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Abstract: The Lassa virus (LASV) causes Lassa fever, a highly infectious and lethal agent of acute viral
hemorrhagic fever. At present, there are still no effective treatments available, creating an urgent need
to develop novel therapeutics. Some benzimidazole compounds targeting the arenavirus envelope
glycoprotein complex (GPC) are promising inhibitors of LASV. In this study, we synthesized two
series of LASV inhibitors based on the benzimidazole structure. Lentiviral pseudotypes bearing the
LASV GPC were established to identify virus entry inhibitors. Surface plasmon resonance (SPR) was
further used to verify the binding activities of the potential compounds. Compounds 7d−Z, 7h−Z,
13c, 13d, and 13f showed relatively excellent antiviral activities with IC50 values ranging from 7.58 to
15.46 nM and their SI values above 1251. These five representative compounds exhibited stronger
binding affinity with low equilibrium dissociation constants (KD < 8.25 × 10−7 M) in SPR study.
The compound 7h−Z displayed the most potent antiviral activity (IC50 = 7.58 nM) with a relatively
high SI value (2496), which could be further studied as a lead compound. The structure–activity
relationship indicated that the compounds with lipophilic and spatially larger substituents might
possess higher antiviral activity and a much larger safety margin. This study will provide some good
guidance for the development of highly active compounds with a novel skeleton against LASV.

Keywords: Lassa virus; glycoprotein complex; benzimidazole derivatives; surface plasmon resonance;
pseudovirus

1. Introduction

The Lassa virus (LASV), which belongs to the Mammarenavirus of the Arenaviridae
family, causes severe viral hemorrhagic fever (HF) in humans and represents a serious
public health problem. It has been reported that 58 million people are at risk of contracting
LASV, with an estimated 100,000 to 300,000 cases and 5000 deaths per year in West Africa [1].
However, these numbers are likely to be underestimated due to the lack of appropriate
diagnosis in poor areas such as rural areas and the non-specific febrile symptoms of Lassa
fever [2]. Hospitalized LASV HF patients have a mortality rate of 15–20%, and survivors
often suffer permanent damage to their bilateral hearing after surviving the infection [3–6].
Currently, there are still no licensed vaccines or drugs to prevent and treat LASV infection.
According to the Centers for Disease Control and Prevention (CDC), LASV is considered a
Category A pathogen due to its high mortality rates and limited therapeutic options [7].
The World Health Organization (WHO) has made the disease the top priority of research
and development [8].

As viral invasion is a crucial step in the viral life cycle, the related protein promises one
of the most important targets for antiviral drug design. During LASV entry, the glycoprotein
complex (GPC) plays a crucial role. GPC is first synthesized as a single polypeptide
and then cleaved by signal peptidase and subtilisin/kexin-isoenzyme-1/site-1 proteases
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(SKI-1/S1P) into three segments: the receptor-binding subunit GP1, the membrane fusion
subunit GP2, and the stable signal peptide (SSP) [9,10]. Following the interaction of GP1
with the cellular receptor α-cystine (α-DG) and lysosome-associated membrane protein 1
(LAMP1), viral endocytosis occurs, and GP2 is subjected to a pH-dependent conformational
rearrangement, prompting the fusion of viral and endosomal membranes [8,9,11–13]. By
interacting with GP2 subunits, SSP promotes GPC-mediated membrane fusion at pH and
promotes GPC maturation [14,15]. As a category A reagent, LASV requires Biosafety Level
4 (BSL-4) containment, which presents significant obstacles and safety challenges to anti-
infective drug discovery for LASV [16]. Therefore, the surrogate assays of LASV GPC
incorporation into lentiviral pseudotypes as an antiviral drug screen method is an accepted
alternative [17–19].

Currently, the therapeutic strategies for Lassa fever are limited to the off-label use
of broad-spectrum antiviral ribavirin, which is usually used in the early stages of the
disease [20,21]. As we know, drug repurposing is a promising strategy to identify new uses
from approved or experimental drugs, which has also been used in searching for LASV
inhibitors [22]. Favipiravir (T−705), an RNA polymerase inhibitor, gave better results
than ribavirin in treating LASV infection [23,24]. Losmapimod, a drug used clinically in
cardiovascular disease and chronic obstructive pulmonary disease, was identified as an
inhibitor of LASV infection [25]. Lacidipine, an anti-hypertension drug, was screened from
an FDA-approved drug library as a compound with anti-LASV activity [26]. The antifungal
isavuconazole was demonstrated to inhibit the entry of LASV by targeting the stable signal
peptide-GP2 subunit interface of LASV GP [27]. However, the antiviral activities of these
old drugs are not very satisfactory. Benzimidazole derivatives display a variety of biological
activities in many diseases through various mechanisms, such as antiviral [28,29], antimi-
crobial [30,31], antiproliferative [32,33], and anticancer activities [34,35]. Benzimidazole
derivatives are special lead compounds for antiviral drugs, attracting interest from many
chemists [18,36–39]. LHF−535 and ST−193, derivatives of benzimidazoles, are being
investigated as promising anti-LASV entry inhibitors (Figure 1) [8,40]. As a small-molecule
compound targeting the GPC of LASV, LHF−535 has broad-spectrum activity against
different lineages of LASV and related arenaviruses causing HF disease in South Amer-
ica [39]. ST−193 with a benzimidazole scaffold also showed potent inhibition of lentiviral
pseudotyped viruses expressing an enveloped GPC assay against LASV [18]. Currently,
these small molecules are still in the early stage of drug development, and there are no
clinically specific therapeutic agents for LASV. Therefore, it is an urgent task to discover
new antiviral agents against LASV.

In this study, inspired by these facts, we designed and synthesized two new series of
benzimidazole derivatives with high antiviral activities using LHF−535 and ST−193 as
lead structures (Figure 1). An in vitro infection model of LASV pseudovirus containing
firefly luciferase (Fluc) gene and enhanced green fluorescent protein (EGFP) gene was
established and used to evaluate the antiviral activities of the target compounds. In
addition, we analyzed the binding activities of the target compounds to GP2 protein
using the SPR technique and calculated their kinetic parameters. We determined five
compounds (7d−Z, 7h−Z, 13c, 13d, and 13f) that inhibit LASV entry, exhibit excellent
antiviral activities and low cytotoxicity, as well as better binding affinity to target proteins.
7h−Z displayed optimal antiviral activity (IC50 = 7.58 nM), and SI value is almost twice
that of LHF−535.
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presence of triethylamine. Using tin (II) chloride dihydrate as a reductant, compound 3 
was reduced to produce compound 4. Then, compound 4 was treated with formamidine 
acetate and subjected to a cycloaddition reaction to give compound 5. Subsequently, the 
cyano group was reduced by adding Raney Nickel in the presence of 75% formic acid to 
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as a strong base to obtain the Wittig reagents, which then reacted with aldehydes at room 
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2. Results
2.1. Chemistry
2.1.1. Synthesis of 5-vinyl-benzo[d]imidazole Derivatives 7a−7h(E/Z)

The series I of the target compounds was designed by introducing different sub-
stituents R1 into the benzimidazole scaffold. The preparation of 5-vinyl-benzo[d]imidazole
derivatives 7a−7h(E/Z) has been accomplished as described in Scheme 1 [41,42]. Initially,
compound 3 was synthesized by the substitution reaction using commercially available
4-fluoro-3-nitrobenzonitrile (1) and 4-isopropoxyaniline (2) as starting materials in the
presence of triethylamine. Using tin (II) chloride dihydrate as a reductant, compound 3
was reduced to produce compound 4. Then, compound 4 was treated with formamidine
acetate and subjected to a cycloaddition reaction to give compound 5. Subsequently, the
cyano group was reduced by adding Raney Nickel in the presence of 75% formic acid to
obtain compound 6. Finally, the aldehyde group of compound 6 reacted with suitable
Wittig reagents to give the title compounds 7a−7h (Z/E). In the reaction, n-BuLi was used
as a strong base to obtain the Wittig reagents, which then reacted with aldehydes at room
temperature to form the corresponding cis-trans isomers. Products with cis structures
usually have higher yields.

2.1.2. Synthesis of 5-amino-benzo[d]imidazole Derivatives 13a−13j

The reaction route of compounds 13a−13j was outlined in Scheme 2 [43]. Firstly,
1-fluoro-2, 4-dinitrobenzene (8) was reacted with 4-methoxyaniline (9) under the presence
of cesium carbonate in THF to obtain compound 10. Subsequently, compound 10 was
reduced to obtain compound 11, using sodium hydrosulfite as the catalytic reagent for
hydrogenation. Compound 11 underwent a cycloaddition reaction in the presence of
hydrochloric acid (4.0 M) and formic acid to obtain compound 12. Lastly, the amino
group of compound 12 underwent dehydration condensation and reduction reactions with
suitable aromatic aldehydes to give compounds 13a−13j.
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Scheme 1. Synthesis of 7a−7h Z/E (Z: cis structure, E: trans structure). Reagents and conditions:
(i) Et3N, CH3CN, 90 ◦C; (ii) SnCl2·2H2O, EtOAc, 50 ◦C; (iii) Formamidine acetate, EtOH, 88 ◦C;
(iv) Raney Nickel, formic acid, 100 ◦C; (v) Wittig reagents, n-BuLi, THF, −80 ◦C.
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Scheme 2. Synthesis of derivatives 13a−13j. Reagents and conditions: (i) Cesium carbonate,
THF, 48 ◦C; (ii) Sodium hydrosulfite, EtOH, rt; (iii) 4.0 M hydrochloric acid, formic acid, 100 ◦C;
(iv) aromatic aldehydes, DCM, Na(AcO)3BH, rt.

The synthesis methods are simple and feasible and can be used as a general method
for synthesizing a series of bioactive benzimidazole derivatives. The structures of these
synthesized compounds were further confirmed by NMR. The data were collected in the
Supplemental Materials Figures S1–S60.
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2.2. Biochemical Assays

The LASV is classified as a category A agent, and BSL-4 facilities are required to con-
duct experiments with live viruses, which restricts the use of live viruses for experiments.
In this study, we used HIV-1 pseudotyped viruses bearing the GPC of LASV to establish
a validated cell-based pseudovirus infection model (LASVpv) to evaluate the pharmaco-
logical activities of the compounds. In this model, VSV pseudotyped lentivirus (VSVpv)
constructed with the G protein of the vesicular stomatitis virus was used as a specific
control. Based on the pseudoviral model, the antiviral activities of the compounds were de-
termined in HEK-293 cells. LHF−535 was used as a positive drug to validate the reliability
of the model. The results showed that the positive drug did not exhibit an antiviral effect
against VSVpv infection in the experimental concentration range (Figure 2B). However,
the inhibition of LASVpv infection for the positive drug was concentration-dependent
(Figure 2A) with an IC50 value of 3.04 nM (Figure 3), which corresponded to the data in the
reported literature [39]. Therefore, the model can be used to evaluate the antiviral activities
of title compounds. All synthesized compounds exhibit low nanomolar IC50 activities
against LASVpv, as shown in Tables 1 and 2. The concentration–response curves of the
representative compounds and the positive drug to LASVpv are shown in Figure 3. The
IC50 values of 7d−Z, 7h−Z, 13c, 13d, and 13f were 13.56 nM, 7.58 nM, 15.46 nM, 13.81 nM,
and 11.87 nM, respectively, which were closer to the IC50 of positive drugs (3.04 nM), and,
notably, they had higher SI values.
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2.3. Initial Inhibitory and Structural Analysis of Benzimidazole Derivatives 
Initially, exploring the structure–activity relationships (SAR) of the R1 showed that 

R1 with electron-withdrawing groups might reduce the activities of compounds against 
LASVpv. For example, compounds substituted with 4-(difluoromethoxy)phenyl group 
(7e−Z), 4-(trifluoromethoxy)phenyl (7f−Z), and trifluoromethyl phenyl (7g−Z) showed a 9 
to 11 fold reduction in activities against LASVpv compared to hydroxyisopropyl phenyl. 
Several other lipophilic groups retained low nanomolar activities of the compounds 
(7a−Z, 7d−Z, and 7h−Z, IC50 ≤ 15 nM) except the spatially small substituent 4-
methylphenyl (7c−Z, IC50 = 36.89 nM). Among them, compound 7h−Z, with a more lipo-
philic naphthyl group, was more active than compounds with other substituents. Com-
pounds with cis configuration showed submicromolar IC50 values, while the compounds 
with trans configuration showed relatively low activities efficiency (IC50 > 50.0 nM). This 
result is consistent with previous studies [41]. 

For 5-amino-benzo[d]imidazole derivatives 13a−13j, the replacement of isopropyl (in 
ST−193) with electron-withdrawing groups of dichloromethyl (13i) and trifluoromethyl 
(13j) resulted in a decrease in activity. The substitution of R2 by the more lipophilic tert-
butylphenyl group (13−f) increased potency. Compound 13g, which has a less lipophilic 
4-methoxyphenyl group, reduced the activity against LASVpv, except for compound 13c 
(IC50 = 15.47 nM), which has a spatially larger substituent. However, compound 13d with 
large lipophilic 2,4,5-trimethoxyphenyl showed a relative increase in antiviral activity. 
The introduction of polar hydroxyphenyl (13a, 13b, 13e, 13h) led to a significant decrease 
in activities against LASVpv. Especially, the substitution of 3-hydroxyphenyl (13h, IC50 > 
100nM) led to the loss of activity. 

2.4. SPR-Based Binding Assay for Compounds to GP2 
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2.3. Initial Inhibitory and Structural Analysis of Benzimidazole Derivatives

Initially, exploring the structure–activity relationships (SAR) of the R1 showed that
R1 with electron-withdrawing groups might reduce the activities of compounds against
LASVpv. For example, compounds substituted with 4-(difluoromethoxy)phenyl group
(7e−Z), 4-(trifluoromethoxy)phenyl (7f−Z), and trifluoromethyl phenyl (7g−Z) showed a
9 to 11 fold reduction in activities against LASVpv compared to hydroxyisopropyl phenyl.
Several other lipophilic groups retained low nanomolar activities of the compounds (7a−Z,
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7d−Z, and 7h−Z, IC50 ≤ 15 nM) except the spatially small substituent 4-methylphenyl
(7c−Z, IC50 = 36.89 nM). Among them, compound 7h−Z, with a more lipophilic naphthyl
group, was more active than compounds with other substituents. Compounds with cis
configuration showed submicromolar IC50 values, while the compounds with trans config-
uration showed relatively low activities efficiency (IC50 > 50.0 nM). This result is consistent
with previous studies [41].

For 5-amino-benzo[d]imidazole derivatives 13a−13j, the replacement of isopropyl (in
ST−193) with electron-withdrawing groups of dichloromethyl (13i) and trifluoromethyl
(13j) resulted in a decrease in activity. The substitution of R2 by the more lipophilic tert-
butylphenyl group (13−f) increased potency. Compound 13g, which has a less lipophilic
4-methoxyphenyl group, reduced the activity against LASVpv, except for compound
13c (IC50 = 15.47 nM), which has a spatially larger substituent. However, compound
13d with large lipophilic 2,4,5-trimethoxyphenyl showed a relative increase in antiviral
activity. The introduction of polar hydroxyphenyl (13a, 13b, 13e, 13h) led to a significant
decrease in activities against LASVpv. Especially, the substitution of 3-hydroxyphenyl
(13h, IC50 > 100 nM) led to the loss of activity.

2.4. SPR-Based Binding Assay for Compounds to GP2

Surface plasmon resonance (SPR) is a powerful tool for monitoring interactions be-
tween small molecules and target proteins. This interaction was characterized by determin-
ing kinetic parameters and affinities [44]. The association rate constant (ka), the dissociation
rate constant (kd), and the equilibrium dissociation constant (KD) can be determined using
SPR-based binding assays. Commonly, active compounds bind to ligand proteins with KD
values ranging from 10−7 to 10−4 M [45]. Lower KD values indicate stronger binding.

To our knowledge, the evaluation binding affinity of different small compounds
towards LASV GP2 using SPR is reported for the first time in our study. Immobilization
of GP2 on the SPR sensor surface is achieved by amino coupling, resulting in a stable
surface with an immobilization level of approximately 15,783 response units (RU). The
binding parameters of title compounds were determined with the chip at concentrations
between 0.19 µM and 50.00 µM. Based on Biacore software’s 1:1 binding fitting model, the
binding kinetic was analyzed. The KD values of all the tested title compounds binding
to GP2 are shown in Table 3. For 7d−Z, 7h−Z, 13c, 13d, and 13f, they are nearly within
the same quantitative grade compared with LHF−535 (The positive drug), and for other
analytes, their KD values (>10–6 M) are higher. The five representative compounds and
the positive drug bound to GP2 with a clear association and dissociation phase (Figure 4).
These compounds exhibit distinctive fast-binding and slow-dissociation curves, resulting
in a significant and dose-dependent increase in RU. Representative compounds exhibited
strong binding activities to GP2 with dissociation constants KD < 8.25 × 10−7 M. These
results indicated that compounds 7d−Z, 7h−Z, 13c, 13d, and 13f had a long duration
of drug efficacy and excellent inhibitory potency, which is consistent with the results of
LASVpv inhibition assays shown in Tables 1 and 2.

Table 3. The SPR data for the binding of active compounds.

Compd. ka (M−1s−1) kd (s−1) KD (M)

7a−Z 3.28 × 105 0.04 1.46 × 10−7

7b−Z 3908 0.28 7.34 × 10−5

7c−Z 6.56 × 104 0.07 1.18 × 10−6

7d−Z 8.65 × 104 0.02 3.07 × 10−7

7e−Z 4.34 × 104 0.08 1.98 × 10−6

7f−Z 1.56 × 104 0.03 2.19 × 10−6

7g−Z 5.01 0.13 2.70 × 10−6

7h−Z 2.94 × 105 0.03 1.29 × 10−7

13a 1.32 × 104 0.03 2.78 × 10−6

13b 5.23 × 104 0.20 3.93 × 10−6
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Table 3. Cont.

Compd. ka (M−1s−1) kd (s−1) KD (M)

13c 3.95 × 104 0.03 8.25 × 10−7

13d 5.67 × 104 0.03 6.56 × 10−7

13e 5.03 × 104 0.22 4.39 × 10−6

13f 1.78 × 105 0.03 1.73 × 10−7

13g 6.59 × 104 0.30 4.69 × 10−6

13h 1.19 × 104 0.42 3.60 × 10−5

13i 1.94 × 104 0.49 2.54 × 10−5

13j 8532 0.04 5.49 × 10−6

ST−193 8.32 × 104 0.01 2.00 × 10−7

LHF−535 3.04 × 105 0.03 1.14 × 10−7
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3. Materials and Methods
3.1. Chemistry
3.1.1. Chemicals and Instruments

All solvents and chemicals were purchased from commercial suppliers and used
without further purification if not indicated. Melting points (Mp) were determined in
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capillary tubes on a Jiahang melting point JH70L apparatus. The progress of all reactions
was routinely monitored by TLC silica gel glass plates (UV wavelength: 254 and 365 nm).
The synthesized products were further purified by a Biotage@Selekt automated flash purifi-
cation system. Proton (1H) NMR spectra were obtained at 600 MHz in Bruker AVANCE
600 spectrometer using DMSO-d6 or CDCl3 as the solvent. Carbon (13C) NMR spectra were
recorded at 151 MHz using the same instrument and solvent conditions. Chemical shifts
are marked as parts per million (ppm). High-resolution mass spectroscopy (HRMS) data
were analyzed in Agilent 1290II-6460.

3.1.2. Synthesis of 5-vinyl-benzo[d]imidazole Derivatives

4-((4-isopropoxyphenyl)amino)-3-nitrobenzonitrile(3). 4-fluoro-3-nitrobenzonitrile 1 (20.00 g,
0.12 mol), 4-isopropoxyaniline 2 (22.76 g, 0.15 mol), and triethylamine (19.46 mL, 0.14 mol)
were combined in acetonitrile (100 mL). The mixture was stirred at 90 ◦C for 24 h. The
organic phase was dried with anhydrous sodium sulfate and concentrated under reduced
pressure. The crude product was purified by slurrying with tert-butylmethylether and
filtered to afford compound 3 (35.08 g, 98%) as a red solid. Mp 130–132 ◦C. 1H NMR
(600 MHz, Chloroform-d): δ 9.71 (s, 1H), 8.52 (d, J = 2.1 Hz, 1H), 7.47 (dd, J = 9.1, 2.2 Hz,
1H), 7.16 (d, J = 8.9 Hz, 2H), 7.02 (d, J = 9.1 Hz, 1H), 6.96 (d, J = 8.9 Hz, 2H), 4.61–4.52 (m,
1H), 1.37 (d, J = 6.1 Hz, 6H). 13C NMR (151 MHz, Chloroform-d): δ 157.38, 146.91, 137.26,
132.12, 131.71, 129.01, 127.56, 117.94, 117.16, 116.93, 99.47, 70.43, 22.07. HRMS (ESI) m/z:
(M + H)+ calcd for C16H15N3O3 298.1113; found 298.1187.

3-amino-4-((4-isopropoxyphenyl)amino)benzonitrile (4). A solution of compound 3 (24.00 g,
0.08 mol) in EtOAc (500 mL) was heated to 50 ◦C, and tin (II) chloride dihydrate (63.75 g
0.28 mol) was added in portions. The mixture was heated for 3 h at 60–62 ◦C. The reaction
mixture was cooled to room temperature, and the pH was adjusted to alkaline by adding
aqueous sodium bicarbonate, and this mixture was stirred for 1 h. The reaction mixture was
filtered through a pad of Celite. The filtrate was washed with water and EtOAc. The organic
phase was dried over anhydrous sodium sulfate overnight and concentrated; the residue
product was purified using an automated chromatography system to afford compound 4
as a brownish-red solid (20.50, 95%). Mp 146−147 ◦C. 1H NMR (600 MHz, Chloroform-d):
δ 7.05 (dd, J = 8.3, 2.0 Hz, 1H), 7.02 (s, 1H), 6.97 (d, J = 8.9 Hz, 2H), 6.93 (d, J = 8.3 Hz, 1H),
6.87 (d, J = 8.8 Hz, 2H), 5.53 (s, 1H), 4.55–4.45 (m, 1H), 4.07–3.28 (m, 2H), 1.34 (d, J = 6.1 Hz,
6H). 13C NMR (151 MHz, Chloroform-d): δ 154.50, 139.27, 135.21, 134.03, 125.78, 122.92,
120.11, 120.09, 117.32, 115.24, 102.85, 70.66, 22.24. HRMS (ESI) m/z: (M + H)+ calcd for
C16H17N3O 268.1372; found 268.1446.

1-(4-isopropoxyphenyl)-1H-benzo[d]imidazole-5-carbonitrile (5). A mixture of compound
4 (20.00 g, 0.07 mol), formamidine acetate (10.13 g, 0.10 mol), and ethanol (500 mL) was
stirred at 88 ◦C for 9 h. After the mixed solution was cooled to room temperature and
stirred overnight, the solvent was removed under reduced pressure; the residue was diluted
with water, stirred for 30 min, and filtered. Then, the residue was purified by slurrying
with methanol and filtered to afford compound 5 (20.13 g, 97%) as an orange solid. Mp
193−195 ◦C. 1H NMR (600 MHz, Chloroform-d): δ 8.22 (s, 1H), 8.21 (d, J = 1.7 Hz, 1H),
7.57 (dd, J = 8.4, 1.5 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.39–7.35 (d, J = 8.9 Hz, 2H), 7.07 (d,
J = 8.9 Hz, 2H), 4.67–4.60 (m, 1H), 1.40 (d, J = 6.1 Hz, 6H). 13C NMR (151 MHz, Chloroform-
d): δ 158.59, 145.02, 143.02, 137.01, 127.53, 127.13, 126.10, 125.65, 119.71, 117.16, 111.84,
106.37, 70.67, 22.07. HRMS (ESI) m/z: (M + H)+ calcd for C17H15N3O 278.1215; found
278.1292.

1-(4-isopropoxyphenyl)-1H-benzo[d]imidazole-5-carbaldehyde (6). The mixture of com-
pound 5 (8.40 g, 0.03 mol) and Raney Ni (8.40 g) in 75% formic acid (168 mL) was stirred
at 100 ◦C for 1–2 h. The reaction mixture was filtered through a pad of Celite. The filtrate
was washed with water and EtOAc. The organic phase was separated and dried over
anhydrous sodium sulfate overnight. It was then filtered and concentrated; the residue
was purified using an automated chromatography system to afford compound 6 (8.15 g,
96%) as a white solid. Mp 130–131 ◦C. 1H NMR (600 MHz, Chloroform-d): δ 10.09 (s, 1H),
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8.34 (d, J = 1.5 Hz, 1H), 8.17 (s, 1H), 7.89 (dd, J = 8.4, 1.5 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H),
7.38 (d, J = 8.9 Hz, 2H), 7.06 (d, J = 8.9 Hz, 2H), 4.67–4.58 (m, 1H), 1.39 (d, J = 6.1 Hz, 6H).
13C NMR (151 MHz, Chloroform-d): δ 191.99, 158.39, 144.88, 143.75, 138.58, 132.26, 128.01,
126.03, 124.89, 123.99, 117.11, 111.27, 70.64, 22.07. HRMS (ESI) m/z: (M + H)+ calcd for
C17H16N2O2 281.1212; found 281.1287.

3.1.3. General Procedure for Synthesis of Compounds 7a−7h(E/Z)

The corresponding Wittig reagents (1.00 eq.) were added to a stirring solution of
tetrahydrofuran (5.00 mL) at −80 ◦C. Sodium butyllithium (2.50 M in hexanes, 1.05 eq.)
was added and stirred for 1 h. Subsequently, compound 6 (1.00 eq.) was added, and the
mixed solution was warmed to room temperature slowly. After 12 h, the reaction mixture
was concentrated under reduced pressure and purified by flash column chromatography
to obtain the products 7a−7h(E/Z).

(Z)-5-(4-(tert-butyl)styryl)-1-(4-isopropoxyphenyl)-1H-benzo[d]imidazole (7a−Z) [41]. Com-
pound 7a−Z was synthesized according to the general procedure, replacing the correspond-
ing Wittig reagents with (4-(tert-butyl)benzyl)triphenylphosphonium. Compound 7a−Z
was obtained as a light yellow solid in 45% yield. Mp 172–174 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.06 (s, 1H), 7.84 (s, 1H), 7.42 (d, J = 8.9 Hz, 2H), 7.35 (d, J = 8.4 Hz, 1H),
7.30 (d, J = 8.4 Hz, 1H), 7.28–7.23 (m, 4H), 7.07 (d, J = 8.9 Hz, 2H), 6.74 (d, J = 12.3 Hz,
1H), 6.60 (d, J = 12.2 Hz, 1H), 4.64 (p, J = 6.1 Hz, 1H), 1.43 (d, J = 6.1 Hz, 6H), 1.32 (s, 9H).
13C NMR (151 MHz, Chloroform-d): δ 157.85, 150.64, 144.46, 143.28, 134.91, 133.96, 132.84,
128.88, 128.50, 127.62, 126.25, 125.73, 122.38, 118.52, 116.99, 110.63, 70.55, 34.74, 31.44, 22.12.
HRMS (ESI) m/z: (M + H)+ calcd for C28H30N2O 411.2358; found 411.2422.

(E)-5-(4-(tert-butyl)styryl)-1-(4-isopropoxyphenyl)-1H-benzo[d]imidazole (7a−E) [41]. Com-
pound 7a−E was synthesized according to the general procedure, replacing the corre-
sponding Wittig reagents with (4-(tert-butyl)benzyl)triphenylphosphonium. Compound
7a−E was obtained as a white solid in a yield of 23%. Mp 161–162 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.06 (s, 1H), 7.97 (s, 1H), 7.47 (ddd, J = 59.1, 21.1, 8.9 Hz, 8H), 7.25 (d,
J = 16.1 Hz, 1H), 7.14 (d, J = 16.2 Hz, 1H), 7.06 (d, J = 8.5 Hz, 2H), 4.63 (p, J = 6.5 Hz, 1H), 1.41
(d, J = 6.3 Hz, 6H), 1.35 (s, 9H). 13C NMR (151 MHz, Chloroform-d): δ 157.79, 150.14, 144.06,
143.01, 134.46, 133.43, 132.46, 129.92, 129.50, 128.94, 128.72, 125.70, 125.26, 125.04, 120.69,
116.96, 110.14, 70.54, 34.67, 31.42, 22.12. HRMS (ESI) m/z: (M + H)+ calcd for C28H30N2O
411.2358; found 411.2420.

(Z)-4-(2-(1-(4-isopropoxyphenyl)-1H-benzo[d]imidazol-5-yl) vinyl) benzonitrile (7b−Z) [41].
Compound 7b−Z was synthesized according to the general procedure, replacing the
corresponding Wittig reagents with (4-cyanobenzyl) triphenylphosphonium. Compound
7b−Z was obtained as a yellow solid in a yield of 36%. Mp 165–166 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.03 (s, 1H), 7.71 (s, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H),
7.34 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.4 Hz, 1H), 7.12 (dd, J = 8.4, 1.7 Hz, 1H), 7.04 (d,
J = 8.9 Hz, 2H), 6.91 (d, J = 12.2 Hz, 1H), 6.58 (d, J = 12.1 Hz, 1H), 4.65–4.57 (m, 1H), 1.39
(d, J = 6.1 Hz, 6H). 13C NMR (151 MHz, Chloroform-d): δ 157.90, 144.12, 143.37, 142.47,
133.91, 133.76, 132.16, 130.97, 129.69, 128.62, 127.75, 125.69, 124.76, 120.92, 119.11, 116.97,
110.50, 110.40, 70.53, 22.07. HRMS (ESI) m/z: (M + H)+ calcd for C25H21N3O 380.1685;
found 380.1747.

(E)-4-(2-(1-(4-isopropoxyphenyl)-1H-benzo[d]imidazol-5-yl) vinyl) benzonitrile (7b−E) [41].
Compound 7b−E was synthesized according to the general procedure, replacing the
corresponding Wittig reagents with (4-cyanobenzyl) triphenylphosphonium. Compound
7b−E was obtained as a yellow solid in a yield of 20%. Mp 161–162 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.07 (s, 1H), 7.99 (s, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H),
7.53 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.41–7.34 (m, 3H), 7.11 (d, J = 16.2 Hz, 1H),
7.05 (d, J = 8.9 Hz, 2H), 4.68–4.59 (m, 1H), 1.40 (d, J = 6.1 Hz, 6H). 13C NMR (151 MHz,
Chloroform-d): δ 157.97, 144.40, 143.66, 142.21, 134.70, 133.03, 132.59, 131.49, 128.59, 126.83,
125.74, 125.72, 122.67, 119.33, 119.26, 117.00, 110.91, 110.31, 70.55, 22.09. HRMS (ESI) m/z:
(M + H)+ calcd for C25H21N3O 380.1685; found 380.1747.
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(Z)-1-(4-isopropoxyphenyl)-5-(4-methylstyryl)-1H-benzo[d]imidazole (7c−Z). Compound
7c−Z was synthesized according to the general procedure, replacing the corresponding Wit-
tig reagents with (4-methylbenzyl)triphenylphosphonium. Compound 7c−Z was obtained
as a yellow solid in a yield of 25%. Mp 168–169 ◦C. 1H NMR (600 MHz, Chloroform-
d): δ 8.01 (s, 1H), 7.77 (s, 1H), 7.37 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 1H), 7.23 (d,
J = 8.5 Hz, 1H), 7.18 (d, J = 7.9 Hz, 2H), 7.07–6.94 (m, 4H), 6.71 (d, J = 12.2 Hz, 1H), 6.58 (d,
J = 12.2 Hz, 1H), 4.66–4.57 (m, 1H), 2.30 (s, 3H), 1.39 (d, J = 6.2 Hz, 6H). 13C NMR (151 MHz,
Chloroform-d): δ 157.75, 144.06, 142.97, 136.83, 134.54, 133.39, 132.30, 129.95, 129.59, 129.06,
128.90, 125.64, 125.04, 120.77, 116.93, 110.06, 70.51, 22.09, 21.34. HRMS (ESI) m/z: (M + H)+

calcd for C25H24N2O 369.1889; found 369.1955.
(E)-1-(4-isopropoxyphenyl)-5-(4-methylstyryl)-1H-benzo[d]imidazole (7c−E). Compound

7c−E was synthesized according to the general procedure, replacing the corresponding Wit-
tig reagents with (4-methylbenzyl)triphenylphosphonium. Compound 7c−E was obtained
as a yellow solid in a yield of 15%. Mp 168–170 ◦C. 1H NMR (600 MHz, Chloroform-d): δ
8.04 (s, 1H), 7.96 (s, 1H), 7.52 (d, J = 8.7 Hz, 1H), 7.49–7.36 (m, 5H), 7.23 (d, J = 16.3 Hz, 1H),
7.18 (d, J = 7.9 Hz, 2H), 7.12 (d, J = 16.3 Hz, 1H), 7.05 (d, J = 8.8 Hz, 2H), 4.67–4.57 (m, 1H),
2.37 (s, 3H), 1.40 (d, J = 6.1 Hz, 6H). 13C NMR (151 MHz, Chloroform-d): δ 157.84, 144.47,
143.26, 137.35, 134.88, 133.95, 132.80, 129.51, 128.87, 128.25, 127.72, 126.43, 125.70, 122.35,
118.50, 116.98, 110.63, 70.54, 22.11, 21.38. HRMS (ESI) m/z: (M + H)+ calcd for C25H24N2O
369.1889; found 369.1953.

(Z)-5-(4-ethoxystyryl)-1-(4-isopropoxyphenyl)-1H-benzo[d]imidazole (7d−Z). Compound
7d−Z was synthesized according to the general procedure, replacing the corresponding
Wittig reagents with 4-ethoxybenzyl)triphenylphosphonium. Compound 7d−Z was ob-
tained as a yellow solid in a yield of 50%. Mp 161–162 ◦C. 1H NMR (600 MHz, Chloroform-
d): δ 8.05 (s, 1H), 7.82 (s, 1H), 7.41 (d, J = 8.9 Hz, 2H), 7.33 (d, J = 8.4 Hz, 1H), 7.27 (d,
J = 8.5 Hz, 1H), 7.24 (d, J = 6.9 Hz, 2H), 7.06 (d, J = 6.9 Hz, 2H), 6.77 (d, J = 6.7 Hz, 2H), 6.69
(d, J = 12.1 Hz, 1H), 6.58 (d, J = 12.2 Hz, 1H), 4.64 (dtq, J = 9.2, 5.8, 3.2, 2.6 Hz, 1H), 4.02
(dt, J = 7.3, 2.4 Hz, 2H), 1.42 (dt, J = 5.0, 2.5 Hz, 9H). 13C NMR (151 MHz, Chloroform-d): δ
158.08, 157.72, 144.06, 142.92, 133.30, 132.45, 130.21, 129.75, 129.24, 129.04, 128.88, 125.60,
124.99, 120.66, 116.91, 114.25, 110.07, 70.48, 63.38, 22.07, 14.94. HRMS (ESI) m/z: (M + H)+

calcd for C26H26N2O2, 399.1994; found 399.2057.
(E)-5-(4-ethoxystyryl)-1-(4-isopropoxyphenyl)-1H-benzo[d]imidazole(7d−E). Compound

7d−E was synthesized according to the general procedure, replacing the corresponding Wit-
tig reagents with 4-ethoxybenzyl)triphenylphosphonium. Compound 7d−E was obtained
as a yellow solid in a yield of 30%. Mp 152–153 ◦C. 1H NMR (600 MHz, Chloroform-d):
δ 8.04 (s, 1H), 7.94 (s, 1H), 7.59–7.36 (m, 6H), 7.18–7.00 (m, 4H), 6.89 (d, J = 6.2 Hz, 2H),
4.67–4.56 (m, 1H), 4.10–4.01 (m, 2H), 1.51–1.35 (m, 9H). 13C NMR (151 MHz, Chloroform-d):
δ 158.62, 157.81, 144.44, 143.20, 133.79, 132.98, 130.33, 128.88, 127.69, 127.38, 127.05, 125.68,
122.26, 118.24, 116.97, 114.79, 110.60, 70.53, 63.60, 22.10, 14.98. HRMS (ESI) m/z: (M + H)+

calcd for C26H26N2O2 399.1994; found 399.2060.
(Z)-5-(4-(difluoromethoxy)styryl)-1-(4-isopropoxyphenyl)-1H-benzo[d]imidazole (7e−Z). Com-

pound 7e−Z was synthesized according to the general procedure, replacing the correspond-
ing Wittig reagents with (4-(difluoromethoxy)benzyl)triphenylphosphonium. Compound
7e−Z was obtained as a yellow solid in a yield of 30%. Mp 173–174 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.02 (s, 1H), 7.74 (d, J = 1.6 Hz, 1H), 7.37 (d, J = 8.9 Hz, 2H), 7.31 (d,
J = 8.4 Hz, 1H), 7.26 (d, J = 8.7 Hz, 2H), 7.18 (dd, J = 8.4, 1.7 Hz, 1H), 7.03 (d, J = 8.9 Hz, 2H),
6.94 (d, J = 8.6 Hz, 2H), 6.76 (d, J = 12.1 Hz, 1H), 6.56 (d, J = 12.1 Hz, 1H), 6.48 (t, J = 74.1 Hz,
1H), 4.65–4.56 (m, 1H), 1.39 (d, J = 6.1 Hz, 6H). 13C NMR (151 MHz, Chloroform-d): δ 157.83,
150.20 (t, J = 2.7 Hz), 144.09, 143.14, 134.75, 133.57, 131.75, 131.06, 130.50, 128.79, 128.31,
125.67, 124.90, 120.77, 119.20, 116.96, 116.08 (t, J = 259.0 Hz), 110.29, 70.53, 22.08. HRMS
(ESI) m/z: (M + H)+ calcd for C25H22F2N2O2 421.1649; found 421.1712.

(E)-5-(4-(difluoromethoxy)styryl)-1-(4-isopropoxyphenyl)-1H-benzo[d]imidazole (7e−E). Com-
pound 7e−E was synthesized according to the general procedure, replacing the correspond-
ing Wittig reagents with (4-(difluoromethoxy)benzyl)triphenylphosphonium. Compound
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7e−E was obtained as a yellow solid in a yield of 26%. Mp 173–174 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.05 (s, 1H), 7.96 (s, 1H), 7.56–7.48 (m, 3H), 7.43 (d, J = 8.4 Hz, 1H), 7.38
(d, J = 8.8 Hz, 2H), 7.21 (d, J = 16.3 Hz, 1H), 7.14–7.07 (m, 3H), 7.05 (d, J = 8.8 Hz, 2H),
6.52 (t, J = 74.0 Hz, 1H), 4.67–4.58 (m, 1H), 1.40 (d, J = 6.1 Hz, 6H). 13C NMR (151 MHz,
Chloroform-d): δ 157.87, 150.46 (t, J = 2.7 Hz), 144.48, 143.40, 135.12, 134.17, 132.29, 129.59,
128.78, 127.76, 126.37, 125.70, 122.39, 119.84, 118.70, 116.98, 116.08 (t, J = 260.0 Hz), 110.72,
70.54, 22.10. HRMS (ESI) m/z: (M + H)+ calcd for C25H22F2N2O2 421.1649; found 421.1713.

(Z)-1-(4-isopropoxyphenyl)-5-(4-(trifluoromethoxy)styryl)-1H-benzo[d]imidazole (7f−Z). Com-
pound 7f−Z was synthesized according to the general procedure, replacing the correspond-
ing Wittig reagents with triphenyl(4-(trifluoromethoxy)benzyl)phosphonium. Compound
7f−Z was obtained as a yellow solid in a yield of 30%. Mp 161–162 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.03 (s, 1H), 7.75 (d, J = 1.7 Hz, 1H), 7.37 (d, J = 8.9 Hz, 2H), 7.31 (d,
J = 8.4 Hz, 1H), 7.28 (d, J = 8.5 Hz, 2H), 7.18 (dd, J = 8.5, 1.7 Hz, 1H), 7.07–7.00 (m, 4H), 6.80
(d, J = 12.2 Hz, 1H), 6.56 (d, J = 12.1 Hz, 1H), 4.65–4.56 (m, 1H), 1.39 (d, J = 6.1 Hz, 6H). 13C
NMR (151 MHz, Chloroform-d): δ 157.87, 148.10 (q, J = 1.5 Hz), 144.12, 143.20, 136.18, 133.66,
131.62, 131.57, 130.42, 128.79, 128.08, 125.70, 124.84, 120.85, 120.76, 120.57 (q, J = 257.2 Hz),
116.98, 110.35, 70.55, 22.10. HRMS (ESI) m/z: (M + H)+ calcd for C25H21F3N2O2 439.1555;
found 439.1619.

(E)-1-(4-isopropoxyphenyl)-5-(4-(trifluoromethoxy)styryl)-1H-benzo[d]imidazole (7f−E). Com-
pound 7f−E was synthesized according to the general procedure, replacing the correspond-
ing Wittig reagents with triphenyl(4-(trifluoromethoxy)benzyl)phosphonium. Compound
7f−E was obtained as a yellow solid in a yield of 10%. Mp 160–162 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.05 (s, 1H), 7.97 (d, J = 1.7 Hz, 1H), 7.55 (d, J = 8.8 Hz, 2H), 7.52 (dd,
J = 8.5, 1.7 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 8.9 Hz, 2H), 7.25–7.19 (m, 3H),
7.11 (d, J = 16.2 Hz, 1H), 7.05 (d, J = 8.8 Hz, 2H), 4.66–4.57 (m, 1H), 1.40 (d, J = 6.1 Hz,
6H). 13C NMR (151 MHz, Chloroform-d): δ 157.93, 148.41, 144.44, 143.45, 136.49, 134.28,
132.17, 130.30, 128.76, 127.65, 126.17, 125.74, 122.47, 121.33, 120.63 (q, J = 257.2 Hz), 118.81,
117.01, 110.77, 70.56, 22.10. HRMS (ESI) m/z: (M + H)+ calcd for C25H21F3N2O2 439.1555;
found 439.1619.

(Z)-1-(4-isopropoxyphenyl)-5-(4-(trifluoromethyl)styryl)-1H-benzo[d]imidazole (7g−Z). Com-
pound 7g−Z was synthesized according to the general procedure, replacing the correspond-
ing Wittig reagents with triphenyl(4-(trifluoromethyl)benzyl)phosphonium. Compound
7g−Z was obtained as a yellow solid in a yield of 35%. Mp 165–166 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.03 (s, 1H), 7.74 (s, 1H), 7.45 (d, J = 8.3 Hz, 2H), 7.39–7.33 (m, 4H), 7.30 (dd,
J = 8.5 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.06–7.00 (m, 2H), 6.86 (d, J = 12.2 Hz, 1H), 6.60 (d,
J = 12.2 Hz, 1H), 4.66–4.55 (m, 1H), 1.41–1.35 (m, 6H). 13C NMR (151 MHz, Chloroform-d):
δ 157.87, 144.10, 143.25, 141.25, 133.76, 132.72, 131.33, 129.27, 128.90 (q, J = 32.0 Hz), 128.72,
128.09, 125.68, 125.29 (q, J = 3.9 Hz), 124.85, 124.29 (q, J = 272.3 Hz), 120.89, 116.97, 110.39,
70.53, 22.07. HRMS (ESI) m/z: (M + H)+ calcd for C25H21F3N2O 423.1606; found 423.1667.

(E)-1-(4-isopropoxyphenyl)-5-(4-(trifluoromethyl)styryl)-1H-benzo[d]imidazole (7g−E). Com-
pound 7g−E was synthesized according to the general procedure, replacing the correspond-
ing Wittig reagents with tri-phenyl(4-(trifluoromethyl)benzyl)phosphonium. Compound
7g−E was obtained as a yellow solid in a yield of 20%. Mp 166–167 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.06 (s, 1H), 7.99 (s, 1H), 7.69–7.57 (m, 4H), 7.53 (d, J = 8.5 Hz, 1H), 7.45
(d, J = 5.2 Hz, 1H), 7.39 (d, J = 5.2 Hz, 2H), 7.35 (d, J = 16.1 Hz, 1H), 7.15 (d, J = 16.2 Hz,
1H), 7.06 (d, J = 5.4 Hz, 2H), 4.66–4.57 (m, 1H), 1.44–1.35 (m, 6H). 13C NMR (151 MHz,
Chloroform-d): δ 157.97, 144.44, 143.55, 141.18, 134.50, 131.89, 131.81, 129.08 (q, J = 32.0 Hz),
128.71, 126.57, 126.18, 125.76, 125.73, 124.41 (q, J = 271.5 Hz), 122.61, 119.10, 117.02, 110.84,
70.58, 22.11. HRMS (ESI) m/z: (M + H)+ calcd for C25H21F3N2O 423.1606; found 423.1668.

(Z)-1-(4-isopropoxyphenyl)-5-(2-(naphthalene-2-yl)vinyl)-1H-benzo[d]imidazole (7h−Z). Com-
pound 7h−Z was synthesized according to the general procedure, replacing the correspond-
ing Wittig reagents with (naphthalen-2-ylmethyl)triphenylphosphonium. Compound
7h−Z was obtained as a brown solid in a yield of 26%. Mp 170–171 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.02 (s, 1H), 7.80 (s, 1H), 7.77 (s, 1H), 7.74–7.69 (m, 1H), 7.73–7.69 (m, 1H),
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7.62 (d, J = 8.5 Hz, 1H), 7.43–7.40 (m, 2H), 7.39–7.35 (m, 3H), 7.28–7.22 (m, 2H), 7.02 (d,
J = 8.9 Hz, 2H), 6.84 (d, J = 12.1 Hz, 1H), 6.78 (d, J = 12.2 Hz, 1H), 4.65–4.56 (m, 1H), 1.38 (d,
J = 6.1 Hz, 6H). 13C NMR (151 MHz, Chloroform-d): δ 157.79, 143.99, 143.07, 135.23, 133.65,
133.53, 132.67, 132.16, 131.02, 129.56, 128.83, 128.11, 128.02, 127.73, 127.65, 127.10, 126.06,
125.91, 125.65, 125.12, 120.99, 116.95, 110.13, 70.52, 22.09. HRMS (ESI) m/z: (M + H)+ calcd
for C28H24N2O 405.1889; found 405.1955.

(E)-1-(4-isopropoxyphenyl)-5-(2-(naphthalen-2-yl)vinyl)-1H-benzo[d]imidazole (7h−E). Com-
pound 7h−Z was synthesized according to the general procedure, replacing the correspond-
ing Wittig reagents with (naphthalen-2-ylmethyl)triphenylphosphonium. Compound
7h−E was obtained as a yellow solid in a yield of 15%. Mp 172–173 ◦C. 1H NMR (600 MHz,
Chloroform-d): δ 8.06 (s, 1H), 8.03 (s, 1H), 7.88 (s, 1H), 7.85–7.80 (m, 3H), 7.79 (d, J = 8.5 Hz,
1H), 7.58 (d, J = 8.4 Hz, 1H), 7.48–7.38 (m, 6H), 7.31 (d, J = 16.2 Hz, 1H), 7.06 (d, J = 8.8 Hz,
2H), 4.68–4.59 (m, 1H), 1.41 (d, J = 6.1 Hz, 6H). 13C NMR (151 MHz, Chloroform-d): δ

157.86, 144.46, 143.34, 135.17, 134.12, 133.88, 133.05, 132.63, 129.60, 128.81, 128.40, 128.08,
127.84, 127.81, 126.49, 126.41, 125.88, 125.72, 123.65, 122.48, 118.69, 116.98, 110.73, 70.54,
22.11. HRMS (ESI) m/z: (M + H)+ calcd for C28H24N2O 405.1889; found 405.1951.

3.1.4. General Procedure for Synthesis of Compounds 13a−13j

To a mixture of compound 12 (1.00 eq.) and relatively aromatic aldehyde (R2-CHO,
1.00 eq.) in 1, 2-dichloroethane (3 mL) was added the Na(AcO)3BH (1.50 eq.) and stirred
at room temperature for 6 h. After the mixture was stirred for 6 h, TLC monitors showed
the complete consumption of compound 12. Following cooling, the mixture was divided
between EtOAc and H2O, and the layers were separated, with the aqueous layer extracted
with EtOAc and the organic layer washed with H2O. The organic phase was dried with
anhydrous sodium sulfate and concentrated under reduced pressure. The residue was
purified by flash column chromatography to obtain the products 13a−13j.

2-methoxy-5-(((1-(4-methoxyphenyl)-1H-benzo[d]imidazol-5-yl)amino)methyl)phenol (13a).
Compound 13a was synthesized according to the general procedure, replacing the corre-
sponding aromatic aldehyde with isovanillin. Compound 13a was obtained as a white
solid in a yield of 87%. Mp 182.1–183.3 ◦C. 1H NMR (600 MHz, Chloroform-d): δ 7.892 (s,
1H), 7.372 (t, 1H, J1 = 4.8, J2 = 1.8), 7.357 (t, 1H, J1 = 2.4, J2 = 3.0), 7.228 (d, 1H, J = 10.4)
7.034 (s, 2H), 7.019 (t, 1H, J1 = 2.4, J2 = 3.6), 6.978 (d, 1H, J = 1.8), 6.876 (m, 1H), 6.805 (dd,
1H, J = 10.4), 6.689 (dd, 1H) 5.666 (s, 1H), 4.274 (s, 2H), 3.852 (m, 6H). 13C NMR (151 MHz,
DMSO-d6): δ 158.72, 146.89, 146.82, 145.65, 145.44, 142.60, 133.41, 129.78, 126.11, 125.15,
118.27, 115.52, 115.02, 112.92, 112.61, 110.91, 100.66, 56.13, 55.95, 47.28, 40.35, 40.21, 40.07,
39.94, 39.80, 39.66, 39.52. HRMS (ESI) m/z: (M + H)+ calcd for C22H21N3O3 376.1656;
found 376.1654.

2-methoxy-4-(((1-(4-methoxyphenyl)-1H-benzo[d]imidazol-5-yl)amino)methyl)phenol (13b).
Compound 13b was synthesized according to the general procedure, replacing the cor-
responding aromatic aldehyde with vanillin. Compound 13b was obtained as a yellow
solid in a yield of 91%. Mp 157.6–159.0 ◦C. 1H NMR (600 MHz, Chloroform-d): δ7.908 (s,
1H), 7.374 (t, 1H, J1 = J2 = 2.4), 7.367 (t, 1H, J1 = 2.4, J2 = 3.6), 7.227 (d, 1H, J = 7.8), 7.066
(d, 1H), 7. 039 (t, 1H, J = 2.4), 7. 027 (t, 1H, J = 1.8), 6.932 (d, 1H, J = 1.8), 6.891 (dd, 1H,
J = 8.4), 6.874 (d, 1H, J = 7.8), 6.703 (dd, 1H, J = 6.6), 5.598 (s, 1H), 4.283 (s, 2H), 3.868 (d,
6H, J = 3.0). 13C NMR (151 MHz, DMSO-d6): δ 158.71, 147.98, 145.74, 145.66, 145.44, 142.61,
131.50, 129.79, 126.16, 125.15, 120.12, 115.63, 115.53, 112.99, 112.05, 110.88, 100.78, 56.01,
55.96, 47.74. HRMS (ESI) m/z: (M + H)+ calcd for C22H21N3O3 376.1656; found 376.1652.

N-(2, 4-dimethoxybenzyl)-1-(4-methoxyphenyl)-1H-benzo[d]imidazol-5-amine (13c). Com-
pound 13c was synthesized according to the general procedure, replacing the corresponding
aromatic aldehyde with 2, 4-dimethoxybenzaldehyde. Compound 13c was obtained as a
yellow solid in a yield of 88%. Mp 143.1–145.2 ◦C. 1H NMR (600 MHz, Chloroform-d): δ
8.517 (s, 1H), 7.385–7.412 (m, 3H), 7.112 (s, 1H), 7.097 (s, 1H), 7.063 (s, 1H), 6.924 (d, 1H,
J = 7.8), 6.845 (s, 1H), 6.829 (s, 1H), 6.815 (s, 1H), 6.776 (d, 1H, J = 3.0), 4.377 (s, 2H), 3.908 (s,
3H), 3.897 (s, 3H), 3.733 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 160.58, 141.36, 139.40,
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131.50, 131.06, 129.73, 129.53, 127.99, 126.88, 126.87, 115.86, 115.68, 113.83, 56.48, 56.19, 45.82.
HRMS (ESI) m/z: (M + H)+ calcd for C23H23N3O3 390.1812; found 390.1810.

1-(4-methoxyphenyl)-N-(2, 4,5-trimethoxybenzyl)-1H-benzo[d]imidazol-5-amine (13d). Com-
pound 13d was synthesized according to the general procedure, replacing the correspond-
ing aromatic aldehyde with 2, 4,5-trimethoxybenzaldehyde. Compound 13d was obtained
as an orange solid in a yield of 88%. Mp 167.8–169.8 ◦C. 1H NMR (600 MHz, Chloroform-d):
δ 7.894 (s, 1H), 7.374 (t, 1H, J1 = 3.6, J2 = 1.8), 7.360 (t, 1H, J1 = 1.8, J2 = 3.6), 7.226 (d, 1H,
J = 8.4), 7.094 (d, 1H, J = 1.8), 7. 033 (t, 1H, J1 = 3.6, J2 = 1.8), 7. 019 (t, 1H, J1 = 1.8, J2 = 3.6),
6.920 (s, 1H), 6.716 (dd, 1H, J = 6.6), 6.536 (s, 1H), 4.304 (s, 2H), 3.870 (s, 3H), 3.860 (s, 3H),
3.839 (s, 3H), 3.779 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 203.62, 158.72, 156.07, 151.76,
148.86, 145.73, 145.46, 142.98, 142.64, 125.15, 119.33, 115.53, 114.17, 112.89, 110.93, 100.64,
98.73, 56.92, 56.68, 56.34, 55.96, 42.08. HRMS (ESI) m/z: (M + H)+ calcd for C24H25N3O4
420.1918; found 420.1920.

2, 6-dimethoxy-4-(((1-(4-methoxyphenyl)-1H-benzo[d]imidazol-5-yl)amino)methyl)phenol
(13e). Compound 13e was synthesized according to the general procedure, replacing the
corresponding aromatic aldehyde with Syringaldehyde. Compound 13e was obtained as
an orange solid in a yield of 95%. Mp 115.7–118.1 ◦C. 1H NMR (600 MHz, Chloroform-d): δ
7.917 (d, 1H, J = 3.6), 7.377 (t, 1H, J1 = J2 = 1.8), 7.366 (t, 1H, J1 = 1.8, J2 = 3.6), 7.244 (d, 1H,
J = 6.0), 7.068 (d, 1H, J = 2.4), 7. 037 (t, 1H, J1 = 1.8, J2 = 1.2), 7. 025 (t, 1H, J1 = 2.4, J2 = 3.0),
6.708 (dd, 1H, J = 6.0), 6.651 (s, 2H), 6.482 (s, 1H),5.407 (d, 1H), 4.528 (s, 1H), 4.284 (s, 2H),
3.864 (s, 9H). 13C NMR (151 MHz, DMSO-d6): δ 158.72, 148.50, 148.41, 134.63, 125.79, 125.15,
115.62, 115.53, 113.03, 110.90, 105.28, 105.04, 100.85, 56.41, 55.96, 48.21. HRMS (ESI) m/z:
(M + H)+ calcd for C23H23N3O4 406.1761; found 406.1762.

N-(4-(tert-butyl)benzyl)-1-(4-methoxyphenyl)-1H-benzo[d]imidazol-5-amine (13f). Com-
pound 13f was synthesized according to the general procedure, replacing the correspond-
ing aromatic aldehyde with p-t-butylbenzaldehyde. Compound 13f was obtained as a
yellow solid in a yield of 95%. Mp 175.8–176.9 ◦C. 1H NMR (600 MHz, Chloroform-d): δ
7.897 (s, 1H), 7.326–7.3776 (m, 6H), 7.240 (d, 1H, J = 9.0), 7.054 (d, 1H, J = 2.4), 7. 036 (t, 1H,
J = 2.4), 7. 025 (t, 1H, J = 2.4), 6.706 (dd, 1H, J = 6.6), 4.343 (s, 2H), 3.862 (s, 3H), 1.303 (s,
9H). 13C NMR (151 MHz, DMSO-d6): δ 158.73, 149.33, 145.61, 145.46, 142.63, 137.81, 129.78,
127.49, 126.17, 125.46, 125.16, 115.53, 112.94, 110.97, 100.62, 55.96, 47.34, 34.60, 31.67. HRMS
(ESI) m/z: (M + H)+ calcd for C25H27N3O 386.2227; found 386.2330.

N-(4-methoxybenzyl)-1-(4-methoxyphenyl)-1H-benzo[d]imidazol-5-amine (13g). Compound
13g was synthesized according to the general procedure, replacing the corresponding
aromatic aldehyde with 4-methoxybenzaldehyde. Compound 13g was obtained as a yellow
solid in a yield of 90%. Mp 128.0–129.3 ◦C. 1H NMR (600 MHz, Chloroform-d): δ 7.897
(s, 1H), 7.374 (t, 1H, J1 = 3.0, J2 = 2.4), 7.359 (t, 1H, J1 = 2.4, J2 = 3.6), 7.325 (d, 1H, J = 3.0),
7.311 (d, 1H, J = 3.0), 7.235 (d, 1H, J = 8.4), 7. 054 (d, 1H, J = 2.4), 7.035 (t, 1H, J1 = 3.0,
J2 = 2.4), 7.020 (t, 1H, J1 = 2.4, J2 = 3.6), 6.871 (t, 1H, J1 = 3.0, J2 = 1.8), 6.857 (t, 1H, J1 = 1.8,
J2 = 3.0), 6.695 (dd, 1H, J = 6.6), 4.303 (s, 2H), 3.861 (s, 3H), 3.785 (s, 3H). 13C NMR (151
MHz, DMSO-d6): δ 158.73, 158.50, 145.57, 145.46, 142.62, 132.63, 129.78, 128.88, 126.18,
125.15, 115.53, 114.14, 112.98, 110.93, 100.76, 55.96, 55.47, 47.13. HRMS (ESI) m/z: (M + H)+

calcd for C22H21N3O2 360.1707; found 360.1705.
3-(((1-(4-methoxyphenyl)-1H-benzo[d]imidazol-5-yl)amino)methyl)phenol (13h). Compound

13h was synthesized according to the general procedure, replacing the corresponding aro-
matic aldehyde with 3-hydroxybenzaldehyde. Compound 13h was obtained as a yellow
solid in a yield of 91%. Mp 182.9–184.3 ◦C. 1H NMR (600 MHz, Chloroform-d): 1H NMR
(600 MHz, Chloroform-d): δ 7.926 (s, 1H), 7.365 (t, 1H, J1 = 3.6, J2 = 2.4), 7.350 (t, 1H, J1 = 2.4,
J2 = 3.6), 7.226 (d, 1H, J = 8.4), 7.185 (t, 1H, J1 = J2 =7.8), 7. 035 (t, 1H, J1 = J2 = 2.4), 7. 020
(t, 1H, J1 = 3.6, J2 = 2.4), 6.928 (d, 1H, J = 7.2), 6.781 (dd, 1H, J = 6.0), 4.295 (s, 2H), 3.826
(s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 158.73, 157.88, 145.60, 145.44, 142.64, 142.51,
129.77, 129.67, 126.16, 125.17, 118.23, 115.53, 114.34, 113.93, 112.86, 110.96, 100.62, 55.96,
47.62. HRMS (ESI) m/z: (M + H)+ calcd for C21H19N3O2 346.1550; found 346.1547.
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N-(3, 4-dichlorobenzyl)-1-(4-methoxyphenyl)-1H-benzo[d]imidazol-5-amine (13i). Com-
pound 13i was synthesized according to the general procedure, replacing the correspond-
ing aromatic aldehyde with 3, 4-dichlorobenzaldehyde. Compound 13i was obtained as
a yellow solid in a yield of 89%. Mp 134.1–135.8 ◦C. 1H NMR (600 MHz, Chloroform-d):
δ 8.926 (s, 1H), 7.455 (t, 1H, J1 = 3.0, J2 = 1.8), 7.444 (d, 1H, J = 1.8), 7.435 (d, 1H, J = 1.2),
7.365 (d, 1H, J = 8.4), 7.265 (d, 1H, J = 9.0), 7. 220 (dd, 1H, J = 7.2), 7.096 (t, 1H, J1 = J2 = 3.6),
7.081 (t, 1H, J1 = 2.4, J2 = 3.0), 6.897 (d, 1H, J = 9.6), 4.356 (s, 2H), 3.878 (s, 3H). 13C NMR
(151 MHz, DMSO-d6): δ 158.76, 146.23, 145.43, 145.11, 142.77, 129.72, 128.28, 127.82, 127.62,
126.38, 125.79, 125.59, 125.21, 115.53, 112.87, 111.14, 100.75, 55.96, 47.11. HRMS (ESI) m/z:
(M + H)+ calcd for C21H17Cl2N3O 398.0821; found 398.0824.

1-(4-methoxyphenyl)-N-(4-(trifluoromethyl)benzyl)-1H-benzo[d]imidazol-5-amine (13j). Com-
pound 13j was synthesized according to the general procedure, replacing the corresponding
aromatic aldehyde with 4-(trifluoromethyl)benzaldehyde. Compound 13j was obtained as
a white solid in a yield of 90%. Mp 198.3–200.5 ◦C. 1H NMR (600 MHz, Chloroform-d): δ
7.895 (s, 1H), 7.557 (d, 1H, J = 8.4), 7.518 (d, 1H, J = 7.8), 7.365 (t, 1H, J1 = J2 = 2.4), 7.350
(t, 1H, J1 = 2.4, J2 = 3.0), 7.245 (d, 1H, J = 8.4), 7.034 (t, 1H, J1 = 3.6, J2 = 1.8), 7.020 (t, 1H,
J1 = 1.8, J2 = 3.6), 6.974 (d, 1H, J = 1.8), 6.695 (dd, 1H, J = 6.6), 4.463 (s, 2H), 4.160 (s, 1H),
3.860 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 160.62, 153.55, 151.59, 133.35, 126.92, 126.84,
116.42, 115.69, 115.22, 113.81, 112.29, 112.05, 56.20, 55.74. HRMS (ESI) m/z: (M + H)+ calcd
for C22H18F3N3O 398.1475; found 398.1480.

3.2. Determining the Antiviral Activities of Compounds
3.2.1. Cells, Viruses, and Compounds

HEK-293 cells (ATCC, CRL-1573) and 293T cells (ATCC, CRL-3216) were cultured
under 5% CO2 at 37 ◦C in Dulbecco’s modified Eagle’s medium with 10% heat inactivated
fetal bovine serum (FBS). LASV pseudotyped virus (LASVpv) based on HIV-1 expres-
sion system with enhanced green fluorescent protein (EGFP) and firefly luciferase (Luc)
encoded in LASV GPC (Josiah strain) were produced by VectorBuilder (Vector Builder
Inc., Guangzhou, China). The titers of LASVpv were 8 × 108 TU/mL. Benzimidazole
Compounds disclosed herein were synthesized as described in our research.

3.2.2. Cytotoxicity Evaluation

The title compounds were dissolved by DMSO into 20mM solution as stock solution
and were stored at −80 ◦C until being used. The working solutions of the 8 different
concentrations (200, 100, 50, 25, 12.5, 6.25, 3.12, 1.56 µM) for the test compounds were
serially diluted in the culture medium. HEK-293 cells were inoculated in clear 96-well
plates at an approximate density of 2 × 104 cells/well and cultured for 24 h at 37 ◦C with
5% CO2. Then, the working solution of the test compounds was added to each well. PBS
was used to wash the dead cells after the plates had been cultured for 4 days.

In this study, the Cell Counting Kit-8 (CCK-8) assay was used to determine the viability
of cells, and the optical density (OD) data were used to estimate the survival rate of the
cells. The absorbance was measured at 450 nm with a microplate reader. CC50 value (50%
cytotoxicity Concentration) was calculated using log (inhibitor) vs. response–variable slope
in GraphPad Prism 8 software (San Diego, CA, USA).

3.2.3. LASVpv Infections and Inhibition Assays

To test antiviral activities, HEK-293 cells were cultured in opaque white 96-well plates.
The assay medium consisted of phenol red-free Dulbecco’s Modified Eagle’s Medium,
2% FBS, 25 mM HEPES, 4.5 g/L D-glucose, and L-glutamine. Cell density and MOI
(Multiplicity of Infection) were optimized for the antiviral activity assay in preliminary
studies. HEK-293 cells at different densities (5 × 103 to 3 × 104 cells/well) were infected
at MOI from 0.5 to 10. 0. The optimized cell density (2 × 104 cells per well) and the
dose for LASVpv (MOI = 5) were selected for our assay. A negative control was the
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addition of only culture medium containing 0.5% DMSO; a positive control was adding
virus without compound.

HEK-293 cells were cultured at a density of 2 × 104 cells per well in opaque white
96-well plates. After incubating overnight, cells were treated with compound solutions of
different concentrations (50, 5, 0.5, 0.05, 0.005, 0.0005, 0.00005, 0.000005 µM). Subsequently,
HEK-293 cells were infected with LASVpv, and firefly luciferase activity was assayed at
48 h post-infection.

Luciferase signals were detected with Luciferase Assay System (Promega, Madison,
WI, USA). A SpectraMax i3X microplate reader (Molecular Devices, San Jose, CA, USA)
was used to quantify luminescence using a 1 s read time per well. Visualization and
counting of EGFP-positive cells were carried out using the FLoid® Cell Imaging Station.
IC50 value (50% growth inhibitory concentration) was calculated also using log (inhibitor)
vs. response–variable slope in GraphPad Prism 8 software.

3.3. Surface Plasmon Resonance (SPR) Studies

Analyses of SPR interactions were performed on a Biacore T200 optical biosensor
(GE Healthcare Life Sciences, Chicago, IL, USA). Data were analyzed using BiacoreT200
evaluation software ver 3.2.1 (Chicago, IL, USA). The curves were plotted using Origin 2022
software (Paris, France). The expressing vector pET-22b-His-GST-GP2 was constructed,
and GP2 protein was produced by Abiocenter Biotechnology Co., Ltd. (Beijing, China). The
phosphate-buffered saline composed of 0.2 M phosphate buffer, 27 mM KCl, 27 mM KCl,
1.37 M NaCl, and 0.5% surfactant P20 were used as the base buffer. Diluted the base buffer
10 times and added 5% DMSO when pH was adjusted to 7.4 as running buffer. The running
buffers were used as blank injections, and solvents were used to correct for volume effects.

3.3.1. Ligand Protein Immobilization

The ligand protein GP2 was immobilized on a CM5 chip by standard amine coupling.
Using a 1:1 mixture of d 100 mM N-hydroxysuccinimide (NHS) and 100 mM Nethyl-N′-
(dimethylaminopropyl)-carbodiimide (EDC), the flow cell surface was activated for 400 s at
a flow rate of 10 µL/min. Then, GP2 (50 µg/mL) dissolved in 0.1 M sodium acetate buffer
pH 4.0 was immobilized on a CM5 chip for 600 s until the desired immobilization level of
15,783 RU. Finally, the activated carboxyl groups remaining on the surface were blocked by
a 400 s injection of methanolamine (pH 8.5).

3.3.2. Screening and Kinetic Analysis

All the binding experiments were performed at 25 ◦C at a continuous flow rate
10 µL/min with 20 mM phosphate-buffered saline. Compounds were dissolved with
DMSO to make 20 mM stock solution and then diluted with the prepared PBS-P+ running
buffer to fit the concentration (50, 25, 12.5, 6.25, 3.12, 1.56, 0.78, 0.39, 0.19 µM) for the assay.
Analytes solutions with a series of increasing concentrations (0.19–50 µM) were applied to
channel F1 in SPR-binding buffer at a 10 µL/min flow rate at 25 ◦C. For reference purposes,
one of the flow channels F2 was left untouched (immobilized blankly). The contact and
dissociation times were kept at 90 s, and data were double-referenced with both reference
cell RU values and zero concentration (5% DMSO) signals.

All equilibrium dissociation constant (KD) analyses were performed using Biacore
T200 evaluation software version 3.2.1, and the data were fitted to a 1:1 binding.

4. Conclusions

Viral hemorrhagic fever caused by LASV is an infectious disease that seriously threat-
ens human health. No specific anti-LASV drug is currently licensed for clinical use. GPC,
the glycoprotein complex of LASV, plays a key role in its invasion process and can be used
as a target for anti-LASV drugs. Research on envelope glycoprotein inhibitors could help
to discover effective therapeutic agents against LASV.
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In this study, we prepared two series of novel benzimidazole derivatives targeted
at the LASV GPC. Their antiviral activities were tested through pseudovirus bioassays
and SPR technical analysis, in which some compounds showed submicromolar anti-LASV
activities. Preliminary structure–activity relationship studies found that although 5-amino-
benzo[d]imidazole derivatives have lower antiviral activities than series I compounds, their
cytotoxicity is also lower in HEK-293 cells, resulting in a higher SI and better safety profile.
The presence of subamine bonds in series II compounds generally leads to their higher
stability relative to the carbon–carbon double bonds in series I compounds. Substituents
with lipophilicity and those that are spatially larger, such as naphthylphenyl, ethoxyphenyl,
tert-butylphenyl, 3, 6-dimethoxyphenyl, and 2, 4, 5-trimethoxyphenyl, resulted in the
better inhibitory activities of the compounds against LASV, indicating that the antiviral
activity is closely related to the lipophilic nature of the para-substituted phenyl group.
Additionally, the R1 site in series I and the R2 site in series II can accommodate larger
substituents, which indicates that the group with larger spatial site resistance is a better
choice at this position. As a result, potent antiviral compounds were identified. In particular,
the IC50 values of 7d−Z, 7h−Z, 13c, 13d, and 13f showed activities comparable to the
positive control compound, LHF−535, against LASVpv. However, the cytotoxicities of
five representative compounds was investigated on the human embryonic kidney cell line
(HEK-293), and the results showed that these compounds had lower toxicities in this study.
The SI values of these compounds (1251, 2494, 4798, 9761, and 8602, respectively) were
all higher than LHF−535 (1208). Among them, it is worth pointing out that compound
7h−Z, with a large conjugated system by introducing naphthalenyl groups, showed the
best antiviral activity (IC50 = 7.58 nM) with a 2-fold increase in SI, which can be further
investigated as a lead compound. Moreover, in the SPR study, we further determined
the kinetic parameters of the title compounds. These five representative compounds
showed low kd values (<0.03 s−1) and low KD (<8.25 × 10−7 M), which expose their long
residence time (t = 1/Kd) on their targets, slower dissociation behavior, and strong binding
affinity. In conclusion, introducing lipophilicity and spatially larger substituents was very
important for prolonging the residence time and enhancing the binding affinities of the
target compound on its target; this may give a larger safety margin. Further investigations
are underway to modify the benzimidazole derivatives, aiming to improve the antiviral
activity against LASV.

To design and synthesize compounds with potent activities against LASV, the influence
of substituents needs to be fully considered. This paper provides some references for the
design and synthesis of highly active compounds against LASV. In the future, we will
further optimize the molecular structure to obtain excellent candidates for clinical use.
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