Multifaceted Structurally Coloured Materials: Diffraction and Total Internal Reflection (TIR) from Nanoscale Surface Wrinkling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Colour of Wrinkled Surfaces through Surface Diffraction
2.2. Total Internal Reflection (TIR) and Selection of Facet Colour
A Minimal Model for Facet Colour: TIR and Incident Light Dispersion
2.3. Colour Changes Induced by Environmental Conditions
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Srinivasarao, M. Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chem. Rev. 1999, 99, 1935–1962. [Google Scholar] [CrossRef] [PubMed]
- Vukusic, P.; Sambles, J.R. Photonic structures in biology. Nature 2003, 424, 852–855. [Google Scholar] [CrossRef]
- Kinoshita, S.; Yoshioka, S.; Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 2008, 71, 076401. [Google Scholar] [CrossRef]
- Hsiung, B.K.; Siddique, R.H.; Stavenga, D.G.; Otto, J.C.; Allen, M.C.; Liu, Y.; Lu, Y.F.; Deheyn, D.D.; Shawkey, M.D.; Blackledge, T.A. Rainbow peacock spiders inspire miniature super-iridescent optics. Nat. Commun. 2017, 8, 2278. [Google Scholar] [CrossRef] [PubMed]
- Vukusic, P.; Sambles, J.; Lawrence, C.; Wootton, R. Quantified interference and diffraction in single Morpho butterfly scales. Proc. Royal Soc. B 1999, 266, 1403–1411. [Google Scholar] [CrossRef]
- Gur, D.; Palmer, B.A.; Weiner, S.; Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 2017, 27, 1603514. [Google Scholar] [CrossRef]
- Teyssier, J.; Saenko, S.V.; Van Der Marel, D.; Milinkovitch, M.C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Yamashita, K.; Hattori, T.; Kuwahara, Y. Novel optical applications inspired by the Morpho butterfly’s coloration: Technology transfer from reflection to transmission. JJAP 2022, 61, SD0801. [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, H.; Nie, L.; Tang, S.; Li, C.; Wang, X. Effects of Measurement Configurations on the Sensitivity of Morpho Butterfly Scales Based Chemical Biosensor. Front. Phys. 2022, 9, 792. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, K.Q. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 2013, 13, 4192–4213. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Shim, T.S.; Hwang, H.; Yang, S.M.; Kim, S.H. Colloidal photonic crystals toward structural color palettes for security materials. Chem. Mater. 2013, 25, 2684–2690. [Google Scholar] [CrossRef]
- Yang, W.; Xiao, S.; Song, Q.; Liu, Y.; Wu, Y.; Wang, S.; Yu, J.; Han, J.; Tsai, D.P. All-dielectric metasurface for high-performance structural color. Nat. Commun. 2020, 11, 1864. [Google Scholar] [CrossRef]
- Cheng, F.; Gao, J.; Luk, T.S.; Yang, X. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep. 2015, 5, 11045. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Kunitsu, K.; Hattori, T.; Kuwahara, Y.; Saito, A. Demonstration of a diffraction-based optical diffuser inspired by the Morpho butterfly. Optics Express 2021, 29, 30927–30936. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Z.; Li, J.; Liu, Q.; Yi, F.; Wang, S.; Lu, W. Artificial structural colors and applications. Innovation 2021, 2, 100081. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hong, W. Mechanochromism of Structural-Colored Materials. Adv. Opt. Mater. 2020, 8, 2000984. [Google Scholar] [CrossRef]
- Zhou, Q.; Park, J.G.; Bae, J.; Ha, D.; Park, J.; Song, K.; Kim, T. Multimodal and covert–overt convertible structural coloration transformed by mechanical stress. Adv. Mater. 2020, 32, 2001467. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zeng, J.; Gan, Q.; Ji, D.; Song, H.; Liu, W.; Shi, L.; Wu, L. Iridescence-controlled and flexibly tunable retroreflective structural color film for smart displays. Sci. Adv. 2019, 5, eaaw8755. [Google Scholar] [CrossRef]
- Zeng, J.; Fan, W.; Jia, K.; Tu, S.; Wu, L. Novel Retroreflective Structural Color Films Based on Total Internal Reflection Interference. J. Colloid Interface Sci. 2021, 597, 306–313. [Google Scholar] [CrossRef]
- Goodling, A.E.; Nagelberg, S.; Kaehr, B.; Meredith, C.H.; Cheon, S.I.; Saunders, A.P.; Kolle, M.; Zarzar, L.D. Colouration by total internal reflection and interference at microscale concave interfaces. Nature 2019, 566, 523–527. [Google Scholar] [CrossRef]
- Qin, M.; Sun, M.; Hua, M.; He, X. Bioinspired structural color sensors based on responsive soft materials. Curr. Opin. Solid State Mater. Sci. 2019, 23, 13–27. [Google Scholar] [CrossRef]
- Burgess, I.B.; Lončar, M.; Aizenberg, J. Structural colour in colourimetric sensors and indicators. J. Mater. Chem. C 2013, 1, 6075–6086. [Google Scholar] [CrossRef]
- Shiba, K.; Zhuang, C.; Minami, K.; Imamura, G.; Tamura, R.; Samitsu, S.; Idei, T.; Yoshikawa, G.; Sun, L.; Weitz, D.A. Visualization of Flow-Induced Strain Using Structural Color in Channel-Free Polydimethylsmiloxane Devices. Adv. Sci. 2022, 10, 2204310. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Chen, S.; Li, J.; Yin, J.; Jiang, X. Strain-ultrasensitive surface wrinkles for visual optical sensors. Mater. Horiz. 2022, 9, 2233–2242. [Google Scholar] [CrossRef]
- Huang, X.; Hai, Y.; Xie, W.H. Anisotropic cell growth-regulated surface micropatterns in flower petals. Theor. App. Mech. Lett. 2017, 7, 169–174. [Google Scholar] [CrossRef]
- Chen, C.; Airoldi, C.A.; Lugo, C.A.; Bay, R.K.; Glover, B.J.; Crosby, A.J. Flower Inspiration: Broad-Angle Structural Color through Tunable Hierarchical Wrinkles in Thin Film Multilayers. Adv. Funct. Mater. 2021, 31, 2006256. [Google Scholar] [CrossRef]
- Nixon, M.; Orr, A.; Vukusic, P. Wrinkles enhance the diffuse reflection from the dragonfly Rhyothemis resplendens. J. R. Soc. Interface 2015, 12, 20140749. [Google Scholar] [CrossRef]
- Oh, J.H.; Woo, J.Y.; Jo, S.; Han, C.S. Iridescent and Glossy Effect on Polymer Surface Using Micro-/Nanohierarchical Structure: Artificial Queen of the Night Tulip Petals. ACS Appl. Mater. Interfaces 2019, 11, 26442–26447. [Google Scholar] [CrossRef]
- Airoldi, C.A.; Lugo, C.A.; Wightman, R.; Glover, B.J.; Robinson, S. Mechanical buckling can pattern the light-diffracting cuticle of Hibiscus trionum. Cell Rep. 2021, 36, 109715. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, L.; Liu, Y.; Xu, Z.; Yin, J.; Ge, D.; Jiang, X. Dynamic structural color from wrinkled thin films. Adv. Opt. Mater. 2020, 8, 2000234. [Google Scholar] [CrossRef]
- Tan, A.; Pellegrino, L.; Ahmad, Z.; Cabral, J.T. Tunable structural color with gradient and multiaxial polydimethylsiloxane wrinkling. Adv. Opt. Mater. 2022, 10, 2200964. [Google Scholar] [CrossRef]
- Sarov, Y.; Ivanov, T.; Ivanova, K.; Sarova, V.; Capek, I.; Rangelow, I. Diffraction under total internal reflection for micro-fluidic analysis. Appl. Phys. A 2006, 84, 191–196. [Google Scholar] [CrossRef]
- Tamulevičius, T.; Šeperys, R.; Andrulevičius, M.; Tamulevičius, S. Total internal reflection based sub-wavelength grating sensor for the determination of refractive index of liquids. Photonics Nanostruct.-Fundam. Appl. 2011, 9, 140–148. [Google Scholar] [CrossRef]
- Burg, S.L.; Parnell, A.J. Self-assembling structural colour in nature. J. Phys. Condens. Matter 2018, 30, 413001. [Google Scholar] [CrossRef]
- Bowden, N.; Huck, W.T.; Paul, K.E.; Whitesides, G.M. The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl. Phys. Lett. 1999, 75, 2557–2559. [Google Scholar] [CrossRef]
- Chiche, A.; Stafford, C.M.; Cabral, J.T. Complex micropatterning of periodic structures on elastomeric surfaces. Soft Matter 2008, 4, 2360–2364. [Google Scholar] [CrossRef]
- Bayley, F.A.; Liao, J.L.; Stavrinou, P.N.; Chiche, A.; Cabral, J.T. Wavefront kinetics of plasma oxidation of polydimethylsiloxane: Limits for sub-μm wrinkling. Soft Matter 2014, 10, 1155–1166. [Google Scholar] [CrossRef]
- Nania, M.; Matar, O.K.; Cabral, J.T. Frontal vitrification of PDMS using air plasma and consequences for surface wrinkling. Soft Matter 2015, 11, 3067–3075. [Google Scholar] [CrossRef]
- Ferretti, G.; Nania, M.; Matar, O.; Cabral, J.T. Wrinkling Measurement of the Mechanical Properties of Drying Salt Thin Films. Langmuir 2016, 32, 2199–2207. [Google Scholar] [CrossRef]
- Nania, M.; Foglia, F.; Matar, O.K.; Cabral, J.T. Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation. Nanoscale 2017, 9, 2030–2037. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.H.; Woo, H.; Lim, G.; An, T. Development of Optical Strain Sensor with Nanostructures on a Poly-dimethylsiloxane (PDMS) Substrate. J. Sens. Sci. Technol. 2018, 27, 392–396. [Google Scholar]
- Li, Z.; Liu, Y.; Marin, M.; Yin, Y. Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses. Nano Res. 2020, 13, 1882–1888. [Google Scholar] [CrossRef]
- Qi, Y.; Zhou, C.; Zhang, S.; Zhang, Z.; Niu, W.; Wu, S.; Ma, W.; Tang, B. Bar-coating programmable mechanochromic bilayer PDMS film with angle-dependent and angle-independent structural colors. Dyes Pigm. 2021, 189, 109264. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, T.; Zhu, L.; Sun, Y.; Chen, K.; Chen, J.; Yuan, H.; Wang, Y.; Zhang, J.; Liu, G.; et al. Reversible Mechanochromisms via Manipulating Surface Wrinkling. Nano Lett. 2022. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.J.; Smith, P.J. Plasma treatment of polydimethylsiloxane. J. Adhes. Sci. Technol. 1994, 8, 1063–1075. [Google Scholar] [CrossRef]
- Jiang, H.; Khang, D.Y.; Song, J.; Sun, Y.; Huang, Y.; Rogers, J.A. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. USA 2007, 104, 15607–15612. [Google Scholar] [CrossRef]
- Tan, A.; Pellegrino, L.; Cabral, J.T. Tunable Phase Gratings by Wrinkling of Plasma-Oxidized PDMS: Gradient Skins and Multiaxial Patterns. ACS Appl. Polym. Mater. 2021, 3, 5162–5170. [Google Scholar] [CrossRef]
- Lee, J.N.; Park, C.; Whitesides, G.M. Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544–6554. [Google Scholar] [CrossRef]
- Toepke, M.W.; Beebe, D.J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 2006, 6, 1484–1486. [Google Scholar] [CrossRef]
- Dangla, R.; Gallaire, F.; Baroud, C.N. Microchannel deformations due to solvent-induced PDMS swelling. Lab Chip 2010, 10, 2972–2978. [Google Scholar] [CrossRef]
- Rumens, C.; Ziai, M.; Belsey, K.; Batchelor, J.; Holder, S. Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors. J. Mater. Chem. C 2015, 3, 10091–10098. [Google Scholar] [CrossRef] [Green Version]
- Harrison, C.; Stafford, C.; Zhang, W.; Karim, A. Sinusoidal phase grating created by a tunably buckled surface. Appl. Phys. Lett. 2004, 85, 4016–4018. [Google Scholar] [CrossRef]
- Pellegrino, L.; Khodaparast, S.; Cabral, J.T. Orthogonal wave superposition of wrinkled, plasma-oxidised, polydimethylsiloxane surfaces. Soft Matter 2020, 16, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, L.; Tan, A.; Cabral, J.T. Ripple Patterns Spontaneously Emerge through Sequential Wrinkling Interference in Polymer Bilayers. Phys. Rev. Lett. 2022, 128, 058001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, A.; Ahmad, Z.; Vukusic, P.; Cabral, J.T. Multifaceted Structurally Coloured Materials: Diffraction and Total Internal Reflection (TIR) from Nanoscale Surface Wrinkling. Molecules 2023, 28, 1710. https://doi.org/10.3390/molecules28041710
Tan A, Ahmad Z, Vukusic P, Cabral JT. Multifaceted Structurally Coloured Materials: Diffraction and Total Internal Reflection (TIR) from Nanoscale Surface Wrinkling. Molecules. 2023; 28(4):1710. https://doi.org/10.3390/molecules28041710
Chicago/Turabian StyleTan, Annabelle, Zain Ahmad, Pete Vukusic, and João T. Cabral. 2023. "Multifaceted Structurally Coloured Materials: Diffraction and Total Internal Reflection (TIR) from Nanoscale Surface Wrinkling" Molecules 28, no. 4: 1710. https://doi.org/10.3390/molecules28041710
APA StyleTan, A., Ahmad, Z., Vukusic, P., & Cabral, J. T. (2023). Multifaceted Structurally Coloured Materials: Diffraction and Total Internal Reflection (TIR) from Nanoscale Surface Wrinkling. Molecules, 28(4), 1710. https://doi.org/10.3390/molecules28041710