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Abstract: A Lewis acid-promoted annulation of azadienes and cyclobutamines was developed. This
reaction proceeded through Michael addition and ring-expansion cascade, affording the correspond-
ing nitrogen-containing medium-sized rings with a broad scope in moderate to high yields. The
catalytic asymmetric version of this reaction has also been explored using a chiral base.
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1. Introduction

Medium-sized rings refer to structures containing from 8 to 11 carbons or heteroatoms.
These scaffolds represent a key element in numerous compounds endowed with diverse bi-
ological activities [1–5]. Among them, nitrogen-containing medium-sized rings are widely
present in natural products (Figure 1A) [6,7]. However, despite their occurrence in some
therapeutically important molecules (Figure 1B) [8–10], nitrogen-containing medium-sized
rings are under-presented among the current clinically approved drugs [11,12]. In contrast,
their analogs such as pyrrolidine, piperidine and nitrogen-containing macrocycles are com-
monly found in marketed drugs [13]. Although various factors contribute to the progression
of leads that ultimately become clinically approved for use as prescription drugs [14–17], the
lack of synthetic approaches may limit the drug development process based on privileged
structures involving nitrogen-containing medium-sized rings [12,18–20]. Consequently,
there is an urgent demand to develop efficient protocols to access libraries of nitrogen-
containing medium-sized rings as candidates for drug discovery.

In recent years, the synthesis of nitrogen-containing medium-sized rings has attracted
considerable attention; significant efforts have been devoted toward their synthesis [21–35].
Particularly, azadienes, which act as special α,β-unsaturated imines, have been successfully
used as effective four-atom synthons to produce nitrogen-containing medium-sized rings
through a formal high-order [4 + n] annulation process [36–39]. For example, the palladium-
catalyzed [4 + 4] [40,41], [5 + 4] [42–46] or [6 + 4] [47] annulation established by Zhao, Yao,
Lin and co-workers using pyrrole-, benzofuran- or indole-fused azadienes as substrates
have proven to be efficient in assembling these frameworks. In 2017, Lu and colleagues
disclosed an elegant phosphine-catalyzed enantioselective formal [4 + 4] annulation of
azadienes for the synthesis of azocanes [48]. Very recently, Chen further explored the
reactivity of azadienes and developed a cinchona alkaloid-catalyzed [4 + 4] annulation for
the synthesis of eight-membered lactams [49] (Scheme 1A). Notably, although the above
impressive approaches are straightforward for accessing nitrogen-containing medium-sized
rings, limitations are observed such as the fact that these strategies rely on an end-to-end
cyclization process, that is, nucleophilic attack of the nitrogen atom to the Pd-π-allyl moiety
(Scheme 1A, Int-I), Michael addition of the sulfonamide onto the electron-deficient site
of the alkene (Scheme 1A, Int-II) and lactamization (Scheme 1A, Int-III). Overall, these
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approaches still suffer from the entropic constraints and unfavorable enthalpic changes due
to destabilizing transannular interactions in the medium-sized-ring formation step [50].
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Figure 1. Selected examples of biologically important molecules with a nitrogen-containing medium-
sized ring.

Ring expansion of readily available smaller ring systems provides an appealing way
to assemble nitrogen-containing medium-sized rings [23,51–55]. Typically, the expansion
of a smaller ring to ‘grow’ a medium-sized ring involves the release of a certain degree
of instability or formation of a more stable chemical bond, which results in an energy-
lowering transformation [28,29,56–66]. The kinetic changes in the difficult end-to-end
cyclization approaches are avoided [20]. To the best of our knowledge, the use of azadienes
for the construction of nitrogen-containing medium-sized rings through a ring-expansion
process remains elusive in the literature. Given the interest of our group in the synthesis of
medium-sized rings [4,26,67], we herein present the first example of Lewis acid-promoted
ring-expansion approaches for azadienes and cyclobutamines for the construction of eight-
membered lactams (Scheme 1B). We anticipated that the chemo- and regioselectivities of this
approach would be challenging, as the 1,2-addition of a nucleophile to azadienes has been
observed previously, which delivers a spiro-lactam side product (Scheme 1C, a) [40,68,69].
Additionally, the electron deficiency characteristic of the 4-toluenesulfonyl group and steric
hindrance of the quaternary carbon at the α-position of the carbonyl might prevent the
aza-hemiketalization reaction (Scheme 1B, Int-IV), which leads to another acyclic side
product (Scheme 1C, b).
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of triethylamine as the base (Table 1, entry 1). Screening of the organic base including 4-
dimethylaminopyridine, N,N-diisopropylethylamine and 1,5-diazabicyclo[4.3.0]-5-non-
ene did not increase the yields (Table 1, entries 2–4), whereas an inorganic base such as 
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2. Results and Discussion

We commenced the investigation by employing azadiene 1a and cyclobutanone 2a
as model substrates to examine the Michael addition/ring-expansion process. For our
diligence, the desired eight-membered lactam 3aa was obtained in 17% yield when the
reaction was performed in dichloromethane as a solvent at room temperature with 2.0 equiv.
of triethylamine as the base (Table 1, entry 1). Screening of the organic base including 4-
dimethylaminopyridine, N,N-diisopropylethylamine and 1,5-diazabicyclo[4.3.0]-5-nonene
did not increase the yields (Table 1, entries 2–4), whereas an inorganic base such as potas-
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sium carbonate or sodium bicarbonate improved the reaction efficiency (Table 1, entries 5–7).
The use of a stronger base to replace potassium carbonate resulted in decomposition of
the cyclobutanone 2a (Table 1, entries 8–9). It is important to note that acyclic side prod-
uct 4aa was identified as a major by-product, which was formed through 1,4-addition
without further aza-hemiketalization and a ring-expansion sequence. Lewis acids were
previously proven to be valid to facilitate aza-hemiketalization [70,71]; a catalytic amount
of various Lewis acids were explored. Gratifyingly, the addition of Lewis acids switched
the chemoselectivity (Table 1, entries 10–13). A significantly improved yield was obtained
when Mg(OTf)2 was used, and the formation of the undesired by-product 4aa was inhibited
(54%, Table 1, entry 12).

Table 1. Optimization of the reaction conditions. a Reaction conditions: 1a (0.1 mmol), 2a (0.11 mmol),
base (0.2 mol), Lewis acid (0.02 mol), solvent (1.0 mL), Ts = 4-toluenesulfonyl, rt = room temper-
ature. b Yields of isolated products. c 3aa was obtained as mixture of atropisomers, only C5-C6

trans product was observed. Relative configuration. d dr was determined with 1H NMR analy-
sis. e DIPEA = N,N-Diisopropylethylamine. f DMAP = 4-Dimethylaminopyridine. g DBN = 1,5-
Diazabicyclo[4.3.0]-5-nonene. h DCE = 1,2-Dichloroethane. i The reaction was performed at −5 ◦C
for 48 h.
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5 CH2Cl2 Cs2CO3 17
6 CH2Cl2 NaHCO3 26
7 CH2Cl2 K2CO3 27
8 CH2Cl2 KOtBu trace
9 CH2Cl2 KOH trace

10 CH2Cl2 K2CO3 Mg(OTf)2 54
11 CH2Cl2 K2CO3 Sc(OTf)2 trace
12 CH2Cl2 K2CO3 Zn(OTf)2 41
13 CH2Cl2 K2CO3 Cu(OTf)2 11
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Subsequently, the survey of the solvent was performed, and toluene was found to be
less effective, giving a product with a poor yield (Table 1, entry 17). The yield increased
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to 63% when 1,2-dichloroethane was used as the solvent (Table 1, entry 15). Additionally,
reducing the temperature to −5 ◦C and prolonging the reaction time to 48 h promoted
the aza-hemiketalization and led to an increase in the yield (Table 1, entry 18). Notably,
the different reaction conditions had no obvious influence on the diastereoselectivity at
the C5- and C6- positions and produced the product 3aa with trans configuration. Inter-
estingly, atropisomerism caused by the high rotational barrier around the aryl-N bond
in the benzofuran-fused eight-membered lactam 3aa was observed. The atropisomers
were systematically obtained as an approximate 5:1 mixture regardless of the reaction
conditions [72]. The structure of 3aa was unambiguously determined with X-ray diffrac-
tion analysis.

With the optimal reaction conditions established, we sought to explore the substrate
scope of the reaction. As indicated in Scheme 2, N-tosyl azadienes bearing electron do-
nating or withdrawing groups at the para-position of the aryl rings were compatible with
the cascade reaction, thus delivering the corresponding eight-membered lactam in a mod-
erate to high yield (3ba-3ga) with 4:1 to 8:1 diastereoselectivities with regard to the axial
chirality. Switching the substituents from the para- to the meta-position was also feasible
(3ha-3ja). In addition, azadiene with a 3,5-dimethoxyl group in the aryl ring was also
well-tolerated, giving a product with a high yield and diastereoselectivity (3ka). More-
over, replacement of the N-tosyl with a 4-methoxy-benzene sulfonyl or mesyl group led
to slightly reduced yields (3la, 3ma), and the atropisomerism disappeared in the prod-
uct 3ma. Furthermore, when the phenyl ring was changed to 2-naphthyl, 2-thienyl or
2-benzofuranyl in the azadienes, the corresponding products were generated with a good
yield and moderate diastereoselectivity (3na-3pa). Interestingly, N-tosyl azadiene bearing
chloro at the ortho-position of the aryl rings gave the product 3qa as a cis diastereomer at
the C5 and C6 positions, and only one atropisomer was obtained in this case. Moreover,
benzothiophene- or indole-fused azadienes are not appropriate substrates for this reaction
under the optimized conditions (3ra, 3sa). The relative configuration of 3aa and 3da was
unambiguously confirmed with single-crystal X-ray diffraction analysis, and the other
products were assigned by analogy (see Supplementary Materials for the assignment of
diastereoselectivity at the C5 and C6 positions).

Subsequently, an investigation of the scope of the cyclobutanone was conducted using
1q as a model azadiene (Scheme 3). The electronic and steric character of the N-aryl amides
of the cyclobutanone were evaluated by varying various substituents at different positions.
Cyclobutanone substrates bearing a bromo group at the meta- or para-position on the
N-aryl amides were tolerated in this reaction, affording the products as cis diastereomers
at the C5- and C6- positions with good yields and high diastereoselectivities (3qb, 3qc).
Incorporating a chloro or CN substituent at the para-position of the N-aryl amides led to the
desired eight-membered lactam with a good yield and high diastereoselectivity (3qd, 3qe).
A strong electronic-withdrawing CF3 group at the 3,5-positions of the N-aryl amide was
also applicable, delivering the product 3qf in 79% yield. However, an electronic-donating
OMe group at the 4-positions of the N-aryl amide was not applicable (3qg). The relative
configuration of 3qf was unambiguously confirmed using single-crystal X-ray diffraction
analysis, and the other products were assigned by analogy.

Furthermore, the synthetic potential of this strategy was demonstrated with a gram-
scale reaction, the annulation proceeded smoothly under the optimal conditions and the
adduct 3aa was obtained in 61% yield.

In addition, the atropisomerism in the eight-membered lactam 3aa disappeared by
removing the N-tosyl group to afford 6. Moreover, high-temperature proton NMR experi-
ments of 3aa in DMSO-d6 were performed, suggesting an isomeric interconversion of the
atropisomers at 100 ◦C (Scheme 4 and Supplementary Materials).
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The catalytic asymmetric version of the Michael addition/ring-expansion cascade
has also been explored using a chiral base such as a cinchona alkaloid, quinine-derived
bifunctional thiourea catalyst, Takemoto catalyst and dimeric quinidine derivatives, as well
as quinine-derived squaramide catalyst. As indicated in Scheme 5, the product 3aa was
obtained as cis diastereomers at the C5- and C6- positions when chiral bases were used as
catalysts. Although the yields and the enantioselectivities are not synthetically practical
at the current stage (cat. C1, up to 51% yield, 56% ee), these results demonstrate that this
protocol might provide opportunities for stereoselective library collections.
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3. Materials and Methods

All reactions in non-aqueous media were conducted under a positive pressure of
dry argon in glassware that had been dried in an oven prior to use unless noted oth-
erwise. Anhydrous solutions of reaction mixtures were transferred via an oven-dried
syringe or cannula. Chemicals were purchased from commercial sources; dichloromethane
(DCM), n-hexane, ethyl acetate (EA), methanol (MeOH), tetrahydrofuran (THF), acetone
and petroleum ether (PE) were purchased from Beijing Chemical Factory (Beijing, China).
Silica gel for analytical thin-layer chromatography (TLC) and column chromatography
(200~300 mesh) was purchased from Qingdao Haiyang Chemical Co., Ltd. (Qingdao, China)
& Special Silica Gel Factory (Taiyuan, China). 1H and 13C nuclear magnetic resonance spec-
tra (NMR) were obtained on a JEOL Delta (400 MHz and 600 MHz) and recorded in ppm
(δ) downfield of TMS (δ = 0) in CDCl3, DMSO-d6, unless noted otherwise. Signal-splitting
patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint) or
multiplet (m), with coupling constants (J) in hertz. HPLC analysis was conducted on a SHI-
MADZU LC-20ADXR instrument with chiral columns (Chiralpak IF, column 4.6 × 250 mm,
(Daicel Chemical Ind., Ltd., Tokyo, Japan)). High-resolution mass spectra (HRMS) were
recorded on a Waters LCT Premier XE mass spectrometer with TOF. Crystallographic data
were collected using a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer (Tokyo,
Japan) equipped with a HyPix-6000E area detector at 173 K using Cu Kα (λ = 1.54184 Å)
from a PhotonJet micro-focus X-ray source.

3.1. General Procedure for the Synthesis of 3

To an oven-dried flask was added 1 (0.1 mmol), 2 (0.11 mmol), K2CO3 (27.6 mg,
0.2 mmol), Mg(OTf)2 (6.4 mg, 0.02 mmol) and dry DCE (1.5 mL) under Ar. The reaction
mixture was stirred at −5 ◦C and monitored with TLC. After completion (~48 h), the
reaction mixture was purified with flash column chromatography to yield the product.

3aa, 78%, white solid. 1H NMR (600 MHz, CDCl3) δ 8.26 (d, J = 7.8 Hz, 2H), 7.50–7.38
(m, 5H), 7.36–7.27 (m, 3H), 7.22–7.13 (m, 5H), 7.05–6.96 (m, 3H), 6.59 (s, 1H), 4.57 (d,
J = 11.8 Hz, 1H), 3.22 (t, J = 12.0 Hz, 1H), 2.83–2.67 (m, 1H), 2.45 (s, 3H), 2.39–2.17 (m, 3H).
13C NMR (101 MHz, CDCl3) δ 173.2, 170.4, 153.5, 146.1, 138.9, 136.6, 135.9, 130.2, 129.6,
129.1, 128.9, 128.7, 127.9, 126.1, 125.6, 125.1, 123.8, 120.9, 120.6, 119.3, 116.3, 111.9, 48.9, 47.9,
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33.4, 29.4, 21.9. HRMS (ESI) was calculated for C33H29N2O5S [M + H]+ 565.1792, found
565.1893.

3ba, 67%, white solid. 1H NMR (600 MHz, CDCl3) δ 8.30 (d, J = 8.3 Hz, 2H), 7.48–7.46
(m, 3H), 7.38 (d, J = 8.0 Hz, 3H), 7.33–7.28 (m, 2H), 7.23 (t, J = 7.7 Hz, 2H), 7.11–7.08 (m,
5H), 6.71 (s, 1H), 4.58 (d, J = 11.8 Hz, 1H), 3.28–3.19 (m, 1H), 2.83–2.73 (m, 1H), 2.51 (s, 3H),
2.41–2.27 (m, 3H), 2.25 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 172.6, 169.8, 155.1, 152.8, 145.4,
136.9, 136.2, 135.1, 129.5, 129.0, 128.9, 128.1, 127.8, 125.3, 124.7, 124.1, 123.0, 120.0, 118.5,
115.4, 111.2, 47.8, 47.1, 32.8, 28.7, 21.2, 20.4. HRMS (ESI) was calculated for C34H21N2O5S
[M + H]+ 579.1948, found 579.1957.

3ca, 67%, white solid. 1H NMR (600 MHz, CDCl3) δ 8.27 (d, J = 8.0 Hz, 2H), 7.47
(dd, J = 13.1, 8.6 Hz, 4H), 7.41–7.38 (m, 2H), 7.35–7.26 (m, 4H), 7.23 (s, 1H), 7.19–7.10 (m,
4H), 7.07 (t, J = 7.7 Hz, 1H), 4.63 (d, J = 11.9 Hz, 1H), 3.32 (t, J = 11.5 Hz, 1H), 2.77–2.72
(m, 1H), 2.52 (s, 3H), 2.40–2.26 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 173.1, 170.1, 155.1,
153.5, 146.2, 137.3, 136.7, 135.7, 133.8, 130.1, 129.6, 129.1, 128.9, 125.9, 125.7, 125.0, 123.8,
120.7, 119.2, 116.3, 111.9, 108.2, 48.0, 47.7, 33.4, 29.4, 21.8. HRMS (ESI) was calculated for
C33H28ClN2O5S [M + H]+ 599.1402, found 599.1410.

3da, 84%, white solid. 1H NMR (600 MHz, CDCl3) δ 8.29 (d, J = 7.7 Hz, 2H), 7.47
(d, J = 7.8 Hz, 2H), 7.44 (d, J = 7.2 Hz, 1H), 7.41–7.31 (m, 3H), 7.32–7.28 (m, 4H), 7.18
(t, J = 7.8 Hz, 2H), 7.04 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 7.8 Hz, 2H), 6.66 (s, 1H), 4.55 (d,
J = 11.8 Hz, 1H), 3.26 (t, J = 11.9 Hz, 1H), 2.79–2.74 (m, 1H), 2.49 (s, 3H), 2.41–2.28 (m, 3H),
1.21 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 173.4, 170.6, 155.8, 153.6, 150.8, 146.13, 136.7,
136.0, 136.0, 130.3, 129.7, 128.8, 128.2, 126.2, 126.2, 125.5, 125.1, 123.8, 121.2, 119.3, 116.2,
112.0, 48.8, 47.9, 34.6, 33.5, 31.3, 29.2, 21.9. HRMS (ESI) was calculated for C37H37N2O5S
[M + H]+ 621.2418, found 621.2410.

3ea, 63%, white solid. 1H NMR (600 MHz, CDCl3) δ 8.28 (d, J = 6.6 Hz, 2H), 7.51–7.48
(m, 2H), 7.43 (m, 4H), 7.40 (m, 2H), 7.36–7.28 (m, 2H), 7.27 (d, J = 1.8 Hz, 1H), 7.24 (d,
J = 1.7 Hz, 1H), 7.17–7.13 (m, 2H), 7.12–7.07 (m, 1H), 6.98 (s, 1H), 4.63 (d, J = 12.3 Hz, 1H),
3.38–3.26 (m, 1H), 2.87–2.68 (m, 1H), 2.52 (s, 3H), 2.35 (m, 3H). 13C NMR (151 MHz, CDCl3)
δ 173.2, 170.2, 155.1, 153.5, 146.3, 137.9, 136.7, 135.8, 132.2, 130.5, 130.2, 129.7, 125.9, 125.7,
125.1, 123.9, 122.1, 120.8, 119.3, 116.3, 112.0, 48.1, 47.6, 33.5, 29.5, 21.9. HRMS (ESI) was
calculated for C33H28BrN2O5S [M + H]+ 643.0879, found 643.0886.

3fa, 63%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.26 (d, J = 8.0 Hz, 2H), 7.72–7.56
(m, 4H), 7.48 (d, J = 8.1 Hz, 2H), 7.42–7.29 (m, 6H), 7.22–7.15 (m, 3H), 7.11–7.01 (m, 1H), 4.74
(d, J = 12.0 Hz, 1H), 3.50–3.43 (m, 1H), 2.82–2.64 (m, 1H), 2.52 (s, 3H), 2.40–2.28 (m, 2H),
2.08–2.05 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 173.2, 167.0, 154.7, 153.7, 146.5, 144.2, 136.9,
132.8, 132.1, 130.1, 129.9, 129.8, 129.1, 126.0, 125.7, 125.2, 124.1, 120.5, 119.3, 116.6, 112.1,
111.8, 48.5, 47.2, 33.6, 29.6, 22.0. HRMS (ESI) was calculated for C34H28N3O5S [M + H]+

590.1744, found 590.1751.
3ga, 84%, white solid. 1H NMR (600 MHz, CDCl3) δ 8.24 (d, J = 8.2 Hz, 2H), 7.55–7.40

(m, 4H), 7.35–7.31 (m, 3H), 7.28–7.27 (m, 1H), 7.24–7.22 (m, 2H), 7.22–7.20 (m, 3H), 7.10 (d,
J = 7.6 Hz, 1H), 7.05–7.01 (m, 1H), 6.78 (s, 1H), 4.81 (d, J = 11.8 Hz, 1H), 3.20 (td, J = 11.5,
3.0 Hz, 1H), 2.78–2.68 (m, 1H), 2.50 (s, 3H), 2.38–2.24 (m, 3H). 13C NMR (101 MHz, CDCl3)
δ 173.2, 170.3, 155.5, 153.5, 146.2, 136.7, 135.7, 134.7, 134.6, 130.4, 130.4, 130.1, 129.6, 128.9,
125.9, 125.6, 125.1, 123.8, 120.6, 119.2, 116.1, 116.0, 115.8, 111.9, 47.9, 47.8, 33.4, 29.3, 21.8.
HRMS (ESI) was calculated for C34H28FN2O5S [M + H]+ 583.1697, found 583.1690.

3ha, 51%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.29 (d, J = 8.0 Hz, 2H), 7.54
(s, 1H), 7.49–7.44 (m, 3H), 7.41–7.39 (m, 2H), 7.35–7.28 (m, 2H), 7.23–7.16 (m, 4H), 7.12 (d,
J = 8.0 Hz, 2H), 7.07–7.04 (m, 1H), 6.82 (s, 1H), 4.60 (d, J = 11.8 Hz, 1H), 3.22 (t, J = 11.1 Hz,
1H), 2.86–2.67 (m, 1H), 2.50 (s, 3H), 2.40–2.25 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 173.0,
169.9, 154.6, 153.4, 146.1, 140.6, 136.5, 134.7, 130.2, 130.1, 130.0, 129.5, 129.3, 128.8, 128.7,
128.0, 126.8, 125.8, 125.6, 125.0, 123.8, 120.4, 119.3, 111.8, 48.2, 47.5, 33.3, 29.3, 21.8. HRMS
(ESI) was calculated for C32H28ClN2O5S [M + H]+ 599.1402, found 599.1410.

3ia, 62%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.28 (d, J = 7.6 Hz, 2H), 7.88 (s, 1H),
7.82 (d, J = 8.9 Hz, 1H), 7.54–7.48 (m, 3H), 7.44–7.33 (m, 7H), 7.20–7.15 (m, 2H), 7.10–7.05 (m,
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2H), 4.72 (d, J = 11.9 Hz, 1H), 3.46–3.37 (m, 1H), 2.87–2.71 (m, 1H), 2.53 (s, 3H), 2.43–2.33
(m, 3H). 13C NMR (101 MHz, CDCl3) δ 173.1, 169.9, 154.5, 153.7, 146.4, 140.5, 136.7, 135.8,
133.2, 132.8, 131.7, 130.1, 129.9, 129.1, 126.0, 125.8, 125.3, 124.1, 120.6, 120.3, 119.4, 118.5,
116.7, 113.1, 112.1, 48.2, 47.41, 33.5, 29.6, 22.0. HRMS (ESI) was calculated for C34H28N3O5S
[M + H]+ 590.1744, found 590.1750.

3ja, 51%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.28 (d, J = 8.6 Hz, 2H), 8.16 (d,
J = 8.9 Hz, 2H), 7.76 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.3 Hz, 2H), 7.46–7.32 (m, 5H), 7.24–7.15
(m, 4H), 7.12–7.01 (m, 1H), 4.82 (d, J = 11.9 Hz, 1H), 3.62–3.42 (m, 1H), 2.86–2.68 (m, 1H),
2.54 (s, 3H), 2.42–2.34 (m, 2H), 1.99 (d, J = 5.2 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 172.8,
169.7, 154.2, 153.5, 147.3, 146.3, 145.9, 136.5, 135.5, 129.9, 129.8, 129.7, 128.9, 125.9, 125.5,
125.1, 124.0, 123.9, 120.3, 119.1, 116.5, 111.9, 48.1, 47.1, 33.3, 29.6, 21.8. HRMS (ESI) was
calculated for C32H28N3O7S [M + H]+ 610.1642, found 610.1637.

3ka, 63%, white solid. 1H NMR (600 MHz, CDCl3) δ 8.30 (d, J = 8.1 Hz, 2H), 7.49 (d,
J = 8.2 Hz, 2H), 7.45–7.41 (m, 2H), 7.34 (td, J = 8.2, 7.7, 1.5 Hz, 1H), 7.32–7.28 (m, 1H), 7.24
(t, J = 7.9 Hz, 2H), 7.20–7.16 (m, 2H), 7.10–7.05 (m, 2H), 6.70 (d, J = 2.3 Hz, 2H), 6.29 (t,
J = 2.3 Hz, 1H), 4.57 (d, J = 12.0 Hz, 1H), 3.69 (s, 6H), 3.35 (td, J = 11.6, 2.8 Hz, 1H), 2.80–2.70
(m, 1H), 2.52 (s, 3H), 2.42–2.29 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 173.4, 170.6, 161.3,
155.8, 153.6, 146.2, 141.1, 137.1, 135.9, 130.3, 130.1, 129.7, 129.5, 128.9, 126.0, 125.6, 124.9,
123.9, 120.9, 119.1, 116.3, 112.1, 106.3, 101.0, 55.8, 49.2, 47.9, 33.5, 29.1, 22.0. HRMS (ESI) was
calculated for C35H33N2O7S [M + H]+ 625.2003, found 625.2009.

3la, 63%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.35 (d, J = 9.0 Hz, 2H), 7.52–7.44
(m, 3H), 7.40–7.36 (m, 1H), 7.33–7.27 (m, 4H), 7.22–7.18 (m, 3H), 7.13–7.04 (m, 5H), 6.67 (s,
1H), 4.61 (d, J = 11.9 Hz, 1H), 3.91 (s, 3H), 3.23 (td, J = 11.8, 2.8 Hz, 1H), 2.85–2.73 (m, 1H),
2.46–2.23 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 173.3, 170.5, 164.7, 155.5, 153.5, 139.0, 136.9,
132.7, 130.0, 129.1, 129.0, 128.7, 128.0, 126.2, 125.6, 125.0, 123.8, 120.8, 119.3, 116.5, 114.2,
112.0, 56.0, 48.9, 47.9, 33.5, 29.5. HRMS (ESI) was calculated for C33H29N2O6S [M + H]+

581.1741, found 581.1747.
3ma, 47%, white solid. 1H NMR (400 MHz, CDCl3) δ 7.44–7.36 (m, 4H), 7.35–7.27 (m,

4H), 7.22–7.15 (m, 3H), 7.12–7.02 (m, 3H), 6.98 (s, 1H), 4.63 (d, J = 12.0 Hz, 1H), 3.84 (s, 3H),
3.41 (td, J = 11.5, 3.7 Hz, 1H), 2.90 (td, J = 11.7, 8.2 Hz, 1H) and 2.56–2.36 (m, 3H). 13C NMR
(151 MHz, CDCl3) δ 174.8, 170.4, 156.1, 153.5, 138.9, 136.8, 129.2,128.8, 128.5, 127.9 125.6,
125.6, 124.9, 123.8, 120.9, 118.7, 114.9, 112.1, 48.9, 47.9, 44.5, 33.3 and 29.1. HRMS (ESI) was
calculated for C27H25N2O5S [M + H]+ 489.1479, found 489.1486.

3na, 78%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.33 (d, J = 7.2 Hz, 2H), 8.01
(s, 1H), 7.83–7.71 (m, 3H), 7.67–7.60 (m, 1H), 7.51–7.48 (m, 1H), 7.45 (d, J = 7.9 Hz, 2H),
7.42–7.37 (m, 2H), 7.36–7.34 (m, 1H), 7.32–7.29 (m, 2H), 7.17–7.07 (m, 2H), 7.00–6.86 (m, 3H),
6.63 (s, 1H), 4.80 (d, J = 12.0 Hz, 1H), 3.34 (t, J = 11.7 Hz, 1H), 2.89–2.74 (m, 1H), 2.48 (s,
3H), 2.46–2.29 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 173.3, 170.5, 155.6, 153.6, 146.2, 136.6,
136.4, 136.0, 133.6, 132.9, 130.3, 129.7, 128.9, 128.8, 128.3, 128.0, 127.7, 126.4, 126.3, 125.7,
125.0, 123.9, 120.9, 119.4, 116.6, 112.0, 47.0, 48.1, 33.6, 29.5, 21.9. HRMS (ESI) was calculated
for C37H31N2O5S [M + H]+ 615.1948, found 615.1957.

3oa, 76%, white solid. 1H NMR (600 MHz, CDCl3) δ 8.25 (d, J = 8.2 Hz, 2H), 7.50–7.42
(m, 4H), 7.39–7.30 (m, 3H), 7.28–7.26 (m, 1H), 7.25–7.24 (m, 1H), 7.22–7.20 (m, 3H), 7.12–7.01
(m, 2H), 6.79 (s, 1H), 4.82 (d, J = 11.8 Hz, 1H), 3.21 (td, J = 11.5, 3.0 Hz, 1H), 2.78–2.69 (m,
1H), 2.50 (s, 3H), 2.38–2.24 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 173.2, 170.8, 155.5, 153.5,
146.1, 139.3, 137.0, 130.2, 129.6, 129.0, 127.7, 126.5, 125.6, 125.0, 123.9, 120.8, 119.3, 115.8,
112.0, 48.0, 43.8, 33.5, 29.0, 21.9. HRMS (ESI) was calculated for C31H27N2O5S2 [M + H]+

571.1356, found 571.1350.
3pa, 73%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 8.3 Hz, 2H), 7.70–7.64

(m, 1H), 7.49–7.33 (m, 8H), 7.23–7.13 (m, 4H), 7.13–7.06 (m, 1H), 7.06–7.00 (m, 2H), 6.71
(s, 1H), 4.89 (d, J = 11.8 Hz, 1H), 2.98 (td, J = 11.8, 3.2 Hz, 1H), 2.72 (td, J = 12.0, 8.2 Hz,
1H), 2.43 (s, 3H), 2.39–2.17 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 172.7, 170.1, 155.0, 153.6,
153.5, 151.2, 146.1, 136.8, 135.8, 130.6, 129.4, 129.0, 128.2, 126.4, 126.0, 125.1, 124.7, 124.2,
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123.3, 121.5, 120.6, 120.2, 117.5, 111.9, 111.0, 106.0, 45.5, 42.6, 33.3, 28.9, 21.9. HRMS (ESI)
was calculated for C31H27N2O5S2 [M + H]+ 571.1356, found 571.1350.

3qa, 95%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.33 (d, J = 5.1 Hz, 1H), 7.84 (d,
J = 6.7 Hz, 1H), 7.70 (d, J = 7.9 Hz, 2H), 7.46–7.26 (m, 10H), 7.13 (t, J = 7.3 Hz, 1H), 6.94
(d, J = 8.0 Hz, 2H), 6.57 (s, 1H), 3.82 (s, 1H), 2.85 (t, J = 12.6 Hz, 1H), 2.77 (d, J = 5.5 Hz,
1H), 2.55 (dd, J = 12.8, 7.7 Hz, 1H), 2.33 (s, 3H), 2.25 (dd, J = 14.8, 7.7 Hz, 1H), 2.03 (td,
J = 14.6, 13.8, 5.5 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 174.4, 169.7, 154.8, 150.5, 145.5,
137.5, 136.2, 134.6, 133.8, 130.3, 130.0, 129.6, 129.5, 129.2, 128.9, 127.5, 126.1, 125.0, 124.6,
124.4, 121.2, 119.8, 119.4, 111.8, 46.7, 39.9, 33.1, 28.4, 21.8. HRMS (ESI) was calculated for
C32H28ClN2O5S [M + H]+ 599.1402, found 599.1409.

3qb, 71%, white solid. 1H NMR (600 MHz, CDCl3) δ 8.33–8.28 (m, 1H), 7.88–7.84
(m, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.57 (s, 1H), 7.46–7.33 (m, 6H), 7.30–7.27 (m, 1H), 7.17 (t,
J = 8.0 Hz, 1H), 7.10 (dt, J = 8.5, 1.2 Hz, 1H), 6.94 (d, J = 8.1 Hz, 2H), 6.56 (s, 1H), 3.80 (d,
J = 1.4 Hz, 1H), 2.85–2.79 (m, 1H), 2.78 (d, J = 5.8 Hz, 1H), 2.56 (ddd, J = 13.1, 7.9, 1.8 Hz,
1H), 2.33 (s, 3H), 2.24 (ddt, J = 14.8, 8.0, 1.8 Hz, 1H), 2.05 (dddd, J = 14.4, 12.7, 5.8, 1.8 Hz,
1H). 13C NMR (151 MHz, CDCl3) δ 173.5, 169.2, 154.0, 149.5, 144.8, 138.0, 135.3, 133.9,
132.9, 129.7, 129.1, 128.9, 128.7, 128.1, 126.8, 126.8, 125.5, 124.2, 123.7, 122.1, 120.5, 118.8,
117.4, 111.0, 46.0, 39.1, 32.3, 27.5, 21.03. HRMS (ESI) was calculated for C33H27BrClN2O5S
[M + H]+ 677.0507, found 677.0517.

3qc, 80%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.32–8.25 (m, 1H), 7.89–7.81 (m,
1H), 7.69 (d, J = 8.1 Hz, 2H), 7.46–7.36 (m, 7H), 7.32–7.27 (m, 1H), 7.19–7.13 (m, 2H), 6.93 (d,
J = 8.2 Hz, 2H), 6.59 (s, 1H), 3.80 (s, 1H), 2.86–2.74 (m, 2H), 2.62–2.50 (m, 1H), 2.33 (s, 3H),
2.24 (dd, J = 14.7, 7.9 Hz, 1H), 2.03 (td, J = 13.0, 5.6 Hz, 1H). 13C NMR (101 MHz, CDCl3)
δ 174.3, 169.8, 154.7, 136.6, 136.0, 134.6, 133.7, 132.2, 130.4, 129.9, 129.7, 129.5, 128.9, 127.5,
126.2, 124.9, 124.5, 121.3, 121.2, 119.5, 117.1, 111.7, 46.7, 39.8, 33.1, 28.3, 21.8. HRMS (ESI)
was calculated for C33H27BrClN2O5S [M + H]+ 677.0507, found 677.0516.

3qd, 72%, white solid. 1H NMR (600 MHz, CDCl3) δ 8.34–8.27 (m,1H), 7.88–7.81 (m,
1H), 7.69 (d, J = 8.3 Hz, 2H), 7.45–7.35 (m, 5H), 7.32–7.26 (m, 3H), 7.22 (d, J = 8.8 Hz, 2H),
6.94 (d, J = 8.0 Hz, 2H), 6.60 (s, 1H), 3.80 (s, 1H), 2.82 (t, J = 12.3 Hz, 1H), 2.77 (d, J = 5.6 Hz,
1H), 2.55 (ddd, J = 13.1, 7.9, 1.5 Hz, 1H), 2.33 (s, 3H), 2.24 (dd, J = 14.7, 8.0 Hz, 1H), 2.03
(dddd, J = 14.4, 12.4, 5.6, 1.7 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 174.3, 169.8, 154.7,
150.4, 145.6, 136.1, 136.1, 134.7, 133.7, 130.5, 129.9, 129.7, 129.5, 129.5, 129.2, 128.9, 127.5,
126.2, 125.0, 124.5, 121.3, 120.9, 119.5, 111.7, 46.7, 39.9, 33.1, 28.3, 21.8. HRMS (ESI) was
calculated for C33H27Cl2N2O5S [M + H]+ 633.1012, found 633.1017.

3qe, 72%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.25–8,23 (m, 1H), 7.88–7.78 (m,
1H), 7.67 (d, J = 7.9 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.46–7.33 (m, 7H), 7.23–7.15 (m, 1H),
6.92 (d, J = 8.0 Hz, 2H), 6.86 (s, 1H), 3.79 (s, 1H), 2.82 (d, J = 5.3 Hz, 1H), 2.77 (t, J = 12.6 Hz,
1H), 2.54 (dd, J = 13.0, 7.7 Hz, 1H), 2.32 (s, 3H), 2.23 (dd, J = 14.7, 7.7 Hz, 1H), 2.04 (td,
J = 16.3, 14.6, 5.6 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 174.1, 170.4, 154.7, 150.1, 145.6,
141.5, 135.8, 134.7, 133.6, 133.5, 130.5, 129.8, 129.7, 129.5, 128.9, 127.5, 126.3, 124.9, 124.6,
121.3, 119.6, 119.4, 118.8, 111.5, 107.4, 46.9, 39.8, 33.0, 28.2, 21.8. HRMS (ESI) was calculated
for C34H27ClN3O5S [M + H]+ 624.1354, found 624.1354.

3qf, 79%, white solid. 1H NMR (400 MHz, CDCl3) δ 8.35–8.17 (m, 1H), 7.92–7.83
(m, 1H), 7.76 (s, 2H), 7.72–7.63 (m,3H), 7.50–7.34 (m, 5H), 7.24 (d, J = 5.6 Hz, 1H), 6.93 (d,
J = 8.0 Hz, 2H), 6.88 (s, 1H), 3.80 (s, 1H), 2.89–2.73 (m, 2H), 2.57 (dd, J = 13.0, 7.7 Hz, 1H),
2.33 (s, 3H), 2.25 (dd, J = 14.7, 7.7 Hz, 1H), 2.08 (td, J = 14.1, 13.3, 5.3 Hz, 1H).13C NMR
(101 MHz, CDCl3) δ 174.1, 170.5, 154.7, 150.0, 145.6, 138.8, 135.8, 134.7, 131.6 (q, J = 33.3 Hz,
2C), 129.9, 129.6, 129.4, 128.8, 127.5, 126.3, 124.6, 123.1 (q, J = 273.7 Hz, 2C), 121.30, 119.40,
117.8, 111.5, 46.8, 39.8, 33.0, 28.0, 21.8. HRMS (ESI) was calculated for C35H26ClF6N3O5S
[M + H]+ 735.1150, found 735.1157.
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3.2. General Procedure for the Synthesis of 6

Naphthalene (448 mg, 3.5 mmol, 1.0 equiv) was dissolved in THF (7 mL) under N2.
Lithium (25 mg, 3.5 mmol, 1.0 equiv) was added and the mixture stirred for 2 h at room
temperature. A dark green Li/Naphthalene solution (0.5 M) was obtained. To an oven-
dried flask was added 3aa (56 mg, 0.1 mmol, 1.0 equiv) and dry THF (1.5 mL) under Ar at
−78 ◦C. Li/Naphthalene solution (0.5 M in THF) was added dropwise until the dark green
solution turned colorless, then the reaction mixture was stirred at RT for 30 min. Quenched
with 1 M NaHCO3 (5 mL), the aqueous layer was extracted with EtOAc (3 × 10 mL), and
the combined organic layer was dried with Na2SO4, filtered and concentrated in vacuo.
Purification with flash column chromatography yielded the product 6 (84% yield) as a
white solid. 1H NMR (400 MHz, DMSO-d6) δ 9.87 (s, 1H), 9.68 (s, 1H), 7.62–7.59 (m, 1H),
7.38–7.35 (m, 1H), 7.30–7.13 (m, 10H), 7.08 (td, J = 7.0, 1.8 Hz, 1H), 6.97–6.93 (m, 1H),
4.49 (d, J = 11.2 Hz), 3.73–3.51 (m, 1H), 2.85–2.78 (m, 1H), 2.26–2.10 (m, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 173.4, 171.1, 152.2, 150.1, 138.5, 128.4, 128.3, 128.0, 126.7, 125.4, 124.7,
123.2, 122.7, 119.5, 119.1, 117.0, 110.9, 47.4, 47.0, 30.5, 28.5. HRMS (ESI) was calculated for
C26H23N2O3 [M + H]+ 411.1703, found 411.1697.

3.3. General Procedure for the Synthesis of 7

To a flame-dried Schlenk reaction tube equipped with a magnetic stir bar was added
the catalyst (0.01 mmol), 1a (0.10 mmol, 37.5 mg) and 2a (0.10 mmol, 19.8 mg) under N2, and
freshly distilled DCE (2.0 mL) was added. The mixture was then stirred at rt for 24 h. Then,
the reaction mixture was filtered through a pad of Celite, and the solvent was concentrated
in vacuo. Purification with flash column chromatography yielded product 7 as a white
solid. 1H NMR (600 MHz, CDCl3) δ 7.85–7.83 (m, 2H), 7.82–7.79 (m, 1H), 7.44–7.33 (m, 7H),
7.33–7.26 (m, 4H), 7.26–7.23 (m, 1H), 7.16–7.11 (m, 1H), 7.09 (d, J = 8.0 Hz, 2H), 6.74 (s, 1H),
3.60 (s, 1H), 2.94–2.86 (m, 2H), 2.53 (ddd, J = 13.2, 7.9, 1.9 Hz, 1H), 2.35 (s, 3H), 2.34–2.28 (m,
1H), 1.96 (dddd, J = 14.3, 12.1, 5.5, 1.8 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 174.3, 169.5,
154.3, 151.1, 145.2, 138.0, 137.3, 134.4, 129.5, 129.1, 129.0, 128.5, 128.1, 125.6, 125.1, 124.5,
124.0, 120.8, 119.9, 118.5, 111.7, 47.4, 43.7, 32.9, 29.0, 21.7.

4. Conclusions

In summary, we have described a Lewis acid-promoted Michael addition/ring-expansion
cascade of azadienes and cyclobutamines. Lewis acids were used to facilitate the cascade
reactions. The entropic constraints of and unfavorable enthalpic changes in the classical
end-to-end cyclization process were completely avoided. This process provides a new
entry to access benzofuran-fused eight-membered lactams, which has emerged as a useful
framework in drug discovery. The catalytic asymmetric version of the reaction has also been
explored using chiral bases as catalysts, which may provide opportunities for stereoselective
library collections of nitrogen-containing medium-sized rings.
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