How to Regulate the Migration Ability of Emulsions in Micro-Scale Pores: Droplet Size or Membrane Strength?
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oil-Water IFT
2.2. Oil-Water Interface Membrane Strength
2.3. Viscosity of Crude Oil Emulsion
2.4. Three Phase Contact Angle
2.5. Evaluation of Oil Displacement Effect in Visual Glass Model
2.6. Remaining Oil Type Analysis in Visual Glass Model
3. Experiment Section
3.1. Materials
3.2. Visualized Crude Oil Displacement Measurement
3.3. Oil-Water IFT Measurement
3.4. Interfacial Dilational Rheology Measurement
3.5. Crude Oil Emulsion Viscosity Measurement
3.6. Oil/Water/Solid Three Phase Contact Angle Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bhui, U.K.; Sanyal, S.; Saha, R.; Rakshit, S.; Pal, S.K. Steady-state and time-resolved fluorescence spectroscopic study of petroleum crudes in aqueous-surfactant solutions: Its implications for enhanced oil recovery (EOR) during surfactant flooding. Fuel 2018, 234, 1081–1088. [Google Scholar] [CrossRef]
- Mandal, A. Chemical flood enhanced oil recovery: A review. Int. J. Oil Gas Coal Technol. 2015, 9, 241–264. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, A. Core-scale modelling and numerical simulation of zwitterionic surfactant flooding: Designing of chemical slug for enhanced oil recovery. J. Pet. Sci. Eng. 2020, 192, 10733–10744. [Google Scholar] [CrossRef]
- Panthi, K.; Weerasooriya, U.; Mohanty, K.K. Enhanced recovery of a viscous oil with a novel surfactant. Fuel 2020, 282, 118882–118892. [Google Scholar] [CrossRef]
- Johannessen, A.M.; Spildo, K. Enhanced Oil Recovery (EOR) by Combining Surfactant with Low Salinity Injection. Energy Fuels 2013, 27, 5738–5749. [Google Scholar] [CrossRef]
- Zhou, M. Research on Surfactant Flooding in Hightemperature andHigh-salinity Reservoir for Enhanced Oil Recovery. Tenside Surfactants Deterg. 2013, 50, 175–181. [Google Scholar] [CrossRef]
- Aoudia, M.; Al-Maamari, R.S.; Nabipour, M.; Al-Bemani, A.S.; Ayatollahi, S. Laboratory Study of Alkyl Ether Sulfonates for Improved Oil Recovery in High-Salinity Carbonate Reservoirs: A Case Study. Energy Fuels 2010, 24, 3655–3660. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Zhang, Q.; Liu, Y.; Wang, H.-Z.; Cai, H.-Y.; Zhang, F.; Tian, M.-Z.; Liu, Z.-Y.; Zhang, L.; Zhang, L. Effect of Fatty Acids on Interfacial Tensions of Novel Sulfobetaines Solutions. Energy Fuels 2014, 28, 1020–1027. [Google Scholar] [CrossRef]
- Sun, Q.; Zhou, Z.-H.; Zhang, Q.; Zhang, F.; Ma, G.-Y.; Zhang, L.; Zhang, L. Effect of Electrolyte on Synergism for Reducing Interfacial Tension between Betaine and Petroleum Sulfonate. Energy Fuels 2020, 34, 3188–3198. [Google Scholar] [CrossRef]
- Zheng, D.-D.; Zhou, Z.-H.; Zhang, Q.; Zhang, L.; Zhu, Y.; Zhang, L. Effect of inorganic alkalis on interfacial tensions of novel betaine solutions against crude oil. J. Pet. Sci. Eng. 2017, 152, 602–610. [Google Scholar] [CrossRef]
- Cao, J.-H.; Zhou, Z.-H.; Xu, Z.-C.; Zhang, Q.; Li, S.-H.; Cui, H.-B.; Zhang, L.; Zhang, L. Synergism/Antagonism between Crude Oil Fractions and Novel Betaine Solutions in Reducing Interfacial Tension. Energy Fuels 2016, 20, 924–932. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Ma, D.-S.; Zhang, Q.; Wang, H.-Z.; Zhang, L.; Luan, H.-X.; Zhu, Y.; Zhang, L. Surface dilational rheology of betaine surfactants: Effect of molecular structures. Colloids Surf. A 2018, 538, 739–747. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Zhang, Q.; Wang, H.-Z.; Xu, Z.-C.; Zhang, L.; Liu, D.-D.; Zhang, L. Wettability of a PTFE surface by aqueous solutions of zwitterionic surfactants: Effect of molecular structure. Colloids Surf. A 2016, 489, 370–377. [Google Scholar] [CrossRef]
- Miñana-Perez, M. Solubilization of polar oils with extended surfactants. Colloids Surf. A 1995, 100, 217–224. [Google Scholar]
- Kang, W.-l. Synthesis and interfacial tension of fatty alcohol polyoxyethylene polyoxypropylene ether carboxylate. Chem. Eng. Oil Gas. 2006, 35, 304–308. [Google Scholar]
- Ge, J.-J. Study on Dynamic Interfacial Tension of Polyoxypropylene Nonylphenol Ether Sulfate Salt/Alkali System and Crude Oil. J. Xi’an Shiyou Univ. 2008, 23, 70–76. [Google Scholar]
- Jiang, Q.; Du, Y.; Zhang, L.; Ma, W.; Yan, F.; Zhang, L.; Zhao, S. Wettability of a Polymethylmethacrylate Surface by Extended Anionic Surfactants: Effect of Branched Chains. Molecules 2021, 26, 863. [Google Scholar] [CrossRef]
- Franco, C.A.; Giraldo, L.J.; Candela, C.H.; Bernal, K.M.; Villamil, F.; Montes, D.; Lopera, S.H.; Franco, C.A.; Cortes, F.B. Design and Tuning of Nanofluids Applied to Chemical Enhanced Oil Recovery Based on the Surfactant-Nanoparticle-Brine Interaction: From Laboratory Experiments to Oil Field Application. Nanomaterials 2020, 10, 1579. [Google Scholar] [CrossRef]
- Kasza, P.; Czupski, M.; Wilk, K.; Masłowski, M.; Moska, R.; Leśniak, Ł. Laboratory Testing of Novel Polyfraction Nanoemulsion for EOR Processes in Carbonate Formations. Energies 2020, 13, 4175. [Google Scholar] [CrossRef]
- Tichelkamp, T.; Hosseinzade Khanamiri, H.; Nourani, M.; Åge Stensen, J.; Torsæter, O.; Øye, G. EOR Potential of Mixed Alkylbenzenesulfonate Surfactant at Low Salinity and the Effect of Calcium on “Optimal Ionic Strength”. Energy Fuels 2016, 30, 2919–2924. [Google Scholar] [CrossRef]
- Karadimitriou, N.K.; Joekar-Niasar, V.; Hassanizadeh, S.M.; Kleingeld, P.J.; Pyrak-Nolte, L.J. A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments. Lab Chip 2012, 12, 3413–3418. [Google Scholar] [CrossRef] [PubMed]
- Karadimitriou, N.K.; Hassanizadeh, S.M. A Review of Micromodels and Their Use in Two-Phase Flow Studies. Vadose Zone J. 2012, 11, vzj2011.0072. [Google Scholar] [CrossRef]
- Anbari, A.; Chien, H.T.; Datta, S.S.; Deng, W.; Weitz, D.A.; Fan, J. Microfluidic Model Porous Media: Fabrication and Applications. Small 2018, 14, 1703575–1703590. [Google Scholar] [CrossRef] [PubMed]
- Lifton, V.A. Microfluidics: An enabling screening technology for enhanced oil recovery (EOR). Lab Chip 2016, 16, 1777–1796. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Jiang, H.; Xu, F.; Fan, Z.; Su, H.; Li, J. New insights into flow physics in the EOR process based on 2.5D reservoir micromodels. J. Pet. Sci. Eng. 2019, 181, 106214–106227. [Google Scholar] [CrossRef]
- Bina, O.; Aminshahidy, B.; Dadvar, M.; Moghadasi, J. Capillary continuity in fractured porous media; part II: Evaluation of fracture capillary pressure in the presence of liquid bridges using a novel microfluidic approach. J. Mol. Liq. 2020, 314, 113666–113680. [Google Scholar] [CrossRef]
- Mohammadzadeh, O.; Sedaghat, M.H.; Kord, S.; Zendehboudi, S.; Giesy, J.P. Pore-level visual analysis of heavy oil recovery using chemical-assisted waterflooding process–Use of a new chemical agent. Fuel 2019, 239, 202–218. [Google Scholar] [CrossRef]
- Xie, C.; Lv, W.; Wang, M. Shear-thinning or shear-thickening fluid for better EOR?—A direct pore-scale study. J. Pet. Sci. Eng. 2018, 161, 683–691. [Google Scholar] [CrossRef]
- Lei, W.; Liu, T.; Xie, C.; Yang, H.; Wu, T.; Wang, M. Enhanced oil recovery mechanism and recovery performance of micro-gel particle suspensions by microfluidic experiments. Energy Sci. Eng. 2019, 8, 986–998. [Google Scholar] [CrossRef]
- Yu, F.; Jiang, H.; Fan, Z.; Xu, F.; Su, H.; Cheng, B.; Liu, R.; Li, J. Features and imbibition mechanisms of Winsor I type surfactant solution in oil-wet porous media. Pet. Explor. Dev. 2019, 46, 1006–1013. [Google Scholar] [CrossRef]
- Unsal, E.; Broens, M.; Armstrong, R.T. Pore scale dynamics of microemulsion formation. Langmuir 2016, 32, 7096–7108. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Luan, H.; Gao, W.; Guo, Y.; Chen, Y. Pore scale and macroscopic visual displacement of oil-in-water emulsions for enhanced oil recovery. Chem. Eng. Sci. 2019, 197, 404–414. [Google Scholar] [CrossRef]
- Saadat, M.; Yang, J.; Dudek, M.; Øye, G.; Tsai, P.A. Microfluidic investigation of enhanced oil recovery: The effect of aqueous floods and network wettability. J. Pet. Sci. Eng. 2021, 203, 108647–108658. [Google Scholar] [CrossRef]
- Howe, A.M.; Clarke, A.; Mitchell, J.; Staniland, J.; Hawkes, L.; Whalan, C. Visualising surfactant enhanced oil recovery. Colloids Surf. A. 2015, 480, 449–461. [Google Scholar] [CrossRef]
- Yu, F.; Gao, Z.; Zhu, W.; Wang, C.; Liu, F.; Xu, F.; Jiang, H.; Li, J. Experimental research on imbibition mechanisms of fractured reservoirs by microfluidic chips. Pet. Explor. Dev. 2021, 48, 1162–1172. [Google Scholar] [CrossRef]
- Armstrong, R.T.; Berg, S. Interfacial velocities and capillary pressure gradients during Haines jumps. Phys. Rev. E 2013, 88, 043010–043019. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Xu, Z.; Zhou, H.; Wang, Y.; Liao, Q.; Zhang, L.; Zhao, S. Interfacial behaviors of betaine and binary betaine/carboxylic acid mixtures in molecular dynamics simulation. J. Mol. Liq. 2017, 240, 412–419. [Google Scholar] [CrossRef]
- Cai, H.-Y.; Zhang, Y.; Liu, Z.-Y.; Li, J.-G.; Gong, Q.-T.; Liao, Q.; Zhang, L.; Zhao, S. Molecular dynamics simulation of binary betaine and anionic surfactant mixtures at decane-Water interface. J. Mol. Liq. 2018, 266, 82–89. [Google Scholar] [CrossRef]
- He, H.-J.; Xiao, H.; Cao, X.-L.; Yuan, F.-Q.; Jiang, X.-D.; Zhang, L.; Zhang, L.; Zhao, S. A helical shape of polyoxypropylene chain for extended surfactant molecule at the water/oil interface: Theoretical and experimental study. Fuel 2022, 312, 122835–122844. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Zhou, Z.-H.; Han, L.; Zhang, Y.-Q.; Zhang, Q.; Ma, D.-S.; Ma, W.-J.; Zhang, L.; Zhang, L. Mechanism responsible for the reduction of interfacial tension by extended surfactants. Colloids Surf. A 2022, 634, 128013. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, Z.-H.; Shangguan, Y.-N.; Han, L.; Wang, L.-L.; Fan, W.; Zhang, Q.; Zhang, L.; Ma, G.-Y.; Zhang, L. Effect of bivalent cations on the interfacial tensions of extended anionic surfactant solutions. J. Mol. Liq. 2022, 349, 118162–118170. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, Z.-H.; Dong, L.-F.; Wang, H.-Z.; Cai, H.-Y.; Zhang, F.; Zhang, L.; Zhang, L.; Zhao, S. Dilational rheological properties of sulphobetaines at the water–decane interface: Effect of hydrophobic group. Colloids Surf. A 2014, 455, 97–103. [Google Scholar] [CrossRef]
- Dong, L.; Cao, X.; Li, Z.; Zhang, L.; Xu, Z.; Zhang, L.; Zhao, S. Dilational rheological properties of novel zwitterionic surfactants containing benzene ring and polyoxyethylene group at water–decane interface. Colloids Surf. A 2014, 444, 257–268. [Google Scholar] [CrossRef]
- Song, X.-W.; Zhang, L.; Wang, X.-C.; Zhang, L.; Zhao, S.; Yu, J.-Y. Study on Foaming Properties of Polyoxyethylene Alkyl Ether Carboxylic Salts with Different Structures. J. Dispers. Sci. Technol. 2011, 32, 247–253. [Google Scholar] [CrossRef]
- Zhang, J.-C.; Zhang, L.; Wang, X.-C.; Zhang, L.; Zhao, S.; Yu, J.-Y. A Surface Rheological Study of Polyoxyethylene Alkyl Ether Carboxylic Salts and the Stability of Corresponding Foam. J. Dispers. Sci. Technol. 2011, 32, 372–379. [Google Scholar] [CrossRef]
- Hu, S.S.; Zhou, Z.H.; Zhang, L.; Xu, Z.C.; Gong, Q.T.; Jin, Z.Q.; Zhang, L.; Zhao, S. Adsorption behaviors of novel betaines on the wettability of the quartz surface. Soft Matter 2015, 11, 7960–7968. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Szymczyk, K.; Janczuk, B. Correlation between surface free energy of quartz and its wettability by aqueous solutions of nonionic, anionic and cationic surfactants. J. Colloid Interface Sci. 2009, 340, 243–248. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, M.; Husein, M.; Bryant, S. Effects of Oil Viscosity on the Plugging Performance of Oil-in-Water Emulsion in Porous Media. Ind. Eng. Chem. Res. 2018, 57, 7301–7309. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, H.; Li, J. Study on the change law of remaining oil flow state in pore scale based on microfluidic model. Pet. Sci. Bull. 2020, 5, 362–377. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, Z.H.; Gao, M.; Han, L.; Zhang, L.; Yan, F.; Wang, M.; Zhang, L. Adsorption and wettability of extended anionic surfactants with different PO numbers on a polymethylmethacrylate surface. Soft Matter 2021, 17, 6426–6434. [Google Scholar] [CrossRef]
- Bian, X. Crude oil component separation and structure identification. Guangzhou Chem. Ind. 2014, 42, 134–137. [Google Scholar]
- Wang, C.; Cao, X.-L.; Guo, L.-L.; Xu, Z.-C.; Zhang, L.; Gong, Q.-T.; Zhang, L.; Zhao, S. Effect of molecular structure of catanionic surfactant mixtures on their interfacial properties. Colloids Surf. A 2016, 509, 601–612. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.C.; Gong, Q.T.; Zhang, L.; Luo, L.; Zhao, S.; Yu, J.Y. Interfacial dilational properties of tri-substituted alkyl benzene sulfonates at air/water and decane/water interfaces. J. Colloid Interface Sci. 2008, 327, 451–458. [Google Scholar] [CrossRef]
- Zhu, Y.-W.; Zhang, L.; Song, X.-W.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J.-Y. Effect of electrolyte on interfacial dilational properties of chemical flooding systems by relaxation measurements. Fuel 2011, 90, 3172–3178. [Google Scholar] [CrossRef]
- Alzobaidi, S.; Wu, P.; Da, C.; Zhang, X.; Hackbarth, J.; Angeles, T.; Rabat-Torki, N.J.; MacAuliffe, S.; Panja, S.; Johnston, K.P. Effect of surface chemistry of silica nanoparticles on contact angle of oil on calcite surfaces in concentrated brine with divalent ions. J. Colloid Interface Sci. 2021, 581, 656–668. [Google Scholar] [CrossRef]
Glass Model | Parallel Straight Channel | Heterogeneous Fracture | Homogeneous Simulation | |
---|---|---|---|---|
Surfactant | ||||
ASB | 53.6% | 21.6% | 49.7% | |
A145 | 66.0% | 24.7% | 86.3% |
Oil | Acid Value (mgKOH/g) | Saturate % | Aromatic % | Resin % | Asphaltene % |
---|---|---|---|---|---|
Daqing crude oil | 0.12 | 73.11 | 8.32 | 18.41 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Zhou, Z.-H.; Han, L.; Zou, X.-Y.; Li, G.-Q.; Zhang, Q.; Zhang, F.; Zhang, L.; Zhang, L. How to Regulate the Migration Ability of Emulsions in Micro-Scale Pores: Droplet Size or Membrane Strength? Molecules 2023, 28, 1672. https://doi.org/10.3390/molecules28041672
Sun Q, Zhou Z-H, Han L, Zou X-Y, Li G-Q, Zhang Q, Zhang F, Zhang L, Zhang L. How to Regulate the Migration Ability of Emulsions in Micro-Scale Pores: Droplet Size or Membrane Strength? Molecules. 2023; 28(4):1672. https://doi.org/10.3390/molecules28041672
Chicago/Turabian StyleSun, Qi, Zhao-Hui Zhou, Lu Han, Xin-Yuan Zou, Guo-Qiao Li, Qun Zhang, Fan Zhang, Lei Zhang, and Lu Zhang. 2023. "How to Regulate the Migration Ability of Emulsions in Micro-Scale Pores: Droplet Size or Membrane Strength?" Molecules 28, no. 4: 1672. https://doi.org/10.3390/molecules28041672
APA StyleSun, Q., Zhou, Z. -H., Han, L., Zou, X. -Y., Li, G. -Q., Zhang, Q., Zhang, F., Zhang, L., & Zhang, L. (2023). How to Regulate the Migration Ability of Emulsions in Micro-Scale Pores: Droplet Size or Membrane Strength? Molecules, 28(4), 1672. https://doi.org/10.3390/molecules28041672