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Abstract: Cytochrome P450 17A1 (CYP17A1) is one of the key enzymes in steroidogenesis that
produces dehydroepiandrosterone (DHEA) from cholesterol. Abnormal DHEA production may
lead to the progression of severe diseases, such as prostatic and breast cancers. Thus, CYP17A1 is a
druggable target for anti-cancer molecule development. In this study, cheminformatic analyses and
quantitative structure–activity relationship (QSAR) modeling were applied on a set of 962 CYP17A1
inhibitors (i.e., consisting of 279 steroidal and 683 nonsteroidal inhibitors) compiled from the ChEMBL
database. For steroidal inhibitors, a QSAR classification model built using the PubChem fingerprint
along with the extra trees algorithm achieved the best performance, reflected by the accuracy values
of 0.933, 0.818, and 0.833 for the training, cross-validation, and test sets, respectively. For nonsteroidal
inhibitors, a systematic cheminformatic analysis was applied for exploring the chemical space,
Murcko scaffolds, and structure–activity relationships (SARs) for visualizing distributions, patterns,
and representative scaffolds for drug discoveries. Furthermore, seven total QSAR classification
models were established based on the nonsteroidal scaffolds, and two activity cliff (AC) generators
were identified. The best performing model out of these seven was model VIII, which is built upon
the PubChem fingerprint along with the random forest algorithm. It achieved a robust accuracy
across the training set, the cross-validation set, and the test set, i.e., 0.96, 0.92, and 0.913, respectively.
It is anticipated that the results presented herein would be instrumental for further CYP17A1 inhibitor
drug discovery efforts.

Keywords: CYP17A1; prostate cancer; cheminformatics; quantitative structure–activity relationship;
Murcko scaffold

1. Introduction

Prostate cancer is highly prevalent in men worldwide. The androgen–androgen re-
ceptor axis is essential for disease progression. Thus, androgen-deprivation therapy, either
medically or surgically, is a front-line prostate cancer treatment. However, after a median
of 24 months of androgen-deprivation therapy, treatment resistance is inevitable, as demon-
strated by a relapse in serum prostate-specific antigen levels [1]. Dehydroepiandrosterone
(DHEA), secreted from the adrenal gland, fuels the development of castration-resistant
prostate cancer (CRPC). Cytochrome P450 17A1 (CYP17A1) is essential for the generation
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of DHEA from cholesterol. Abiraterone acetate, termed abiraterone hereafter, was ap-
proved for CRPC treatments in 2011, highlighting the importance of CYP17A1 in prostate
cancer management.

A series of small molecules has been reported as CYP17A1 inhibitors. Ketoconazole
is the first nonsteroidal CYP17A1 inhibitor used for prostate cancer treatment, with poor
selectivity and mild androgen receptor agonist effects [2]. Abiraterone, with a similar
steroidal scaffold to the natural substrates of CYP17A1 (pregnenolone or progesterone),
inhibits both the 17,20-lyase and 17α-hydroxylase activities of CYP17A1 more potently.
However, the inhibition of 17α-hydroxylase activities prevents the generation of cortisol,
leading to side effects, including hypertension and fluid overload [3]. Prednisone is co-
administered with abiraterone to supplement cortisol defects. Seviteronel and orteronel
have been developed as the selective nonsteroidal inhibitors of 17,20-lyase [2]. In preclinical
studies, both drugs preferentially inhibited 17,20-lyase over 17α-hydroxylase, thus offering
a potential advantage over abiraterone from the perspective of not requiring concomitant
therapy with prednisone. Galeterone is a steroidal CYP17A1-lyase inhibitor with mod-
ifications on the D-ring at the C17 position of abiraterone [4]. Galeterone has also been
reported to have multiple mechanisms of action, including CYP17A1 inhibition, androgen
receptor antagonism, and a decrease in intratumoral androgen receptor levels. In clinical
trials, orteronel and galeterone showed promising but insufficient effects in prostate cancer
patients (SWOG-1216; ARMOR 1 and 2), indicating that further drug optimizations should
be performed.

Computer-aided drug discoveries are indispensable operations in the entire process of
drug discovery. As a multidisciplinary field, it involves data science, statistics, pharmacol-
ogy, medicinal chemistry, structural biology and computational biology, etc. Ligand-based
drug discoveries are common approaches used in computer-aided drug discovery. This
focuses on ligands, which are chemical entities that can bind to the biological target, while
information with respect to the target is not required. Ligand-based drug discovery can
be applied to identify hits or to optimize hits/leads using two important approaches,
namely the quantitative structure–activity/property relationship (QSAR/QSPR) and phar-
macophore modeling [5]. The former is a mathematical model used for correlating the
bioactivities or physicochemical properties of molecules with their (sub)structures. The
latter attempts to identify the interactions between a ligand and its receptor.

The essence of QSAR is based on two major principles: (i) structure dictates activity
and (ii) molecules with similar structures demonstrate similar bioactivities or properties.
As a methodology in chemistry and drug discovery, QSAR/QSPR experienced remarkable
transformations since its introduction 60 years ago. As early as the time of Corwin Hansch,
QSAR/QSPR modeling operations were performed on a small number of molecules, with
few molecular descriptors, employing multilinear regression. Now, thanks to the devel-
opment of information technology and artificial intelligence, QSAR/QSPR has evolved
with respect to the application of a large dataset, equipped with sophisticated molecular
descriptors, advanced machine learning algorithms, and various validation techniques. The
Organization of Economic Cooperation and Development established principles for QSAR
modeling consisting of five rules: defined endpoint, unambiguous algorithms, defined
applicability domain, modeling validation, and mechanistic interpretation, if possible. This
involves various steps, including data compilation, data splitting, the machine learning pro-
cess, an evaluation of the robustness and predictability of the model, and the mechanistic
interpretation of feature importance [6–8], etc.

In this study, we performed systematic cheminformatic analyses and machine learning
modeling techniques to explore the chemical space of CYP17A1 inhibitors. By separating the
activities into four categories, viz., potent (pIC50 ≥ 8), active (8 > pIC50 ≥ 7), intermediate
(7 > pIC50 ≥ 6), and inactive (pIC50 < 6), we built one QSAR classification model (model I) to
reveal the interrelation between steroidal inhibitor structures and the associated activities.
The structures were represented using PubChem and KlekotaRothCount fingerprints
provided by the PaDEL package [9].
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For nonsteroidal inhibitors, we visualized the associated chemical space, extracted the
representative scaffolds, analyzed their diversity, and constructed seven classification QSAR
models (model II to model VIII, according to the scaffolds) for bioactivity predictions. The
findings in this study can provide guidance, leading the optimization of further CYP17A1
inhibitor drug discoveries.

2. Results
2.1. Exploratory Data Analysis Visualization

Exploratory data analysis was performed to compare nonsteroidal and steroidal
molecules based on six drug-likeness descriptors, including the molecular weight (MW),
the octanol–water partition coefficient (LogP), the number of hydrogen bond acceptors
(nHA), the number of hydrogen bond donors (nHD), the number of rotatable bonds
(nRot), and the topological polar surface area (TPSA). Only potent and active inhibitors
(pIC50 ≥ 7.0) were employed in the analysis. Results are shown in Figure 1 and Table 1.
All properties demonstrated nonparametric distribution patterns. Significant differences
between nonsteroidal and steroidal inhibitors were identified in properties, such as LogP,
nHA, nRot, and TPSA, while the U test showed no or less significant differences between
the nonsteroidal and steroidal inhibitors in the properties of MW and of nHD. Table 1
shows these details. Nonsteroidal inhibitors often had a smaller LogP but larger nHA, nRot,
and TPSA in comparison with those of the steroidal ones, as shown in Figure 1. Notably,
the nonsteroidal distributions on MW, nHA, nHD, and TPSA were also more skewed (less
symmetric), as reflected by their skewness. All distributions were platykurtic distributions
(diversely distributed) since all kurtosis measures were smaller than 3. Nevertheless, the
nonsteroidal distributions of nHA and nHD still showed much larger kurtoses than the
steroidal ones.
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Figure 1. Box plot of drug likeness descriptors amongst nonsteroidal and steroidal inhibitors. Only
potent/active molecules in nonsteroidal and steroidal categories were selected for the comparison.
The average and the median are indicated by the red and blue lines, while the lower and upper
quartiles are labeled by the lower and upper boundaries of the box, respectively. Panel (a–f) show the
distributions of LogP, MW, nHA, nRot, nHD, and TPSA, respectively.
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Table 1. Exploratory data analysis and comparison performed for nonsteroidal and steroidal in-
hibitors. Six drug-likeness descriptors were employed. They included molecular weight (MW),
the octanol-water partition coefficient (LogP), the number of hydrogen bond acceptors (nHA), the
number of hydrogen bond donors (nHD), the number of rotatable bonds (nRot), and the topological
polar surface area (TPSA).

Results
MW LogP nHA

Nonsteroidal Steroidal Nonsteroidal Steroidal Nonsteroidal Steroidal

p-value 0.17162521 3.01167828 · 10−16 2.35402105 · 10−37

min 255.05 272.21 1.03 3.13 1 1
max 700.33 446.29 6.48 6.18 12 5

median 354 363.26 4.02 4.72 5 3
mean 380.09 365.59 3.90 4.67 4.69 2.65

skewness 1.36 0.56 −0.18 −0.06 1.14 0.55
kurtosis 1.49 1.07 −0.13 −0.65 1.54 0.14

Results
nHD nRot TPSA

Nonsteroidal Steroidal Nonsteroidal Steroidal Nonsteroidal Steroidal

p-value 0.02433225 1.02741519 · 10−37 4.7408051 · 10−20

min 0 0 1 0 12.89 12.89
max 4 3 13 5 120.27 75.21

median 0 1 4 1 49.33 34.89
mean 0.65 0.68 4.15 1.49 57.78 38.69

skewness 1.53 0.62 0.81 1.92 0.59 0.28
kurtosis 1.63 −0.17 0.34 2.51 −0.13 0.52

2.2. Chemical Space Visualization via Principal Component Analysis

Principal component analyses (PCAs) were performed over the distribution of the six
drug-likeness properties, as mentioned in Table 1, with all molecules. By projecting the
data onto the first two principal components (PC1 and PC2), one can visualize the chemical
space occupied by the nonsteroidal molecules and by the steroidal molecules. As depicted
in Figure 2, nonsteroidal data distributions were significantly different from steroidal data.
The former spread widely and overlapped with the latter, which only occupied a small
area in the plot. This implies that the chemical structure, or the scaffolds of molecules,
are more diverse for the nonsteroidal compounds than for the steroidal compounds. Such
visualization is valid because the top two components (PC1 and PC2) already accounted
for 82.6% of the variance. Introducing the third principal component (PC3) will increase
the accumulated variance to about 94.3%. The detailed component compositions and the
accumulated variance are listed in Table 2. The first component PC1 mostly comprised
nHA (0.535), TPSA (0.516), and nRot (0.494), followed by MW (0.383) and LogP (−0.218). In
contrast, PC2 mostly comprised nHD (0.578), LogP (−0.597), and MW (−0.486), followed
by TPSA (0.210) and nRot (−0.159). Notably, PC1 and PC2 had very low contributions from
nHD and nHA, respectively, while PC3 had a dominant contribution from nHD (0.757).

Table 2. Compositions of the top three principal components in terms of the six properties and the
accumulated variance.

Property PC1 PC2 PC3

MW 0.383 −0.486 0.270
LogP −0.218 −0.597 0.556
nHA 0.535 −0.056 −0.195
nHD 0.097 0.578 0.757
nRot 0.494 −0.159 0.014
TPSA 0.516 0.210 0.081

Cumulated variance (%) 54.484 82.646 94.274
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Figure 2. Chemical space occupied by nonsteroidal molecules (blue circle) and steroidal molecules
(red circle) and spanned by the first two principal components (PC1 and PC2). The analysis was
performed for all molecules regardless of their bioactivity classes. The detailed compositions of PC1
and PC2 are provided in Table 2. In comparison with nonsteroidal data, steroidal data were centered
in a much smaller area.

2.3. QSAR Modeling and Validation for Steroidal Inhibitors

After the initial analysis, a classification QSAR model (model I) was built to predict the
bioactivity class for a steroidal compound. PubChem fingerprints were employed for gen-
erating the fingerprint information of steroidal CYP17A1 inhibitors, and 12 representative
classification algorithms were tested to construct the model with the best performance. The
tested algorithms included the decision tree (DT), extra trees (ET), random forest (RF), gra-
dient boost (GB), light gradient boosting machine (LGBM), extreme gradient boost (XGB),
multilayer perceptron (MLP), logistic regression (LR), K-nearest neighbor (KNN), support
vector machine (SVM), naïve-Bayes (NB), and Gaussian process (GP) algorithms. The
descriptions for these algorithms are provided in the Materials and Methods (Section 4.5.3).
The performances of the algorithms were evaluated via the accuracy and Matthew’s corre-
lation coefficient (MCC). These two quantities are defined using the true positive (TP), true
negative (TN), false negative (FN), and false positive (FP).

The performances of the 12 algorithms are listed in Table 3. The results are shown
separately for the training set (labeled as Training), the 10-fold cross-validation set (labeled
as CV), and the test set (labeled as Test). According to this table, ET provides the best
performance with an accuracy of 0.933, 0.818, and 0.833 for the training data, the 10-fold
cross-validation set, and the test set, respectively. This was selected as our QSAR model for
the steroidal compounds (model I). The confusion matrices for the model I training set and
test set are depicted in Figure 3a. The diagonal elements are the TP for each class. The sum
of each row gives the TP+FN for each class, while the sum of each column yields the TP+FP
for each class. Finally, the sum over the matrix without a class’s column and row gives the
TN for that class. Based on these observations, one can prove that the multiclass accuracy
reported in Table 3 is the same as the multiclass micro-averaged recall; see Section 4.5.4 for
more details. Thus, there is no need to report the micro-averaged recall separately.
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Figure 3. (a) Confusion matrices of model I for the training set and the test set. Labels p, a, int, and
ia stand for potent, active, intermediate, and inactive compounds, respectively. The prediction was
quite good, as the diagonal values are much larger than the off-diagonal ones. (b) Visualization of the
applicability domain of model I. The distributions of the training set (red circle) and of the test set
(blue circle) in the chemical space are depicted, spanned based on principal components PC1 and
PC2. As the two sets of data are distributed over the same area in the chemical space, the QSAR
model constructed with the training set should predict the bioactivity well for the test set, i.e., the test
set falls within the applicability domain.

Notably, algorithms, such as RF, DT, XGB, LGBM, GB, MLP, and GP, also performed
quite well. Now, one may notice that the performance of the test set is quite good and is
comparable with the performance of the cross-validation set or even the performance of the
training set. This can be explained by how these data are distributed in the chemical space.
Figure 3b shows the distributions of the training data and test data in the chemical space,
spanned based on principal components PC1 and PC2. The distribution of the test data
overlapped nicely with the distribution of the training data, demonstrating that the test set
falls within the applicability domain. In other words, successful bioactivity predictions can
be achieved, if the QSAR model is constructed and applied only for molecules with the
same scaffold.
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Table 3. Performance metrics of model I built with the 12 classification algorithms. The abbreviations
of the algorithms are defined in the text. The performance is evaluated via the accuracy and MCC.
Additionally, the performance is calculated separately for the training set (labeled as Training), the
10-fold cross-validation (labeled as CV), and the test set (labeled as Test). PubChem fingerprint is
employed to represent the structures. The best performing algorithm is ET (underlined).

Accuracy MCC

Training CV Test Training CV Test

DT 0.933 0.788 0.789 0.911 0.724 0.724
ET 0.933 0.818 0.833 0.911 0.766 0.784
RF 0.933 0.816 0.844 0.912 0.762 0.798
GB 0.933 0.776 0.856 0.911 0.711 0.809

LGBM 0.933 0.779 0.844 0.911 0.713 0.796
XGB 0.933 0.779 0.833 0.912 0.713 0.783
SVC 0.768 0.718 0.667 0.693 0.629 0.559
MLP 0.916 0.788 0.844 0.890 0.722 0.798
LR 0.760 0.670 0.633 0.681 0.568 0.509

KNN 0.763 0.653 0.667 0.690 0.544 0.566
NB 0.542 0.514 0.456 0.401 0.365 0.298
GP 0.908 0.796 0.811 0.879 0.736 0.751

2.4. Murcko Scaffold Analysis and R-Group Decomposition-Based Structure–Activity Relationship
for Nonsteroidal Inhibitors

Following the previous success in QSAR modeling for steroidal compounds, we
planned to carry out the same modeling operation for nonsteroidal molecules. However,
the chemical structures of nonsteroidal molecules are more diverse, i.e., there are many
different scaffolds. Thus, the underlying scaffolds must be identified before the QSAR
models can be constructed. To achieve this, we visualized the nonsteroidal scaffolds,
analyzed the level of diversity, and calculated the scaffold enrichment factor.

Table 4 provides the overview of different types of scaffolds found in the nonsteroidal
inhibitors. Generally, molecules with a pIC50 ≥ 7.0 (active and potent molecules) demon-
strated lower scaffold diversity than those with a pIC50 < 7.0. Hence, finding more novel
scaffolds for androgen receptor antagonists is desired.

Table 4. Scaffold diversity analysis for nonsteroidal inhibitors. The number of total nonsteroidal
compounds, the number of Murcko scaffolds, the number of singleton Murcko scaffolds, and the
number of cyclic skeletons are denoted by N, Ns, Nss, and Ncsk, respectively.

N Ns Nss Ncsk Ns/N Nss/N Ncsk/N Ncsk/Ns

Complete 683 268 162 150 0.392 0.237 0.220 0.560
pIC50 ≥ 7.0 351 165 105 91 0.470 0.299 0.259 0.552
pIC50 < 7.0 332 151 101 101 0.455 0.304 0.304 0.627

Using Murcko scaffolds, nonsteroidal molecules can be sorted based on their structures.
The distribution of the bioactivity (pIC50) thus can be visualized for each scaffold. Figure 4a
shows the pIC50 of scaffolds with a frequency of occurrence (Murcko frequency) equal to
or larger than 10. Among the 11 scaffolds in the figure, 10 of them showed datapoints with
a pIC50 ≥ 7, viz., a scaffold containing active or potent compounds. In particular, some
scaffolds contained only active or potent molecules, e.g., structures in the middle of the
panel with all datapoints with a pIC50 ≥ 7. These scaffolds are worthy of further analyses.
A complete scatter plot of the Murcko scaffold vs. pIC50 for 683 nonsteroidal inhibitors can
be found in the SI (Figure S1). On the other hand, scaffolds with Murcko frequencies that
are <10 could still be hidden gems for new drug development if they have a good scaffold
enrichment factor (EF). The EF is the ratio of the proportion of active molecules with a given
scaffold to the proportion of active molecules in the entire dataset. Thus, EF ≥ 1 means that
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there are more active/potent molecules in the ratio used in the current scaffold than that
used on average. Hence, based on these two criteria, 20 Murcko scaffolds were selected
for further analysis. Their structures are depicted in Figure 4b. Among the 20 scaffolds,
scaffold ID 6, 9, 10, 15, 18, and 20 had the highest EF value 1.961. These are scaffolds with all
molecules being active or potent against CYP17A1. These are the most favorable scaffolds.
On the other hand, scaffolds 4, 5, 7, 11, 12, 14, 16, and 17 had an EF between 1 and 1.961,
indicating that they are also favorable scaffolds but just not as favorable as the previous
ones. Finally, scaffolds 1, 2, 3, 8, and 13 had an EF smaller than 1, meaning that they are
unfavorable scaffolds with a proportion of potent/active molecules less than the one from
the entire dataset.

Based on the 20 scaffolds, we can further discuss how the functional group substitution
affects the bioactivities. For this purpose, the core fragments of each scaffold are depicted in
Figure 4c. These Murcko-based core fragments were obtained via the automatic structure–
activity relationship (SAR) analysis from DataWarrior, and they are labeled by the scaffold
ID and core ID, e.g., X-Y represents the core fragment Y from scaffold X. The detailed
impact of functional group substitutions on bioactivities is listed in Table 5. Here, we briefly
mention some special cases with highly favorable fragments:

1. Scaffold 1 has two core fragments. Fragment 1-1 has fluoride and all molecules within
this group are active. Fragment 1-2 generally has weaker bioactivities than fragment
1-1, and its functional group substitution is provided in Table 5.

2. Scaffold 6 only has one core fragment (6-1). All molecules in this scaffold series are
strong inhibitors regardless of the substitutions.

3. Scaffolds 9 and 10. These scaffolds are steroid-like, with ring A replaced by a seven-
membered ring. All molecules in these scaffolds are highly active against CYP17A1
regardless of the substitutions.

4. Scaffold 14 only has one core fragment (14-1). Molecules with methyl groups on the
R1 or R2 positions are active.

5. Scaffold 15 only has one core fragment (15-1). All molecules in this scaffold are
potent or active against CYP17A1. All functional groups at the R1 position are
sulfonyl groups.

6. Scaffolds 16, 17, 18, and 19 are similar scaffolds sharing the same cyclic skeleton. All
molecules in scaffold 18 are either potent or active against CYP17A1 regardless of the
substitution. For other scaffolds, compounds with fluoride-containing groups on R1
or R2 positions are active.

7. Scaffold 20 has only one core fragment (20-1). All molecules in this scaffold are potent
or active against CYP17A1, and all functional groups on the R1 position contain the
carbonyl group.

Table 5. List of the effects on functional group substitutions on core fragments, as shown in Figure 4c.
Fragments with only one single substitution are not listed but discussed in the text.

Scaffold ID—Core ID Effect of Substitutions

1-2 R4 position: hydroxy group can increase bioactivities, but nitrogen/sulfur/halogen groups reduce activities.
2-1 Hydroxyl group on R2 or R3 position can enhance bioactivities.

3-1, 3-2, 3-3 R1 position with hydroxyl group yields strong activities; R2 position with fluoride weakens bioactivities.
4-1 R3 position with halogens increases bioactivities; R2 position with sulfonamides decreases bioactivities.
5-1 R1 position with halogens has negative impacts on activities.
7-1 R2 position: sulfonamide is a plus to the activity, but amidine is a minus.
8-1 R1 position must be a bromide to be bioactive.
11-1 R1 position: sulfonyl group contributes positively to bioactivities, while the ketone group contributes negatively.
11-2 R1 position: ketone group contributes positively to activities.

12-1 R1 or R2 positions: hydroxyl and amide groups increase bioactivities, while the carbamate group reduces
activities. The length of the sidechain also contributes negatively to activities.

13-1, 13-2, 13-3 Any substitution on the R1 or R2 position will reduce activities.
14-1 R1 or R2 positions: compounds with methyl groups are active.

16-1, 16-2, 17-1, 18-1, 19-1,
19-2, 19-3, 19-5 R1 or R2 positions: compounds with fluoride-containing groups are active.
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Figure 4. Scaffold analysis of nonsteroidal inhibitors. (a) Murcko scaffold vs. pIC50 as a scatter plot
for 683 nonsteroidal inhibitors. Only Murcko frequencies that are ≥10 are demonstrated, and the
complete scatter plot is shown in Figure S1 from the Supplementary Materials. (b) Representative
scaffolds with either a frequency ≥ 10 or EF ≥ 1. Scaffolds are labeled as XX/YY/ZZ, where XX,
YY, and ZZ denote the scaffold’s ID, EF, and the frequency of occurrence, respectively. (c) Detailed
list of Murcko-based core fragments from representative Murcko scaffolds. Fragments are labeled
with the scaffold ID, core fragment ID, and the occurrence frequency (scaffold ID—core fragment
ID/frequency).
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2.5. QSAR Models of Nonsteroidal Inhibitors Based on Murcko Scaffold Analysis

Prior to QSAR modeling for nonsteroidal inhibitors, structure–activity similarity (SAS)
maps were visualized to identify activity cliffs (ACs); i.e., molecules have highly similar
structures but show large activity differences. ACs are cases where the SAR is violated
and thus should be avoided in QSAR modeling processes. As shown by the SAS maps
of nonsteroidal compounds, viz., Figure 5a, most densely populated molecular pairs (red
region) appeared to have lower structural similarities. However, discontinuities between
the structure’s similarity and the activity were spotted by using three sets of fingerprints.
Extended-connectivity fingerprint 4 (ECFP4) had the lowest density in the AC quadrant (the
right upper quadrant formed by dash lines), while the molecular access system (MACCS)
and PubChem fingerprints had an increased density. Luckily, the AC quadrants occupied
only very small and marginal regions of SAS maps; thus, we could proceed to build
the QSAR models. For the sake of completeness, the maximum common AC generators
between PubChem and MACCS fingerprints are shown in Figure 5b. AC generators are
molecules that appear frequently in the activity cliff regions of the SAS map. ECFP4 did
not possess any AC generators. The examples of the AC pairs are listed in SI (Table S1).
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boundaries for the activity difference and the structure similarity. Any pairs appearing in the right
upper quadrant were identified as ACs. (b) Maximum common AC generators from the PubChem
and MACCS fingerprints.

Now, we could construct the QSAR models for the nonsteroidal compounds. Pre-
viously, we identified 20 important scaffolds, but only 683 nonsteroidal molecular data
were available for training. Hence, combining data from similar scaffolds, judged by their
cyclic skeletons, for QSAR modeling is necessary. This yielded seven groups of cyclic
skeletons: scaffolds 1 and 4; scaffolds 2 and 12; scaffolds 6, 7, 11, and 20; scaffold 3; scaffold
5; scaffolds 16, 17, 18, and 19; and scaffold 13. Consequently, seven QSAR models (model II
to model VIII) were established for the seven groups. Again, 12 algorithms and 3 molecular
fingerprints were tested and the combination with the best performance was selected as the
QSAR model. The performance of the algorithms with the best choice of the fingerprint can
be found in the SI (Table S2 to Table S8 for model II to model VIII, respectively). The best
performing results, the accuracy of QSAR model II to VIII, are listed in Table 6, while the as-
sociated confusion matrices are depicted in Figure 6. Except for model VIII, all nonsteroidal
models had significantly less data available than those for the steroidal compounds (model
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I). Nonetheless, QSAR models were still built, and acceptable performance for the test set
was achieved: robust and reliable results were found in at least 5 out of 12 algorithms for
each model. Notably, model V contained no potent compounds, see Figure 6d, hence it is
not a good choice for developing a highly potent inhibitor. While these QSAR models are
useful, there is still a preference. For example, models IV and VII contain scaffolds with the
highest EF. The associated compounds can also be highly potent. These two QSAR models,
hence, will be useful when pursuing high potency inhibitors against CYP17A1.

Table 6. Performance metrics for the QSAR classification models of seven groups of scaffolds. Each
group contains scaffolds with the same cyclic skeleton. KRC, KR, and PC are the abbreviations for
KlekotaRothCount, KlekotaRoth, and PubChem fingerprints, respectively. The accuracy performance
is listed for the training set (Training), 10-fold cross-validation (CV), and the test set (Test).

Model Scaffold Fingerprint Algorithm Accuracy
Training CV Test

II 1,4 KRC ET 0.978 0.842 0.783
III 2,12 KR RF 0.987 0.771 0.706
IV 6,7,11,20 KRC XGB 0.940 0.741 0.735
V 3 KRC RF 0.977 0.907 0.970
VI 5 PC GP 0.964 0.879 0.905
VII 16,17,18,19 KRC XGB 0.929 0.854 0.888
VIII 13 PC RF 0.960 0.920 0.913
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Figure 6. Confusion matrices for the QSAR models of nonsteroidal compounds. (a–g) Show the
confusion matrices for the training set (left) and for the test set (right) of model II to model VIII,
respectively. In comparison with the steroidal compounds (model I), nonsteroidal compounds were
fewer in number. While the training performance was quite good overall, the test set confusion
matrices in model II, III, and IV had quite large off-diagonal elements, compared with the associated
diagonal values. This is also reflected by the accuracy reported in Table 6. Note that model V has no
potent compounds. The associated matrices in panel (d) are therefore 3-by-3.
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The reader may notice that no classification QSAR models were constructed for scaf-
folds 8, 9, 10, 14, and 15. Scaffolds 9 and 10 were steroidal analogs with EF = 1.961, meaning
that all associated molecules are active or potent. Hence, there was no point in constructing
the classification model, but they are still good candidates for drug development. Scaffold
8 was a structurally unique scaffold with three tandem-fused benzene rings. Only 16
molecules belonged to this scaffold. The count of molecules was too small to build robust
models. The same problem occurred for scaffold 15. As for scaffold 14, its cyclic skeleton
was too simple and can be found in 433 nonsteroidal molecules with highly diversified
structures. After initial modeling with the molecules, the model demonstrated significant
overfitting that cannot be used for predictions.

3. Discussion

CYP17A1 inhibitors have been structurally categorized as steroidal or nonsteroidal.
The steroidal inhibitors are structurally similar to the natural substrates of CYP17A1, viz.,
pregnenolone or progesterone, and they are often involved in the modification of the sub-
strate’s D-ring at the C17 position. A typical steroidal CYP17A1 inhibitor is abiraterone,
which is currently administered in combination with prednisone for the treatment of
metastatic CRPC in men. Unfortunately, as time proceeds, resistance to abiraterone is
developed in most cases. Furthermore, abiraterone-resistant tumors are also frequently
resistant to subsequent treatments with enzalutamide, an androgen receptor antagonist that
otherwise could confer a survival benefit that is similar to that of abiraterone [2]. Galeterone
is another steroidal CYP17A1 inhibitor. It has multiple mechanisms of action, including
CYP17A1 inhibition, androgen receptor antagonism, and a decrease in intratumoral andro-
gen receptor levels. Additionally, galeterone has a unique mechanism of action, mediated
by disrupting AR signaling via a proteasome-dependent pathway, leading to androgen re-
ceptor degradation. In a phase I study of chemonaive men with CRPC, 22% demonstrated
a decrease in prostate-specific antigens for more than 50%, whereas an additional 26%
had a prostate-specific antigen decline of 30–50% after 12 weeks. No evidence for excess
adrenal mineralocorticoid was noted. However, clinical trials for galeterone were discon-
tinued because the expected survival rate was not met. Another drug with abiraterone-like
properties is orteronel. It is a nonsteroidal selective inhibitor of 17,20-lyase. In preclinical
studies, the inhibitory effect of orteronel on 17,20-lyase was 5.4-fold greater than that on
17α-hydroxylase, with minimal effects on other CYP drug-metabolizing enzymes. Prelimi-
nary results from the phase I/II clinical trials demonstrated a 63% of the prostate-specific
antigen response rate at 12 weeks. The advantage of orteronel lies in its selectivity, which
results in a reduction in the risk of the overproduction of mineralocorticoids. However,
clinical trials were finally discontinued as orteronel failed to meet the expected overall
survival [10]. The last drug discussed here is seviteronel, which is a novel nonsteroidal
CYP17A1 inhibitor and androgen receptor antagonist. It preferentially inhibits 17,20-lyase
over 17α-hydroxylase, but the clinical trials were terminated due to unsatisfactory tolerance
and clinical responses [4,11,12]. It is important to note that both orteronel and seviteronel
share the same scaffold, viz., scaffold 5 shown in Figure 4b. The SAR-based enumeration of
more structural analogs can be synthesized to identify better alternatives.

The most challenging issue of treating CRPC with abiraterone is its resistance. Cur-
rently, there are several hypotheses to explain the emerging resistance to abiraterone, includ-
ing androgen receptor splice variant up-regulation of CYP17A1; the increased expression
of steroidogenic enzymes, including AKR1C3 and HSD17B3 [13]; 17-hydroxyprogesterone
being transformed into the 5α-dione pathway [14]; androgen receptor activation mediated
by exogenous corticosteroids during the treatment; the interruption or reversal of DHT
levels; the miRNA modulation of the androgen receptor pathway; and the involvement
of PI3K/AKT/mTOR pathways [15]. The resistance to abiraterone, along with the side
effects and sophisticated pathogenic mechanisms of CRPC, pose urgent needs for new drug
discovery. Apart from resistance, the administration of abiraterone to patients can also
trigger off-target effects due to the steroidal nature of abiraterone. It is important to note
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that the current efforts in drug discovery are devoted to nonsteroidal inhibitors to avoid
off-target effects [16].

There are a few previous studies focusing on the structure–activity relationship of
CYP17A1 inhibitors [17–19]. Previous studies focused on singular scaffolds or worked
through 3D pharmacophore models. This study used comprehensive datasets from the
ChEMBL database, with 279 steroidal molecules and 683 nonsteroidal molecules that cover
dozens of scaffolds.

Additionally, this study identified several significant ACs and AC generators. AC
generators are defined as molecules that frequently appear among AC molecule pairs that
are identified by the structure–activity landscape index (SALI) values. The identification of
AC generators amongst datasets are important for medicinal chemists to facilitate further
lead optimizations. The two maximum common AC generators shown in Figure 5b are the
common AC generators between the PubChem and MACCS fingerprints. ECFP4 does not
possess AC generators. AC generators CHEMBL 3677944 and CHEMBL 4285744 belong to
scaffold 19 and scaffold 11, respectively. Special attention should be focused on them when
performing lead optimizations.

The applicability domain is a theoretical region in the chemical space surrounding
both the model’s descriptors and modeled response. In the construction of a QSAR model,
the applicability domain of molecules plays a critical role in estimating the uncertainty in
the prediction of a given set of compounds based on how similar they are to the training
sets used to build the model [8,20,21]. The prediction of molecular bioactivity using QSAR
is applicable only if the molecule falls within the applicability domain of the model. In
other words, the QSAR model built for a specific scaffold or skeleton should only be used to
predict the bioactivities of molecules that pose the same scaffold/skeleton. It is unsuitable
for predicting activities for all chemicals, using a single QSAR model. For this reason,
all molecules used in this computational study were categorized based on steroidal and
nonsteroidal compounds, followed by an in-depth analysis of nonsteroidal scaffolds. For
nonsteroidal compounds, 20 representative scaffolds were extracted. These are scaffolds
with a high frequency or high EF values. The QSAR models were then constructed based
on the carefully chosen scaffolds or cyclic skeletons. In total, eight QSAR models were built:
one for the steroidal compounds (model I) and seven for the nonsteroidal compounds. All
models demonstrated robustness and reliability. While the QSAR models constructed here
can be used to predict bioactivities for new chemical entities, the most valuable information
revealed in this work is perhaps the knowledge learned from the scaffold analysis for
nonsteroidal compounds. Not only were the highly potent nonsteroidal scaffolds identified,
but the impact on functional group substitutions was also discovered. This provides
valuable insights for further lead optimization or for the enumeration of new molecules.
For example, nonsteroidal scaffolds 9, 10, and 15 are important scaffolds with only active or
potent compounds reported. Although no QSAR model can be constructed for them, their
scaffolds serve as good starting points for lead optimizations. Such information sometimes
can be more valuable than a QSAR model. On the contrary, based on the EF values, scaffolds
1, 2, 3, 8, and 13 are less favorable for developing CYP17A1 inhibitors. Additionally, we
noticed that several functional groups could affect the bioactivity upon substitution. They
are the hydroxyl group, halogen, fluoride, sulfonamide, ketone, amide, and the methyl
group. The effect, i.e., whether the group increases or decreases the inhibitory activity,
depends on where and on which scaffold the substitution takes place.

Finally, we mention that the current datasets are compiled from the ChEMBL database.
These are retrospective records accumulated over years and with various sources for the
bioactivities. Further prospective studies should focus on molecular enumerations based on
scaffold analysis and SAR, molecular synthesis, and experimental validation. In addition,
structural analysis based on ligand-protein interactions via molecular dynamic simulation
could provide valuable insights into the mechanisms of action.
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4. Materials and Methods

This was a computational study of CYP17A1 inhibitors. All steps and procedures
were performed using computational methods. The study’s design consists of data compi-
lation, exploratory data analysis, Murcko-scaffold analysis, structure–activity landscape
visualization, and QSAR modeling, as shown in Figure 7.
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4.1. Data Compilation

The IC50 data used in this study were taken from the ChEMBL database. Originally,
there were 2223 activity entries, but only 962 remained after the data cleansing procedure,
which included removing redundant, unqualified, or missing data. The associated molecule
structures were also processed to remove the salt and to standardize the tautomers using
the PaDEL package [9]. Among the 962 molecules, 683 of them were nonsteroidal ligands,
while the other 279 molecules were steroidal ligands. We further transformed the IC50
to pIC50 (−log IC50) for better visualization and data processing [22]. Molecules with
pIC50 ≥ 8, 8 > pIC50 ≥ 7, 7 > pIC50 ≥ 6, and pIC50 < 6 were labeled as potent, active,
intermediate, and inactive, respectively. As shown in Figure 8, the original datasets for
steroidal inhibitors are highly imbalanced, e.g., the ratio of active ligands to potent ligands
is 1: 2.6. To avoid any overfitting caused by imbalanced data, we further balanced the
dataset via the oversampling technique. Specifically, we randomly selected and duplicated
data within the active, intermediate, and inactive classes until their sizes equaled the size
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of potent data (112 entries). The same procedure applies to the seven other nonsteroidal
QSAR models.
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4.2. Exploratory Data Analysis of Drug-Likeness Properties

In this study, exploratory data analyses of the datasets focused on the visualization
of drug-likeness properties. Six drug-likeness properties were calculated, visualized, and
compared between active class nonsteroidal inhibitors and active class steroidal inhibitors:
MW, LogP, nHA, nHD, nRot, and TPSA. In this section, the maximal, minimal, median,
mean, skewness, and kurtosis were analyzed for the descriptors, and normality tests were
performed to observe whether they abide by normal distributions. Then, the p-values of the
Mann–Whitney tests (if not normal distribution) between different groups were calculated
to determine if there were any statistically significant differences. DataWarrior [23] was
used for exploratory data analysis.

4.3. PCA

The PCA is a dimensionality-reduction method that is used to reduce the dimensional-
ity of large datasets by transforming large datasets into smaller datasets that still contain
most of the information of the large set. In this study, the abovementioned 10 drug-likeness
properties were used to perform PCA after exploratory data analysis had been performed.
DataWarrior [23] was used for the PCA.

4.4. Structure–Activity Landscape Visualization

SAR is based on the idea that structure dictates activity, and molecules with similar
structures demonstrate similar bioactivities. However, this relationship can be interrupted
by AC, where a small change in structure can result in substantial activity loss. Since
ACs capture chemical modifications that strongly influence biological activity, they are
of particular interest in drug discovery and must be applied prior to any SAR modelling.
In this study, SAS maps and SALI [24] plots were used to visualize the structure–activity
landscape and identify ACs. The SAS map is a pairwise 2D plot of the activity difference
against structure similarity. The plot consists of 4 quadrants: smooth regions of the SAR
space, rough region of activity cliffs, nondescript region (i.e., low structural similarity
and low activity similarity), and scaffold hopping region (low structural similarity but
high activity similarity). In this study, Activity Landscape Plotter V.1, a webserver to
generate SAS maps, was used [25]. SALI provides the numerical quantification of ACs. The
DataWarrior application was used to calculate the SALI value and generate the SALI plot
of datasets.
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4.5. QSAR Modeling
4.5.1. Molecular Fingerprints

Molecular fingerprints are the representations of a complex form of molecular de-
scriptors, which describe molecules in terms of their constitution, connectivity, and physic-
ochemical properties. They are typically encoded by bit strings to characterize a given
molecule. In this study, KlekotaRoth and PubChem fingerprints provided by the PaDEL
package [9] were used for modeling. The former contains 4860 chemical substructures
that enrich biological activities, and the latter contains 881 binary representations of the
chemical structure fragments used by PubChem.

4.5.2. Feature Selection

To improve the accuracy of the QSAR model and to avoid the overfitting, the feature
selection process was performed. In particular, the correlation-based filter method was
employed: features with variances that were lower than 0.1 and features demonstrating a
high correlation (>0.90) were removed, thus reducing the complexity and computational
resources without affecting the model’s performance.

4.5.3. QSAR Model Construction

The QSAR models in this study were multiclass classification models that predict 4
bioactivities (potent, active, intermediate, and inactive). Here, the one-vs.-rest strategy was
employed for the multi-class classification task. The workflow of the QSAR modeling pro-
cess is shown in Figure 9. In order to obtain the best model, 12 representative classification
algorithms [22,26] have been employed independently for model construction (see Table 7
for a complete list of algorithms). Their performances were evaluated, and the algorithm
yielding the best performance will be taken.Molecules 2023, 28, x FOR PEER REVIEW  19  of  24 
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Table 7. Machine learning algorithms for modeling.

Algorithm Abbr Type Description

Decision tree DT Tree model
Tree-structured decision support tool, both for classification and

regression models
Both classification and regression.

Extra trees ET Ensemble learning

Extremely randomized trees. Meta-estimator consisting of a
multitude of decision trees. Predictions are conducted by

averaging the prediction of trees in regression tasks or using
majority voting in classification tasks. Unlike random forests that
develop each decision tree from a bootstrap sample of the training

set, it fits each decision tree upon the entire training dataset.
Both classification and regression.

Random forest RF Ensemble learning

Meta-estimator consisting of a multitude of decision trees,
making predictions by averaging the decision tree predictions.
Fits each decision tree on a bootstrap sample of the training set.

Belongs to the bagging ensemble algorithm.
Both classification and regression.

Gradient boost GB Ensemble learning

Boosting ensemble algorithm, the generalization of AdaBoost. A
forward-learning ensemble algorithm that obtains predictive

results using gradually improved estimations.
Both classification and regression.

LightGBM LGBM Ensemble learning

Light gradient-boosting machine. A gradient-boosting algorithm
based on decision trees to increase the efficiency of the model and

reduce memory usage. Characterized by vertical pruning
decision trees, high speed, and low memory use. Suitable for

large datasets.
Both classification and regression.

Extreme gradient boost XGB Ensemble learning

Extreme gradient boosting. A tree-based ensemble machine
learning algorithm that is a scalable, optimized distributed

machine learning system for tree boosting.
Both classification and regression.

Multilayer perceptron MLP Artificial neural network

Consists of input and output layers, along with a multitude of
hidden layers between. Each node amongst layers is a neuron

that utilizes an activation function. Backpropagation tactics are
the algorithms for training.

Both classification and regression.

Logistic regression LR Linear model
Modeling the relationship between independent variables and
dependent variables by fitting a linear equation to the dataset

Classification.

K-nearest neighbor KNN Non-parametric
A simple algorithm that stores all available cases and predicts the

numerical target based on a similarity measure.
Both classification and regression.

Support vector machine SVM Kernel function

Support vector machine constructs a hyperplane in
multidimensional space to separate different classes. SVM
generates hyperplanes in an iterative manner to minimize

an error.
Both classification and regression.

Naive-Bayes NB Naive-bayes
Naive-Bayes classifier is a simple and quick classifier based

on probability.
Classification.

Gaussian process GP Non-parametric
Nonparametric Bayesian algorithm that infers a probability

distribution over all possible values.
Both classification and regression.

4.5.4. Performance Evaluation and Model Validation

The performance of the QSAR multiclassification models is often evaluated via three
parameters: the accuracy, the recall, and the MCC. Let TPi, TNi, FPi, and FNi denote the
true positive, true negative, false positive, and false negative for class i, respectively. The
accuracy is defined as the number of correct predictions divided by the number of total
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predictions, i.e., the trace of a confusion matrix divided by the sum of all matrix elements.
For the confusion matrix shown in Figure 3a, the sum of the elements in one row gives TPi
+ FNi. Hence, the accuracy reads:

Accuracy =
∑i TPi

∑i TPi + FNi

where the index i runs through the classes. On the other hand, the micro-averaged recall is
defined as [27]:

Recall = ∑i
TPi + FNi

∑j TPj + FNj
· TPi
TPi + FNi

=
∑i TPi

∑j TPj + FNj
.

Again, the indices i and j run through all classes. Clearly, accuracy and recall are
identical in the multiclass cases, and only one needs to be reported. As one extra metric,
multiclass MCC is defined as [28]:

MCC =
(∑i TPi)(∑i TPi + FNi)− ∑i(TPi + FNi)(TPi + FPi)√

(∑i TPi + FPi)
2 − ∑i(TPi + FPi)

2
√
(∑i TPi + FNi)

2 − ∑i(TPi + FNi)
2

.

While the values of accuracy and recall range from 0 (worst) to 1 (best), the MCC value
ranges from −1 to 1. The extreme values of −1 and 1 represent a perfect misclassification
and a perfect classification, respectively. In this study, the balanced steroidal dataset was
further split into the training set and the test set according to a ratio of 80:20. Similarly,
the same split was performed for most of the nonsteroidal dataset, except for models III
and VII, where the splitting was performed with a ratio of 70:30. The size of the training
set and the test set from each model is listed in Table 8. Within the training set, a 10-fold
cross-validation was performed to guarantee the robustness and reliability of the model.
This was done by dividing the training data into 10 groups and using each one for the
internal validation, while the other 9 were used to train the model. This process was
repeated iteratively until all groups were used for validation.

Table 8. Size of the training and test sets for each QSAR model in this work.

Model I II III IV V VI VII VIII

Training 358 89 78 134 129 83 184 275
Test 90 23 34 34 33 21 80 69

Out of curiosity, we also performed a binary classification for the best models. By
grouping the potent and active data into one group and the intermediate and inactive
compounds into the other, we can reduce a 4-by-4 confusion matrix into a 2-by-2 matrix,
viz. constructing a binary classification based on the multiclassification results; see Figure
S2 in SI. Consequently, we could calculate the random accuracy Q2,rnd [29,30], as well as its
deviation from the usual accuracy, i.e., ∆Q2, which reflects the impact of data balancing on
the model’s performance. If the data are perfectly balanced, its value will be 0.5. Otherwise,
this is zero. As this binary classification is out of scope of the present work, the full results
are presented in the SI (Table S9), and we mention that our ∆Q2 was closer to 0.5, because
we always balanced the data before training.

4.5.5. Applicability Domain Determination

The applicability domain of the QSAR models in this study were assessed by means of
the bounding box obtained via principal component analysis (PCA). This essentially entails
comparing the chemical space of compounds from the training set with those from the
test set using the PCA of scores plot. DataWarrior [23] was used for applicability domain
determination via PCA.



Molecules 2023, 28, 1679 20 of 23

4.6. Scaffold Analysis

To gain more insights from the structurally diverse 683 nonsteroidal ligands, we
applied scaffold analysis to find representative molecular scaffolds. In medicinal chemistry,
the molecular scaffold refers to the core structure of a molecule with preferable bioactive
properties. Here, the most widely adopted scaffold definition, Murcko-Bemis scaffolding,
was employed for the analysis. Murcko and Bemis dissected a molecule into four parts:
ring systems, linkers, side chains, and the Murcko framework, which is a union of ring
systems and linkers in a molecule [31]. The frequency of occurrences for each scaffold
was also ranked for the analysis. DataWarrior [23] was used for scaffold generation and
analysis. Three aspects of scaffolds were analyzed.

4.6.1. Murcko Scaffold Visualization

In this study, Murcko scaffolds and cyclic skeleton systems were obtained for non-
steroidal androgen receptor antagonists and compared based on pIC50 levels so that fa-
vorable and unfavorable scaffolds could be identified and further modeled. In addition,
the frequency of skeletons and scaffolds was ranked. DataWarrior was used for Murcko
scaffold generation and visualization.

4.6.2. Murcko Scaffold Diversity Analysis

Murcko scaffold diversity was calculated as the proportion of the number of scaffolds
to the total number of molecules.

4.6.3. Scaffold Enrichment Factor Calculation

The scaffold EF is the ratio of the proportion of active molecules with a given scaffold
to the proportion of active molecules in the entire dataset [32]. The molecular scaffolds
with the highest EF are the most favorable. High-frequency Murcko scaffolds with higher
EFs are of particular interest in drug discovery because they can provide more information
about the SAR and are enriched with active molecules for the targets of which they have
been tested. In this study, the threshold of pIC50 = 7.0 (potent, active class threshold) was
used for EF calculations. The entire dataset of nonsteroidal molecules had 351 molecules
out of 683 with a pIC50 ≥ 7.0; therefore, the proportion of active molecules of the entire
dataset was 351/683 = 0.51. Furthermore, with the EF value being 1, it is indicative of the
same proportion of active molecules in a given scaffold. An EF of 0 means that there are no
active molecules in the given scaffold, and an EF of 1.961, with a ratio of 1 to 0.51, means
that all molecules in the given scaffold are active.

4.7. Reproducible Research

Reproducibility is defined as the ‘closeness of the agreement between the results of
measurements of the same measure and carried out under changed conditions of mea-
surement’. The reproducibility of the experiment, whether in vitro or in silico, is a major
concern in science and technology as it is closely related to the extensibility of knowledge
and reproducibility of outputs [5]. As this was a computational study, to maintain the
reproducibility of the model, all datasets and source codes have been uploaded to the
Github repository, and all random seeds were set at 42. All above information can be
accessed at https://github.com/GitGears/CYP (accessed on 1 January 2023). Additionally,
the prediction results for the training set and the test set of each QSAR model are provided
in CSV files in the SI.

5. Conclusions

The inhibition of CYP17A1 has become a crucial therapeutic strategy in the treatment
of prostate cancer because it reduces androgen levels, which can slow down the growth
and spread of prostate cancer cells. This study employed cheminformatics and QSAR
modeling for analyzing a set of 962 CYP17A1 inhibitors. In particular, one classification
QSAR model was built for steroidal inhibitors, while seven models for major scaffolds with

https://github.com/GitGears/CYP
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a sufficient number of molecules were built for nonsteroidal inhibitors. All eight QSAR
models produced robust performances. The cheminformatic analysis results indicated that
most of the 20 representative scaffolds contributed favorably to CYP17A1 inhibition, while
only scaffolds 1, 2, 3, 8, and 13 were detrimental to the inhibitory bioactivity of CYP17A1.
Furthermore, several functional groups are often employed to modulate the bioactivity of
the scaffold, including the hydroxyl group, halogen, fluoride, sulfonamide, ketone, amide,
and the methyl group. The effect depends on where the functional group is placed on the
scaffold. We hope that the results presented herein will be instrumental for CYP17A1 drug
discovery efforts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28041679/s1, Figure S1: Complete scatter plot of Murcko
scaffold vs pIC50 for 683 non-steroidal inhibitors; Figure S2: Binary classification confusion matrices
for the eight QSAR models; Table S1: Examples of activity cliffs identified in the nonsteroidal
compounds; Table S2 to S8: Performance metrics for model II to model VIII; Table S9: Comparison
of the accuracy Q2, the random accuracy Q2,rnd, and their difference ∆Q2 for each QSAR model.
Additionally, the QSAR prediction results are available in CSV files, which are named according to
the model and the dataset, e.g., file “model1-y-test-pred.csv” contains the prediction results of QSAR
model I test set.

Author Contributions: Conceptualization, T.Y., R.R., and Y.-C.C.; methodology, T.Y. and C.N.; soft-
ware, T.Y.; validation, T.Y., T.H., and L.Y.; formal analysis, T.Y., T.H., and L.Y.; investigation, T.Y.,
Y.-C.C., T.P., and N.A.; resources, T.Y., Y.-C.C., and C.N.; data curation, T.Y.; writing—original draft
preparation, T.Y. and Y.-C.C.; writing—review and editing, T.Y., Y.-C.C., and T.P.; visualization,
T.Y., T.H., and Y.-C.C.; supervision, R.R., T.P., and Y.-C.C.; project administration, Y.-C.C. and R.R.;
funding acquisition, Y.-C.C. and R.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Science, Technology and Innovation Commission of
Shenzhen Municipality (JCYJ-20180508163206306). Y.-C.C. was also supported in part by the Kobilka
Institute of Innovative Drug Discovery at the Chinese University of Hong Kong, Shenzhen. R.B.R.
was supported by the Science, Technology, and Innovation Commission of Shenzhen Municipality
(JCYJ-20210324124611031).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be accessed at https://github.com/GitGears/CYP (accessed
on 1 January 2023). Prediction results for the training set and the test set of each QSAR model are
provided in CSV files in the SI.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Teo, M.Y.; Rathkopf, D.E.; Kantoff, P. Treatment of Advanced Prostate Cancer. Annu. Rev. Med. 2019, 70, 479–499. [CrossRef]
2. Gomez, L.; Kovac, J.R.; Lamb, D.J. CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids 2015, 95, 80–87. [CrossRef]
3. Nevedomskaya, E.; Baumgart, S.J.; Haendler, B. Recent Advances in Prostate Cancer Treatment and Drug Discovery. Int. J. Mol.

Sci. 2018, 19, 1359. [CrossRef] [PubMed]
4. DeVore, N.M.; Scott, E.E. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature 2012,

482, 116–119. [CrossRef] [PubMed]
5. Schaduangrat, N.; Lampa, S.; Simeon, S.; Gleeson, M.P.; Spjuth, O.; Nantasenamat, C. Towards reproducible computational drug

discovery. J. Cheminformatics 2020, 12, 9. [CrossRef] [PubMed]
6. Fjodorova, N.; Novich, M.; Vrachko, M.; Smirnov, V.; Kharchevnikova, N.; Zholdakova, Z.; Novikov, S.; Skvortsova, N.; Filimonov,

D.; Poroikov, V.; et al. Directions in QSAR modeling for regulatory uses in OECD member countries, EU and in Russia. J. Environ.
Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 201–236. [CrossRef]

7. Piir, G.; Kahn, I.; García-Sosa, A.T.; Sild, S.; Ahte, P.; Maran, U. Best Practices for QSAR Model Reporting: Physical and Chemical
Properties, Ecotoxicity, Environmental Fate, Human Health, and Toxicokinetics Endpoints. Environ. Health Perspect. 2018, 126,
126001. [CrossRef]

https://www.mdpi.com/article/10.3390/molecules28041679/s1
https://www.mdpi.com/article/10.3390/molecules28041679/s1
https://github.com/GitGears/CYP
http://doi.org/10.1146/annurev-med-051517-011947
http://doi.org/10.1016/j.steroids.2014.12.021
http://doi.org/10.3390/ijms19051359
http://www.ncbi.nlm.nih.gov/pubmed/29734647
http://doi.org/10.1038/nature10743
http://www.ncbi.nlm.nih.gov/pubmed/22266943
http://doi.org/10.1186/s13321-020-0408-x
http://www.ncbi.nlm.nih.gov/pubmed/33430992
http://doi.org/10.1080/10590500802135578
http://doi.org/10.1289/EHP3264


Molecules 2023, 28, 1679 22 of 23

8. Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010, 29, 476–488. [CrossRef]
9. Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011,

32, 1466–1474. [CrossRef]
10. Saad, F.; Fizazi, K.; Jinga, V.; Efstathiou, E.; Fong, P.C.; Hart, L.L.; Jones, R.; McDermott, R.; Wirth, M.; Suzuki, K.; et al. Orteronel

plus prednisone in patients with chemotherapy-naive metastatic castration-resistant prostate cancer (ELM-PC 4): A double-blind,
multicentre, phase 3, randomised, placebo-controlled trial. Lancet Oncol. 2015, 16, 338–348. [CrossRef]

11. Madan, R.A.; Schmidt, K.T.; Karzai, F.; Peer, C.J.; Cordes, L.M.; Chau, C.H.; Steinberg, S.M.; Owens, H.; Eisner, J.; Moore, W.R.;
et al. Phase 2 Study of Seviteronel (INO-464) in Patients with Metastatic Castration-Resistant Prostate Cancer after Enzalutamide
Treatment. Clin. Genitourin. Cancer 2020, 18, 258–267.e1. [CrossRef] [PubMed]

12. Latysheva, A.S.; Zolottsev, V.A.; Pokrovsky, V.S.; Khan, I.I.; Misharin, A.Y. Novel Nitrogen Containing Steroid Derivatives for
Prostate Cancer Treatment. Curr. Med. Chem. 2021, 28, 8416–8432. [CrossRef] [PubMed]

13. Mostaghel, E.A.; Marck, B.T.; Plymate, S.R.; Vessella, R.L.; Balk, S.; Matsumoto, A.M. Resistance to CYP17A1 inhibition with
abiraterone in castration-resistant prostate cancer: Induction of steroidogenesis and androgen receptor splice variants. Clin.
Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 5913–5925. [CrossRef] [PubMed]

14. Attard, G.; Reid, A.H.M.; Auchus, R.J.; Hughes, B.A.; Cassidy, A.M.; Thompson, E.; Oommen, N.B.; Folkerd, E.; Dowsett, M.; Arlt,
W.; et al. Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous
glucocorticoids in castrate men with advanced prostate cancer. J. Clin. Endocrinol. Metab. 2012, 97, 507–516. [CrossRef] [PubMed]

15. Giacinti, S.; Bassanelli, M.; Aschelter, A.M.; Milano, A.; Roberto, M.; Marchetti, P. Resistance to abiraterone in castration-resistant
prostate cancer: A review of the literature. Anticancer. Res. 2014, 34, 6265–6269. [PubMed]

16. Petrunak, E.M.; Rogers, S.A.; Aubé, J.; Scott, E.E. Structural and Functional Evaluation of Clinically Relevant Inhibitors of
Steroidogenic Cytochrome P450 17A1. Drug Metab. Dispos. Biol. Fate Chem. 2017, 45, 635–645. [CrossRef] [PubMed]

17. Al-Masoudi, N.A.; Ali, D.S.; Saeed, B.; Hartmann, R.W.; Engel, M.; Rashid, S.; Saeed, A. New CYP17 hydroxylase inhibitors:
Synthesis, biological evaluation, QSAR, and molecular docking study of new pregnenolone analogs. Arch. Der Pharm. 2014, 347,
896–907. [CrossRef]

18. Gumede, N.J.; Nxumalo, W.; Bisetty, K.; Escuder Gilabert, L.; Medina-Hernandez, M.J.; Sagrado, S. Prospective computational
design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors. Bioorganic Chem.
2020, 94, 103462. [CrossRef]

19. Wróbel, T.M.; Rogova, O.; Sharma, K.; Rojas Velazquez, M.N.; Pandey, A.V.; Jørgensen, F.S.; Arendrup, F.S.; Andersen, K.L.;
Björkling, F. Synthesis and Structure–Activity Relationships of Novel Non-Steroidal CYP17A1 Inhibitors as Potential Prostate
Cancer Agents. Biomolecules 2022, 12, 165. [CrossRef]

20. Simeon, S.; Anuwongcharoen, N.; Shoombuatong, W.; Malik, A.A.; Prachayasittikul, V.; Wikberg, J.E.S.; Nantasenamat, C. Probing
the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking. PeerJ 2016, 4, e2322. [CrossRef]

21. Suvannang, N.; Preeyanon, L.; Malik, A.A.; Schaduangrat, N.; Shoombuatong, W.; Worachartcheewan, A.; Tantimongcolwat,
T.; Nantasenamat, C. Probing the origin of estrogen receptor alpha inhibition via large-scale QSAR study. RSC Adv. 2018, 8,
11344–11356. [CrossRef] [PubMed]

22. Nantasenamat, C. Best Practices for Constructing Reproducible QSAR Models. In Ecotoxicological QSARs; Roy, K., Ed.; Springer
US: New York, NY, USA, 2020; pp. 55–75.

23. Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization
and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [CrossRef] [PubMed]

24. Guha, R.; Van Drie, J.H. Structure—Activity landscape index: Identifying and quantifying activity cliffs. J. Chem. Inf. Model. 2008,
48, 646–658. [CrossRef] [PubMed]

25. González-Medina, M.; Méndez-Lucio, O.; Medina-Franco, J.L. Activity Landscape Plotter: A Web-Based Application for the
Analysis of Structure–Activity Relationships. J. Chem. Inf. Model. 2017, 57, 397–402. [CrossRef] [PubMed]

26. Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.;
Fernandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 2021,
19, 4538–4558. [CrossRef]

27. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45,
427–437. [CrossRef]

28. Gorodkin, J. Comparing two K-category assignments by a K-category correlation coefficient. Comput. Biol. Chem. 2004, 28,
367–374. [CrossRef]
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