manual
shaking, ultrasonication proved to be the best method as the thermogram was perfectly
superimposable on that of the pre-freeze-dried sample in terms of peak temperature (71.68
vs. 71.64 ◦C) and morphology (a slight pre-transition derivative and a post-transition
concave shoulder). This could have been due to the low HLB index (about 3) and high
melting point of Compritol 888 ATO lipid, which require strong mechanical and thermal
conditions (ultrasonication) to achieve good resuspension [44,45].

3. Materials and Methods
3.1. Materials

3,3′-Diaminobenzidine (DAB), mannitol, glucose, and ethanol were purchased from
Merck (ST. Louis, MO, USA). Pluronic F68 (poloxamer 188) was purchased from BASF
(Florham Park, NJ, USA), and Compritol 888 ATO, a mixture of mono-, di-, and triglycerides
of behenic acid, was obtained from Gattefossè (Milan, Italy). Lutrol F68 was provided by
BASF ChemTrade GmbH (Burgbernheim, Germany).

3.2. Preparation of SLNs

SLNs were prepared using the ultrasonication method [46,47]. Briefly, 0.8% w/v
Compritol 888 ATO was melted at 80 ◦C (10 ◦C more than lipid melting point) and then
was dispersed in hot (80 ◦C) surfactant solution (Lutrol F68; 0.1% w/v) using a high-
speed stirrer (UltraTurrax T25; IKA-Werke GmbH & Company KG, Staufen, Germany)
at 24,000 rpm for 8 min. The obtained pre-emulsion was ultrasonicated for 4 min using a
UP 400 S Ultraschallprozessor (Dr. Hielscher GmbH, Teltow, Germany), maintaining the
temperature at least 4 ◦C above the lipid melting point. The hot dispersion was then cooled
in an ice bath under high-speed homogenization (UltraTurrax T25; IKA-Werke GmbH
& Company KG) at 4000 rpm for 5 min. The post-sonication dilution was carried out by
gradually increasing the water amount with a water/ethanol mixture at different v/v ratio
(60:40, batch A; 50:50, batch B; 40:60, batch C) or with 100% v/v water (batch D).

3.3. Characterization and Morphology of SLNs

The nanoparticle size and the polydispersity index (PDI) were measured by photon
correlation spectroscopy (PCS) using a Zeta Sizer Nano-ZS90 (Malvern Instrument Ltd.,
Worcs, UK) [48]. Analyses were performed using a 90◦ scattering angle at 20 ± 0.2 ◦C.
The zeta potential (ZP), an indicator of the stability of a dispersed system, was measured
by electrophoretic light scattering (ELS) using the same instrument. All samples were
prepared by diluting 100 µL of SLN suspension with 900 µL of deionized water. Each value
represents the average of three determinations.

Two different methods were used to study the morphology of dried suspension:
fluorescence microscopy (FM) and transmission electron microscopy (TEM). The first was
used to characterize the spray-dried batch (sample A2) and the second was used to evaluate
the morphology of sample G1, obtained from lyophilization.

Lutrol F68, Compritol 888 ATO, and sample A2 were observed with a Zeiss Axiophot
fluorescence microscopy (FM) apparatus, with 40× 1.4 NA plan Apochromat oil immersion
objectives (Carl Zeiss Vision, München-Hallbergmoos, Germany) using brightfield or
standard DAPI (4′,6-diamidino-2-phenylindole) optics that adsorb violet radiation (max
372 nm) and emit a blue fluorescence (max 456 nm).

Lyophilized sample G1 was evaluated by transmission electron microscopy (TEM)
using a Philips EM 400T microscope (Eindhoven, The Netherlands). Briefly, a drop of
reconstituted sample was deposited on the surface of a 200 mesh Formvar®-coated copper



Molecules 2023, 28, 1545 13 of 16

grid (TAAB Laboratories Equipment, Ltd., Aldermaston, UK). After evaporation, the
specimen was sprayed with chromium prior to imaging (Quorum Q150T ES East Grinstead,
West Sussex, UK). Coating was carried out at 120 mA for 30 s.

3.4. Spray-Drying of Nanoparticles

The spray-drying process was performed in a spray-dryer laboratory-scale (Buchi
Mini Spray-Dryer B-191, Buchi Laboratoriums-Tecnik, Flawil, Switzerland). Three dif-
ferent spray-drying variables were applied to optimize the dried process as follow: feed
composition (EtOH:H2O 60:40, EtOH:H2O 50:50, EtOH:H2O 40:60, or 100% H2O); inlet
temperature (Tin; 60 ◦C or 110 ◦C for alcoholic or aqueous feed, respectively); aspirator
rate (Asp; 50, 70, or 100). The standard spray-drying parameters were as follows: nozzle
diameter (d; 0.7 mm); air pressure (p; 6 atm); spray flow rate (Φ, 3 mL/min); drying air
flow rate (500 L/h). The outlet temperature (Tout) changed from 25 to 100 ◦C as a function
of Tin. Each preparation was carried out in triplicate. All spray-dried nanoparticles were
collected and stored under vacuum for 48 h at room temperature. The reconstitution ability
of this technique was evaluated by redispersing 20 mg of each batch in 25 mL of deionized
water; then, 0.01% of surfactant and DAB (0.01%) were added. The mixture was stirred for
5 min, vortexed for 5 min, and finally, ultrasonicated for 2.5 h in an ice bath.

3.5. Freeze-Drying of Nanoparticles

Lyophilization of SLNs was preceded by a pre-formulation study necessary to establish
the cryoprotectant most suitable for the formulation. Through accurate bibliographic stud-
ies, it was possible to notice that the ideal cryoprotectants are glucose and mannitol [24–26].
After choosing the ideal excipients to obtain a good freeze-dried product, the attention was
paid to the optimization of their concentrations.

SLN dispersions were added with the cryoprotectant (1–10% w/v) before freezing.
After freezing, 2 mL of nanosuspension was lyophilized for 24 h. In order to rehydrate
the lyophilized nanoparticles, the same volume of water lost during lyophilization was
added. After reconstitution by manual shaking, nanotechnological parameters of SLNs
were measured by PCS.

3.6. Differential Scanning Calorimetry (DSC)

The experiments were carried out using a DSC 822e calorimeter by Mettler Toledo
(Greifensee, Switzerland). A Mettler TA STARe software (version 16.00) was used to analyze
the data. The calorimeter was calibrated using Indium (99.95%), according to the settings
of the instrument. The sensitivity was automatically chosen as the maximum possible
by the calorimetric system. Aluminum crucibles of 40 µL for dried SLNs and 160 µL for
nanoparticle suspensions were used [49,50].

Samples were submitted to different scanning programs as reported in Tables 7–9.

Table 7. (looped once to segment 1) DSC scanning program.

Segment Start Temperature (◦C) End Temperature (◦C) Heating Rate (◦C/min) N2 Flow (mL/min)

1 25 170 2 70

2 170 25 −4 70

Table 8. (looped once to segment 1) DSC scanning program.

Segment Start Temperature (◦C) End Temperature (◦C) Heating Rate (◦C/min) N2 Flow (mL/min)

1 25 85 2 70

2 85 25 −4 70
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Table 9. DSC scanning program.

Segment Start Temperature (◦C) End Temperature (◦C) Heating Rate (◦C/min) N2 Flow (mL/min)

1 25 85 2 70

2 85 25 −4 70

3.7. Statistical Analysis

Statistical data analysis was performed using Student’s t-test.

4. Conclusions

Spray-drying and lyophilization are suitable methods to produce a dry powder from
a lipid nanosuspension, although with a different yield and with a complexity due to the
presence of different variables related to the instrument (Tin, Tout, and ASP) and/or the
formulation (kind of cryoprotectant and concentration of employ).

The aim of the present work was not to compare the two methods or to define the
best one, but to set for both the best conditions to produce a valid dried powder from an
SLN suspension. The results showed that both methods, suitably improved, could be used
for this aim. The evaluation of the nanotechnological parameters, and the results from the
morphological studies corroborated these findings.

Further evidence arising from the present study refers to the lyophilization technique
that, under optimized conditions, can guarantee an SLN dry powder with good reconstitu-
tion properties. In particular, the cryoprotectant glucose, at the concentration of 1% w/v,
proved to be most effective in preventing particle growth during the freeze-drying process.
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