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Abstract: Urease is an enzyme containing a dinuclear nickel active center responsible for the hy-
drolysis of urea into carbon dioxide and ammonia. Interestingly, inorganic models of urease are
unable to mimic its mechanism despite their similarities to the enzyme active site. The reason behind
the discrepancy in urea decomposition mechanisms between inorganic models and urease is still
unknown. To evaluate this factor, we synthesized two bis-nickel complexes, [Ni2L(OAc)] (1) and
[Ni2L(Cl)(Et3N)2] (2), based on the Trost bis-Pro-Phenol ligand (L) and encompassing different ligand
labilities with coordination geometries similar to the active site of jack bean urease. Both mimetic
complexes produced ammonia from urea, (1) and (2), were ten- and four-fold slower than urease,
respectively. The presence and importance of several reaction intermediates were evaluated both
experimentally and theoretically, indicating the aquo intermediate as a key intermediate, coordinat-
ing urea in an outer-sphere manner. Both complexes produced isocyanate, revealing an activated
water molecule acting as a base. In addition, the reaction with different substrates indicated the
biomimetic complexes were able to hydrolyze isocyanate. Thus, our results indicate that the for-
mation of an outer-sphere complex in the urease analogues might be the reason urease performs a
different mechanism.

Keywords: nickel complexes; urea decomposition; urease mimics; ancillary ligand

1. Introduction

Urease is a nickel-containing enzyme responsible for urea hydrolysis into carbon
dioxide and ammonia (Figure 1A). The active site of urease accommodates two pseu-
dooctahedral [1,2] or 5-coordinate nickel centers bridged by a carbamylated lysine and a
hydroxide. The coordination sphere of these nickel centers is completed with two histidine
residues each plus a terminal water or an asparagine residue (Figure 1B,C) [3,4]. Mecha-
nistic models of urease describe the coordination of urea to Ni 1 via its carbonyl and the
involvement of the bridged hydroxide as a nucleophile in the formation of carbamic acid
as an intermediate, which self-decomposes into carbon dioxide and ammonia [4].

Synthetic models of enzymes are designed based on the enzymatic active site and on
its catalytic mechanism. The design of a biomimetic complex focuses on the recognition
of specific interactions to obtain an adequate parallel between natural and synthetic cat-
alysts [5]. This parallel offers a rationalization behind these unique biologic systems [6],
serving as an excellent tool to study enzymatic mechanisms. Several inorganic models
have been described in the literature [7–15] to aid the discussion of urease’s catalytic mech-
anism. However, ammonia has only been detected as a decomposition product in a few of
these complexes despite several of these models able to bind urea in a monodentate and a
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bidentate mode, [10,15–17]. These urease analogues describe the formation of isocyanate
as an intermediate. Previously, this species was considered as a possible intermediate of
urease enzyme [18], even though the study of Callahan et al. confronted this hypothesis
after observing the hydrolysis of a fully methylated urea [19].
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The inability of urease mimics to hydrolyze urea with the same mechanism of urease 
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ProPhenol(L) as a ligand (Figure 1D). In relation to the enzyme active center, these model 
systems provide an aromatic environment around the nickel centers. The phenolate 
bridge mimics the hydroxide bridge between the nickel centers, and the two pyrrolidines 
act as two of the four histidine analogues (e.g., His529 and His409). Their behavior can be 
compared to the urease from jack bean, allowing exploration of the reactivity differences 
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of ligand substitution during the reaction using the analogues influences the resulting 
outcome. These results help to elucidate the mechanism of urea decomposition by urease 
mimetic complexes. 

Figure 1. Scheme of the reaction performed by urease enzyme (A), generic active site of a urease
enzyme. In orange are the hydrophobic amino acids which surround the active site (B,C) and
bis-nickel complexes, [Ni2L(H2O)3(OAc)] (1) and [Ni2L(Cl)(Et3N)2](2) (2), based on (RS,RS)-Trost-bis-
ProPhenol (L) ligand (D).

The inability of urease mimics to hydrolyze urea with the same mechanism of urease
is intriguing, especially since several of these models have a striking similarity towards
the enzyme active site. Motivated by this, we decided to synthesize urease models and
study their catalysis to explore the factors contributing to an elimination mechanism
rather than hydrolysis. Here, we report a study of the influence of the ligand lability
on two novel urease biomimetic complexes encompassing acetate or chloride ions as
labile ligands. The bis-nickel complexes, (1) and (2), were based on (RS,RS)-Trost-bis-
ProPhenol(L) as a ligand (Figure 1D). In relation to the enzyme active center, these model
systems provide an aromatic environment around the nickel centers. The phenolate bridge
mimics the hydroxide bridge between the nickel centers, and the two pyrrolidines act
as two of the four histidine analogues (e.g., His529 and His409). Their behavior can be
compared to the urease from jack bean, allowing exploration of the reactivity differences
and improving the comprehension of the elimination mechanism of mimetic complexes.
Computational analyses, 15N NMR assays, and catalytic experiments indicated the order
of ligand substitution during the reaction using the analogues influences the resulting
outcome. These results help to elucidate the mechanism of urea decomposition by urease
mimetic complexes.

2. Results and Discussion
2.1. General Characteristics of (1) and (2) Complexes

Complexes (1) and (2) were synthesized from Trost (RS,RS)-Bis-ProPhenol ligand in
acetonitrile in the presence of nickel acetate or nickel chloride, respectively. Consistent
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data were obtained from microanalysis, UV-Vis spectroscopy (Figure 2), magnetic measure-
ments (Figure 3), infrared spectroscopy (SI1), mass spectroscopy (SI2-3), conductivity, cyclic
voltammetry, and spectroelectrochemistry (SI4 and SI5). Both complexes were isolated as
uncharged species and (2) exhibited a color change from yellow to greenish blue upon
dissolution in acetonitrile, whereas (1) remained green. Interestingly, (1) did not undergo
dissociation into ionic species in acetonitrile (40 µScm−1), whereas (2) formed a 1:1 elec-
trolyte (108.5 µS cm−1 in the conductivity). Therefore, the color change of (2) in addition to
the value of its solution conductivity indicate a fast ligand substitution between chloride
and solvent, confirming the different reaction rates by changing the labile ligand.
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for (2)) below ~25K, followed by a fast drop with decreasing temperature. This behavior 
is an indication of the development of ferromagnetic interactions between nickel centers 
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Figure 3. Temperature dependence of the magnetic susceptibility for (1) and (2). The solid lines
represent the fits based on Equation (1).

Both complexes presented d-d transitions ascribed to an octahedral field splitting in the
UV-Vis spectroscopy of their acetonitrile solutions (Figure 2). For instance, (1) exhibited
d-d bands with maximum absorptions at 500 nm (ε = 3.1 dm3 mol−1 cm−1) and 680 nm
(ε = 3.2 dm3 mol−1 cm−1), which could be ascribed to 3A2→3T1g (F) and 3A2→3T1g (P)
based on comparisons to other nickel complexes of the literature. Complex (2) exhibited
bands at 463 nm (ε = 9 dm3 mol−1 cm−1), 563 nm (ε = 6.7 dm3 mol−1 cm−1), 606 nm
(ε = 7 dm3 mol−1 cm−1), 655 (ε = 6 dm3 mol−1 cm−1), and 688 nm (ε = 5.5 dm3 mol−1 cm−1).
The observed shoulders at the 600–700 nm region for both complexes could be ascribed as
a spin flip transition 3A2→1Eg, which is consistent to other octahedral nickel complexes of
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the literature [20,21]. Interestingly, (2) exhibits characteristics of a symmetric complex in
which both nickel centers have similar electronic features. The (2) complex seems to have
two asymmetric nickel centers, as four bands are observed in the region of 3A2→3T1g (F)
and 3A2→1Eg, transitions.

The nickel centers of both complexes interact magnetically with each other in the
solid state. This has been demonstrated in the experiment of temperature dependence
of the magnetic susceptibility in which χ = M/H and the χT product are displayed in
Figure 3 for both nickel complexes. As shown in Figure 3, a characteristic paramagnetic
behavior down to T = 2 K in the χ(T) curve is observed for both samples due to the
absence of any indication of a magnetic phase transition. The χT product deviates from
the Curie law at high temperatures (T > 50 K), showing a slight increase (more noticeable
for (2)) below ~25K, followed by a fast drop with decreasing temperature. This behavior
is an indication of the development of ferromagnetic interactions between nickel centers
(intradimer interaction) and a subsequent antiferromagnetic coupling between dimers
(interdimer interaction) at low temperatures. To describe the magnetic behavior of this
binuclear system, we have used the Heisenberg exchange Hamiltonian H = −2JS1.S2, from
which the following expression for the susceptibility can be derived:

χ(T) = (1− P)χdim(T) + 2PχP(T) + 2N (1)

where χdim(T) =
NAg2µ2

B
k(T−θ)

× 2e(
2J
kT )

+10e(
6J
kT )

1+3e(
2J
kT )

+5e(
6J
kT )

, and χP(T) =
NAg2µ2

B
3kT

Here, P ≈ 10−6 corresponds to a small fraction of the paramagnetic impurity, and
N ≈ 10−4 emu/Oe mol refers to the temperature-independent paramagnetism. To consider
the interaction among dimers, we incorporated a phenomenological Weiss constant, θ. As
shown in Figure 3, the expression (1) gives a good description of the data with the relevant
parameters, g = 2.1, J = 0.67 cm−1, θ = −0.94 K and g = 2.0, J = 0.81 cm−1, θ = −0.72 K for
(1) and (2), respectively. The positive values for the intradimer exchange couplings J and
negative Weiss constants confirm the presence of the ferromagnetic and antiferromagnetic
interactions for both nickel complexes.

To evaluate if the coupling between nickel centers remained in solution, both com-
plexes were submitted to cyclic voltammetry coupled to spectrolectrochemistry experi-
ments. Evidence of an electronic coupling between the nickel centers was only perceived for
(1) in the cathodic scan (SI4). There are two overlapped waves at −0.36 and −0.88 V, which
can only be ascribed to the reduction of the coupled Ni(II) ions, considering the lack of
compatible reducing centers in the ligand. The spectral changes of increased bands centered
at 266, 292, and 384 nm indicate a substantial perturbation of the electronic structure of
the complex along with the reduction process. If the two waves were associated with the
bridged Ni(II)/(I) centers, their separation of 0.52 V would be consistent with a compro-
portionation constant (Kc) of 6 × 108, reflecting a strongly coupled system in agreement
with the magnetic susceptibility experiments. In the anodic scan, two undistinguishable
processes were observed, which could be associated with two electrons each, as determined
by DPV (SI5). The first process is centered around 0.98 V, is correlated with the increase
of the bands at 269 nm, 285 nm, 354 nm, and 421 nm, and is ascribed to the oxidation of
phenol moiety. This oxidation process intensified the ligand-to-metal charge-transfer bands
at 354 nm and 421 nm due to a possible change in the coordination geometry. The second
process at 1.24 V was associated with the decrease of both the p-p* transition and LMCT
of Ni2+, whereas an increase of a band centered at 396 nm was observed. This band was
ascribed to an oxidation of both nickel centers as the LMCT band of Ni3+ complexes are
around 380 nm [22,23]. In the case of (2), no reduction process could be observed and only
the anodic processes were evaluated by spectroelectrochemistry (SI6). Interestingly, the
spectral changes were not as evident as for (1), indicating the smaller electronic coupling
accompanying the substitution of the chloride-bridging ligand by solvent molecules.
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2.2. Catalytic Behavior of the Biomimetic Complexes

Complexes (1) and (2) were shown to encompass several structural characteristics
of the urease active site. For instance, by UV-Vis spectroscopy both complexes were
observed to present an octahedral geometry, and the solid-state magnetic susceptibility
measurements indicated both nickel centers were coupled. Interestingly, cyclic voltammetry
coupled to spectroelectrochemistry indicated (1) maintained the Ni-Ni coupling in solution,
whereas (2) seems to suffer ligand substitution of chloride and Et3N by solvent molecules,
disrupting the Ni-Ni coupling. However, despite having some structural similarities to
urease’s active site, the catalytic decomposition of urea should be tested. Moreover, if
these complexes exhibit catalytic activity, then different behaviors are expected since (1)
remained uncharged in solution with a more stable geometry, whereas (2) was charged
upon dissolution and presented a lower symmetry (Figure 2).

Urea hydrolysis experiments were quantified by the amount of ammonia released over
time by using Berthelot’s method [24]. Urease enzyme was used as a control, presenting
an initial reaction rate of 7 × 10−3 µmol s−1 of NH3 at a 6.6 mM initial urea concentration.
Complexes (1) and (2) were only ten-fold (0.8 × 10−3 µmol s−1 of NH3) and four-fold
(1.75 × 10−3 µmols−1 of NH3) slower than urease, respectively (Figure 4). The difference
in reaction rates between the chloride and acetate complexes is assigned to a dissocia-
tive mechanism from ligand substitution kinetics, controlled by the more labile chloride
ligand over acetate. This feature is in agreement with the conductivity measurements
since the uncharged (2) could form a 1:1 electrolyte in acetonitrile solution, whereas (1)
remained uncharged in acetonitrile, indicating the rate determining step involves a ligand
substitution step.
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Considering ligand substitution is important for catalysis, we decided to explore
in more detail the reaction mechanism of urea decomposition by (1) and (2) complexes.
Seven possible intermediates were proposed to be formed during the urea hydrolysis
reaction (intermediates 1a–1g, Figure 5). These intermediates differ in the order of ligand
substitution and in the mode of urea interaction with the complex (path 1–3, Figure 5).
For instance, intermediates 1b and 1c would form with urea coordination to the nickel
centers, whereas intermediates 1e and 1g would bind urea by secondary interactions. As
urea coordination to the nickel center has been observed in the urease enzyme [3], our
initial hypothesis was that a similar interaction would occur in our complexes. Therefore,
the possibility of forming intermediates 1b or 1c was assessed by coordinating urea to
complexes (1) and (2) in acetonitrile and analyzing the products via FTIR spectroscopy.
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As expected for intermediates 1b and 1c, bands at 3432 and 3335 cm−1 for free νNH2,
3210 cm−1 for bond νNH2 and 1658 (δs NH2), 1637 (δas NH2), and 1614 cm−1 for C=O were
observed (SI7) [25]. This is possible due to urea bonded in the bidentate and monodentate
mode in the [Ni2L(H2O)3(Urea)]+complex [13,14]. Therefore, [Ni2L(Urea)]+ (intermediate
1b or 1c) would be a possible intermediate during urea hydrolysis. However, a stepwise
reaction between (1) and urea followed by addition of stoichiometric amounts of water in
anhydrous acetonitrile resulted in no detection of ammonia, suggesting urea hydrolysis in
these complexes most probably proceeds via complexes 1e or 1g.
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Figure 5. Possible intermediates formed during urea decomposition by (1) complex. Intermediate it
1c is formed upon water and urea coordination to the nickel center via intermediates 1b or 1d, whereas
intermediates 1e and 1g are formed with secondary interactions between urea and coordinated water.
Subfigure in the box shows the complete molecular representation and its equivalent form involved
in catalysis.

Thus, to support the hypothesis of complex 1e and/or 1g formation, water titration
of a (1) solution, followed by conductivity measurements was performed. The presence
of intermediates 1e and/or 1g in solution would imply the production of a 1:1 electrolyte.
Beyond precipitation, an increase in conductivity from 40 µS cm−1 to 132 µS cm−1 was
observed upon water titration, indicating the apparent formation of complexes 1e or 1g.
Solid IR analysis of the soluble fraction (SI8) presented bands at 1698 cm−1 and 1477 cm−1

that could be from a protonated carboxylate [26] or from monodentate νa COO− and νs
COO− (Figure 4, complex 1d) [27]. However, titration with deuterated water revealed
the same spectra as H2O titration (SI8), indicating the soluble complex is most likely from
a monodentate acetate (complex 1a). The insoluble fraction obtained with D2O titration
presented bands at 2546 cm−1 from antisymmetric OD stretching and 1260 cm−1 from MOH
stretching, which upon deuteration is shifted to 1230 cm−1 (SI9). These bands evidence the
formation of a hydroxo complex 1f. These intermediates were shown to be essential for urea
hydrolysis when stoichiometric urea added to (1) dissolved in a water/acetonitrile system
resulted in the formation of ammonia. Therefore, it seems water should first coordinate
to the nickel centers, forming [Ni2L(H2O)2]+ before the urea interaction. Complex 1d,
obtained from the water titration experiments, enabled us to analyze the importance of this
complex in the reaction since upon addition of an anhydrous urea solution to an anhydrous
solution of complex 1d, stoichiometric amounts of ammonia were produced (0.23 µmol).
A control reaction, using an anhydrous solution of (1) complex, resulted in no ammonia
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formation, strengthening the idea of an aquo/hydroxo complex acting as the active species
in catalysis.

In the jack bean urease active site (PDB: 4GY7), two of the three coordinated water
molecules are possibly aquo-species, whereas the bridging water is suggested to be a
hydroxo-form at the optimum pH [28]. The bridging hydroxide was described to act as a
nucleophile in the reaction [29–32]. Therefore, if the bis-nickel complexes behaved similar
to urease, then the aquo (1d) or hydroxo (1f) intermediates should behave as a nucleophile,
and intermediates 1e and/or 1g should undergo a hydrolysis generating carbamic acid.
However, NMR experiments using 15N urea solution indicate the complexes perform a
different mechanism than urease. Surprisingly, the ammonia/ammonium signal could
not be detected, even when urease was the catalyst, despite the presence of bubbles in the
NMR tube assumed to be ammonia. Upon (1) addition, the signal corresponding to urea
(73 ppm) disappeared, and a new signal at 243 ppm could be detected, which was assigned
to isocyanate (Figure 6B). Isocyanate was formed in an elimination mechanism in which an
aquo or a hydroxo ligand acts as a base to deprotonate the amide nitrogen from urea [18].
Curiously, in the case of complex (2), urea was never completely consumed, even at longer
reaction times since both signals (73 ppm and 243 ppm) were evident (Figure 6B). The
steady condition observed for (2) complex can be expected if there is a dynamic equilibrium
between reactants and products, and the addition of acid or bicarbonate should shift
the equilibrium (Figure 6A). Isocyanate concentration was lowered upon acid addition,
whereas in the presence of bicarbonate, the equilibrium was completely shifted towards
urea (Figure 6C). The equilibrium shift is only possible if isocyanate is further hydrolyzed
to carbon dioxide and ammonia; therefore, it is reasonable to imply that one water molecule
acts as a nucleophile, while a second water molecule acts as a general base during isocyanate
hydrolysis [33].

It should be noted that all urease mimics in the literature that form ammonia undergo
the elimination mechanism [15–17,34]. Barrios and Lippard [15] reasoned that coordinated
urea increases its acidity upon N-coordination, which facilitates the deprotonation by a
nickel-bond hydroxide. In our experiments, urea decomposition does not stop at isocyanate
as it can be further hydrolyzed. The elimination followed by hydrolysis mechanism
indicates a hydrolytic ability of intermediates 1e and 1g in contrast to other nickel complexes
mimetic of urease [16,34,35]. This feature could be due to the employed ligand since it
has been described as an important tool in dictating the orientation of electrophiles and
nucleophiles by coordination of the substrates within the chiral pocket [36]. This type of
ternary complex resembles many enzymatic mechanisms [37]. In the case of our complexes,
the presence of a hydrophobic pocket can lower the pKa of the water molecule bond to
nickel [38], forming a hydroxo-complex (intermediates 1d and 1g) able to deprotonate the
bridged coordinated urea.

To validate that the isocyanate intermediate can undergo hydrolysis under the reaction
conditions, several other compounds were tested as substrates for (1) and (2) complexes
and the urease enzyme. In these catalytic reactions, ammonia formation was quantified by
the Berthelot method (Table 1), and the formation of other molecules was analyzed by gas
chromatography (GC-MS). Intriguingly, there was a similarity in the yields of urease [39]
and both complexes when urea, N-methylurea, formamide, and butylcarbamate were used
as substrates (Table 1). For acetamide, an elimination mechanism involves the formation of
an unstable product, which resulted in low conversion yields for both nickel complexes
(yield up to 4%). In contrast, urease could perform acetamide hydrolysis in high yields
(82%). Urease was unable to hydrolyze N-phenylurea though (1) and (2) complexes could
use an elimination reaction to generate phenyl isocyanate, followed by a hydrolysis reaction
to form aniline (SI10). Hence, we confirmed the hydrolysis of isocyanate can take place
in a bis-nickel coupled system and that urease undergoes a different mechanism from
that observed for our complexes. This result is in agreement to the Barrios and Lippard
study [15] in which when a 50% aqueous solution of acetonitrile was employed, isocyanate
was not appreciably detected, suggesting it was being further hydrolyzed. It has been
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inferred that the positioning of the urea amide close to a bridging hydroxide would be
the reason behind the detection of isocyanate instead of carbamate since the hydroxide
can serve as a general base in an elimination mechanism [10,15,40]. This hypothesis was
corroborated by theoretical models, and urea was shown to coordinate a nickel atom via its
oxygen atom while forming a hydrogen bond through the NH2 group to the bridging OH
ligand [34]. This step is followed by a proton transfer from the bridging H2O ligand to one
of the nitrogen atoms of urea with a subsequent removal of a proton of the amide pointing
towards the bridging hydroxide ligand, forming isocyanate and ammonia [34].
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2.3. Theoretical Calculations of the Possible Mechanisms

To corroborate our hypothesis, theoretical calculations on the transition states of a self-
elimination mechanism and a catalyzed elimination mechanism with [Ni2L(urea)]+ (species
II, Figure 7A) complex were compared to a transition state obtained with [Ni2L(H2O)2]+

complex (species X, Figure 7A). Urea was coordinated in a bridged bidentate configuration
in [Ni2L(Urea)]+ complex due to its higher stability over the monodentate coordination,
which has a binding energy near 292 kJ.mol−1. Contrastingly, the acetate monodentate is
slightly more stable than the corresponding bidentate mode. In general, the urea complex
is 441 kJ.mol−1 less stable than the acetate, indicating a difficulty in substituting acetate
by urea.
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Table 1. Hydrolysis of several substrates by urease (1.6 mM) and the bis-nickel complexes (2.2 mM)
at different reaction times.

(1) (2) Urease

Reaction Yield (%) (±2)

Substrate
Time 5 min 12 h 5 min 12 h 5 min 12 h

Urea 67 64 58 48 92 99

Formamide 70 66 62 87 73 21

Acetamide 6 4 0 4 12 82

N-methylurea 4 6 0 6 6 9

N-phenylurea c
13 a 13.7 a 13.2 a 14 a

0 0
8.6 b 10.6 b 9.9 b 9.6 b

Butilcarbamate 0 0 0 0 0 0
a Phenyl isocyanate; b aniline; c products were detected by GC-MS.

Sequential addition of two water molecules to the [Ni2L(Urea)]+ complex (Path 1,
Figure 7A) resulted in dissociation (OH− + H+) of the first water molecule (species III,
Figure 7A), followed by coordination and hydrogen bond stabilization by the second water
molecule (species IV, Figure 7A). Consequently, coordination of the first water molecule
to one of the nickel centers led to the formation of a hydroxo-complex with the tertiary
alcohol from the ligand holding the proton release. This water addition has an energetic
cost near to 36.3 kJ.mol−1 in relation to [Ni2L(Urea)]+ complex plus one isolated water
molecule (conversion of species II to III, Figure 7). Stabilization of the [Ni2L(Urea)]+-
hydroxo-complex is possible with the addition of the second water molecule (species IV,
Figure 7) due to its hydrogen bond polarization near the hydroxyl group. The stabilization
energy of IV was 71.9 kJ.mol−1 relative to the first water molecule addition, resulting
in a net stabilization of 35.6 kJ.mol−1 from the initial energy of [Ni2L(Urea)]+ (species
II, Figure 7). The respective transition state from IV to V results in an energy barrier of
437 kJ mol−1 (Figure 7). Hence, the formation of [Ni2L(Urea)]+ complex seems to inhibit
any hydrolytic reaction. Ammonia self-elimination from the [Ni2L(Urea)]+ (species II, path
2, Figure 7A) complex resulted in a transition state 221 kJ.mol−1 higher in energy giving
an isocyanate coordinated to the [Ni2L] complexes as an elimination product (species IX,
Figure 7). Calculations starting from the [Ni2L(Urea)]+ complex and ammonia resulted in
the elimination of water to obtain coordinated isocyanate. These results are in agreement
to our experimental analysis in which a [Ni2L(Urea)] was unable to produce ammonia,
suggesting that if urea coordinates before water, then a well of energy stability is reached
to suppress any hydrolytic reaction.

Interestingly, the aquo complex (1d Figure 5 and species X, Figure 7), was theoretically
calculated to be 52 kJmol−1 more stable than the [Ni2L(Urea)]+ (species II, Figure 7) complex,
as shown in Figure 7. Urea coordination by secondary interactions to the [Ni2L(H2O)2]+

complex results in a net stabilization energy of−102 kJ mol−1 (state XI, Figure 7). After urea
interaction through the oxygen, the free amide nitrogen receives a hydrogen from the amide
nitrogen bond to water to form ammonia and isocyanate (transition state 235 kJ mol−1

higher than [Ni2L(H2O)2]+-urea) (support information video). Moreover, the interaction
between coordinated waters and urea seems to have a deep influence on the reaction
transition state. If the interaction takes place through one of the nitrogen atoms, then the
transition state is only 90 kJmol−1 (Figure 7b, XI (N) and XII (N)). Based on these results
and our experimental data, urea decomposition seems to pass through the [Ni2L(H2O)2]+

complex, which stabilizes urea by secondary interactions. This forces it to undergo an
elimination reaction to form isocyanate, which is further hydrolyzed into ammonia and
carbon dioxide.
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Figure 7. Three possible mechanism pathways (A) and their corresponding reaction energy diagrams:
(1) urea coordination followed by water coordination to promote the elimination mechanism forming
isocyanate, which is further hydrolyzed into carbon dioxide and ammonia. (2) Urea-coordinated
self-elimination mechanism. (3) Water coordination followed by urea interaction, through oxygen
or nitrogen to undergo an elimination mechanism forming isocyanate. (B) Theoretical energies
calculated for the several reaction pathways.

These results corroborate our experimental data since once urea coordinates, water
cannot attack it, and after washing the urea complex with water, coordinated urea bands
are still observed at 1731 cm−1 (δsNH), 1656 cm−1 (δasNH), and 1595 cm−1 (νCO) (SI11).
Therefore, these experiments indicate urea coordination to the nickel centers might not
suffice to activate it to hydrolysis in which an outer-sphere encounter complex should be
determined for these reactions. Kryatov et al. [41] stated that depending on the solvent,
urea coordination could be complicated by solvation of the starting complex in which the
higher ability to solvate the complex by a solvent resulted in slower ligand substitution
reactions. This feature is expected as the stronger the bond between solvate and metal, the
slower the formation of an inner-sphere complex by ligand substitution [42]. However, in
the work of Kryatov et al., the authors could not detect the proposed intermediates due to
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a fast equilibrium and low yields of formation of these intermediates [41]. When analyzing
the magnitude of the equilibrium constants, the low values (0.3 and 2.7 M−1, in acetone and
in methanol, respectively) beyond indicating the formation of weak complexes between
urea and 3d metals, could also suggest less stable intermediates, such as outer-sphere
encounter complexes, may be forming. Hence, we wonder if the outer-sphere activation
of urea might be taking place in other urease mimics, which would indicate the major
difference between urease enzyme and its mimics. (See Supplementary Materials).

3. Materials and Methods

All reagents were from Sigma-Aldrich and were used without further purification,
unless otherwise stated.

3.1. Synthesis of (1)

Triethylamine (Et3N, 100 µL, 0.7 mmol, 3.5 eq.) and 70 mg of nickel acetate (0.41 mmol,
2.1 eq.) were added to a solution containing 0.2 mmol of Trost (RS,RS)-Bis-ProPhenol
Ligand (125 mg, 1 eq.) and 10 mL of acetonitrile (HPLC grade). The reaction proceeded
under stirring for 24 h at room temperature. Then, cold diethyl ether was added to the
reaction mixture to precipitate the impurities. After centrifugation, the organic layer was
separated from the solid residue, dried with MgSO4, and filtered, and the solvent was
removed until dryness, yielding 112 mg (58% yield) of the targeted complex. All attempts
to isolate suitable crystals for X-ray analysis have not been successful so far.

C/H/N/Ni (calculated for [C45H46N2Ni2O9].3H2O.ACN): theor./exper.: 62.35/62.3,
6.21/5.98, 4.64/4.40 and 12.97/12.90.

IR: 3200–2800 cm−1 (C-H stretching), 1719 cm−1, 1671 cm−1, 1579 cm−1 (C = O asym-
metric and symmetric stretching).

HRMS (m/z): 843.2178 (C45H47N2Ni2O7
+ = 843.2090) and 797.2119 (C44H45N2Ni2O5

+

= 797.2035).

3.2. Synthesis of (2)

To a Schlenk flask, 97 mg of NiCl2.6H2O were added. The solid was heated to 50 ◦C for
one hour under a high vacuum, converting it into a yellow solid. Anhydrous acetonitrile
(10 mL) was then added to the flask, followed by addition of 0.2 mmol of Trost (RS,RS)-
Bis-ProPhenol Ligand (125 mg, 1 eq.) and 28 µL of triethylamine (1 eq.). The reaction
proceeded under stirring for 24 h at 40 ◦C. After this period, the solution was filtered, and
the filtrate concentrated to 5 mL. Cold diethyl ether was then added to the reaction mixture.
After filtration, any insoluble material was removed and the solvent evaporated to dryness,
yielding 35 mg (36% yield) of the desired complex. All attempts to isolate suitable crystals
for X-ray analysis have not been successful so far.

C/H/N (calculated for [C55H74ClN4Ni2O3].) theor./exper.:66.59/66.52; 7.52/7.69; 5.65/5.35
IR: 3063–2667 cm−1 (C-H), 2493 cm−1 (C = N)
LRMS (m/z): 468.22 (z = 2+) (C51H70N3Ni2O6), 671.22 (z = −1) (C31H41NNi2O8)

3.3. Synthesis of [Ni2L(OH)2]− (5)

To 5 mL of a 0.1 mM solution of (1) in acetonitrile (conductivity: 40.2 µS cm−1), water
aliquots were added (100 µL each) until reaching a stable conductivity of 132 µS cm−1. Any
residual solid was filtered off, and the filtrate was dried for three days at high vacuum for a
further reaction with urea.

3.4. Urea Hydrolysis with [Ni2L(OH)2]− (5)

Complex (3) (2 mg, 2 µmol) was dissolved in 900 µL of anhydrous acetonitrile in
a Schlenk flask under a nitrogen atmosphere. To this solution, 100 µL of a 60 mM urea
solution (in anhydrous acetonitrile) was added, and the reaction mixture was kept at 20 ◦C
for 10 minutes. After this period, a 100 µL aliquot of the reaction was analyzed for ammonia
via the Berthelot method. Two control reactions were composed of: (a) 100 µL of a 60 mM
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urea solution (in anhydrous acetonitrile) and (b) addition of 100 µL of a 60 mM urea solution
(in anhydrous acetonitrile) to a 900 µL solution of (1) (2 mM in anhydrous acetonitrile).

3.5. Determination of Urea Hydrolysis Using Bethelot Method

For the determination of ammonia formation, 100 µL of the complex dissolved in
acetonitrile (2.8 mM) and 900 µL of urea solution (60 mM) were mixed in a 5 mL flask with
stirring. The reaction was kept at 20 ◦C. Aliquots of 100 µL of the reaction were taken at
different reaction times (10, 30, 60, 120, 120, 480, and 600 s) and were mixed with 250 µL
of hypochlorite solution (2.5%) and 250 µL of sodium citrate/NaOH solution (0.38 M
and 0.46 M). After mixing this solution, 300µL of sodium salicylate (2.75 M)/sodium
nitroprussiate (9.4 µM) solution was added. After incubation of the solution at 20 ◦C
for 15 minutes, the solution was analyzed by UV-Vis spectroscopy, monitoring the band
absorption at 650 nm. Quantification was performed by means of a calibration curve with
seven points (R2 = 0.99). Control reactions without the catalysts were also performed. All
analyses were performed in triplicate.

3.6. General Protocol for Substrates Hydrolysis

A total of 50 mol of the substrate was added to a flask containing 1 mL of phosphate
buffer solution (PBS, 20 mM, pH 7). After temperature stabilization at 25 ◦C, 100 L of the
catalyst solution (urease (16 mM) or mimetic (2.2 mM)) was added and the reaction initiated.
A 50 µL sample was taken from the reaction mixture after 10, 20, 30, 60, 120, and 180 s of
reaction and analyzed by the indophenol method to determine the quantity of ammonia
formed during the reaction. Amines or alcohols expected to form in the reaction were
quantified by gas-chromatography analysis. All the hydrolysis reactions were performed
in triplicate.

N-methyl urea, n-butylcarbamate, and acetamide hydrolysis: These reactions were
also tested in 12 h of reaction at 25 ◦C and 50 ◦C.

N-phenyl urea, N-allylurea hydrolysis: These reactions were also tested in 12 h of
reaction at 50 ◦C.

Benzyl benzylcarbamate and benzyl p-toluylcarbamate hydrolysis: These reactions
were also tested at different pHs (3, 6, 9, and 12), temperatures (25, 35, and 45 ◦C), and
solvents (ethanol, water, iso-propanol, and ethylacetate).

3.7. 15N-NMR Experiments
15N-urea (10 mg) was dissolved in 900 L of a 1:1 mixture of CD3CN/water and was

analyzed in a 400 MHz Bruker spectrometer. After addition of 100 µL of a 1 mM acetonitrile
solution of the complexes to the urea solution, the 15N NMR experiment was immediately
reset. The 15N chemical shifts were referenced to the nitromethane.

3.8. Susceptibility Measurements

The dc magnetic susceptibility was measured over 2.0–300 K with a superconducting
quantum interference device magnetometer (Quantum Design MPMS).

3.9. Evaluation of Substrate Hydrolysis by GC-MS

After the reaction from 4.6 was finished, it was analyzed by GC analysis using an
achiral capillary column. The GC-MS conditions were carrier gas-H2, 100 kPa, injector
220 ◦C, detector 220 ◦C. A method composed of an isotherm at 180 ◦C was employed.

3.10. Computational—Geometry Optimization and Transition States

Calculations of full geometry optimization with the Density Functional Theory (DFT),
using B3LYP exchange-correlation functional [43], and SVP function basis sets were per-
formed for the [Ni2L] alone and associated with acetate, urea, and water. Their respective
transition states (TS) were obtained and compared with reagents and products. All calcula-
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tions were carried out using the TURBOMOLE 4.3 [44,45] and Gaussian 9.0 (mainly for TS
refinement) [46] program packages as considered by us previously [47,48].

4. Conclusions

Two new dinuclear nickel complexes were synthesized and characterized. Both com-
plexes were able to produce ammonia from urea solution. We have observed ligand
substitution from acetate to chloride had a deep impact in the inorganic urease models,
enabling a faster reaction rate with chloride as the more labile ligand. Both complexes
were shown to produce isocyanate in the 15N experiments, but the fast ligand exchange in
(2) complex resulted in a stationary equilibrium between urea and products, which could
be easily shifted by pH decrease or bicarbonate addition. The equilibrium shift indicated
isocyanate could suffer hydrolysis in the reaction conditions. When N-phenylurea was
employed as a substrate, phenyl isocyanide and aniline could be detected by gas chro-
matography, corroborating the isocyanate hydrolysis hypothesis. Isocyanate hydrolysis
by a urease analogue was first described in this work, revealing the geometry between
coordinated water and urea is possibly different from the ones obtained in urease enzyme.
Therefore, urea hydrolysis performed by complexes (1) and (2) seems to involve a different
mechanism than the one from urease enzyme. Further refinements in ligand secondary
coordination sphere could have an influence to mimic urease enzyme.
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