Design, Physical Characterizations, and Biocompatibility of Cationic Solid Lipid Nanoparticles in HCT-116 and 16-HBE Cells: A Preliminary Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Formulation and Characterization of cSLNs
2.2. DSC
2.3. pDNA Binding Capability
2.4. Hemolysis Evaluation
2.5. In Vitro Metabolic/Cell Viability Assay
2.6. Storage Stability
3. Materials and Methods
3.1. Materials
3.2. Preparation of cSLN
3.3. Particle Size (PS) Analysis
3.4. Zeta Potential (ZP)
3.5. Differential Scanning Calorimetry (DSC) Analysis
3.6. pDNA Binding Proficiency
3.7. Hemolysis Assay/Hemocompatibility
3.8. In Vitro Metabolic/Cell Viability Assay
3.9. Storage Stability
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaufmann, K.B.; Büning, H.; Galy, A.; Schambach, A.; Grez, M. Gene therapy on the move. EMBO Mol. Med. 2013, 5, 1642–1661. [Google Scholar] [CrossRef]
- Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018, 25, 1234–1257. [Google Scholar] [CrossRef]
- Ramamoorth, M.; Narvekar, A. Non-viral vectors in gene therapy—An overview. J. Clin. Diagn. Res. 2014, 9, GE01–GE06. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Jafari, S.; Khosroushahi, A.Y. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res. Lett. 2014, 9, 252. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, L. Lipid nanoparticles for gene delivery. Adv. Genet. 2014, 88, 13–36. [Google Scholar]
- Mohamed, J.M.; Alqahtani, A.; Ahmad, F.; Krishnaraju, V.; Kalpana, K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr. Polym. 2021, 252, 117180. [Google Scholar] [CrossRef]
- Botto, C.; Mauro, N.; Amore, E.; Martorana, E.; Giammona, G.; Bondì, M.L. Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. Int. J. Pharm. 2017, 516, 334–341. [Google Scholar] [CrossRef]
- Karn-Orachai, K.; Smith, S.M.; Saesoo, S.; Treethong, A.; Puttipipatkhachorn, S.; Pratontep, S.; Ruktanonchai, U.R. Surfactant effect on the physicochemical characteristics of γ-oryanol-containing solid lipid nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2016, 488, 118–128. [Google Scholar] [CrossRef]
- Elmowafy, M.; Al-Sanea, M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm. J. 2021, 29, 999–1012. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, J.; Lim, Y.M.; Kim, E.J.; Yoon, B.I.; Kim, P.; Yu, S.D.; Eom, I.C.; Shim, I. Comprehensive pulmonary toxicity assessment of cetylpyridinium chloride using A549 cells and Sprague-Dawley rats. J. Appl. Toxicol. 2021, 41, 470–482. [Google Scholar] [CrossRef]
- Aguirre-Ramírez, M.; Silva-Jiménez, H.; Banat, I.M.; Díaz De Rienzo, M.A. Surfactants: Physicochemical interactions with biological macromolecules. Biotech. Lett. 2021, 43, 523–535. [Google Scholar] [CrossRef]
- Wei, Z.; Bilbulian, S.; Li, J.; Pandey, R.; O’Connor, E.; Casas-Finet, J.; Cash, P.W. Universal method for the determination of nonionic surfactant content in the presence of protein. J. Sep. Sci. 2015, 38, 1318–1325. [Google Scholar] [CrossRef]
- Saleh, M.A.; Mohamed, J.M.M.; Ruby, J.J.; Kanthiah, S.; Alanazi, Y.F.; Majrashi, K.A.; Alshahrani, S.M.; Eladl, M.A.; Alaryani, F.S.; El-Sherbiny, M.; et al. Preparation of Memantine-Loaded Chitosan Nanocrystals: In Vitro and Ex Vivo Toxicity Analysis. Crystals 2023, 13, 21. [Google Scholar] [CrossRef]
- Roman, M. The Influence of Surfactants on the Zeta Potential of Coals. Energy Sources A: Recovery Util. Environ. Eff. 2009, 31, 66–75. [Google Scholar]
- Kazeminezhad, I.; Mosivand, S. Effect of Surfactant Concentration on Size and Morphology of Sonoelectrooxidized Fe3O4 Nanoparticles. Curr. Nanosci. 2012, 8, 623–627. [Google Scholar] [CrossRef]
- Khan, Z.U.; Razzaq, A.; Khan, A.; Rehman, N.U.; Khan, H.; Khan, T.; Khan, A.U.; Althobaiti, N.A.; Menaa, F.; Iqbal, H.; et al. Physicochemical Characterizations and Pharmacokinetic Evaluation of Pentazocine Solid Lipid Nanoparticles against Inflammatory Pain Model. Pharmaceutics 2022, 14, 409. [Google Scholar] [CrossRef]
- Assali, M.; Jaradat, N.; Maqboul, L. The Formation of Self-Assembled Nanoparticles Loaded with Doxorubicin and d-Limonene for Cancer Therapy. ACS Omega 2022, 7, 42096–42104. [Google Scholar] [CrossRef]
- Pochapski, D.J.; Carvalho Dos Santos, C.; Leite, G.W.; Pulcinelli, S.H.; Santilli, C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 2021, 37, 13379–13389. [Google Scholar] [CrossRef]
- Mohamed, J.M.; Kavitha, K.; Ruckmani, K.; Shanmuganathan, S. Skimmed milk powder and pectin decorated solid lipid nanoparticle containing (SLN) soluble curcumin used for the treatment of colorectal cancer. J. Food Process. Eng. 2020, 43, e13246. [Google Scholar]
- Carbone, C.; Tomasello, B.; Ruozi, B.; Renis, M.; Puglisi, G. Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. Eur. J. Med. Chem. 2012, 49, 110–117. [Google Scholar] [CrossRef]
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application. Adv. Pharm. Bull. 2015, 5, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Erel-Akbaba, G.; İsar, S.; Akbaba, H. Development and Evaluation of Solid Witepsol Nanoparticles for Gene Delivery. Turk. J. Pharm. Sci. 2021, 18, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.Y.; Kim, H.; Kim, E.; Park, S.; Ryu, K.H.; Lee, E.G. Increasing Transfection Efficiency of Lipoplexes by Modulating Complexation Solution for Transient Gene Expression. Int. J. Mol. Sci. 2021, 22, 12344. [Google Scholar] [CrossRef] [PubMed]
- Falk, N.A. Surfactants as Antimicrobials: A Brief Overview of Microbial Interfacial Chemistry and Surfactant Antimicrobial Activity. J. Surfactants Deterg. 2019, 22, 1119–1127. [Google Scholar] [CrossRef]
- Asasutjarit, R.; Lorenzen, S.I.; Sirivichayakul, S.; Ruxrungtham, K.; Ruktanonchai, U.; Ritthidej, G.C. Effect of solid lipid nanoparticles formulation compositions on their size, zeta potential and potential for in vitro pHIS-HIVhugag transfection. Pharm. Res. 2007, 24, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev. 2020, 154–155, 64–78. [Google Scholar] [CrossRef]
- Riaz, S.; Fatima Rana, N.; Hussain, I.; Tanweer, T.; Nawaz, A.; Menaa, F.; Janjua, H.A.; Alam, T.; Batool, A.; Naeem, A.; et al. Effect of Flavonoid-Coated Gold Nanoparticles on Bacterial Colonization in Mice Organs. Nanomaterials 2020, 10, 1769. [Google Scholar] [CrossRef]
- Matsumura, K.; Okumiya, T.; Sugiura, T.; Takahashi, N.; Yamamoto, Y.; Kikuchi, S.; Fujii, K.; Otagaki, M.; Shiojima, I. Shortened red blood cell age in patients with end-stage renal disease who were receiving haemodialysis: A cross-sectional study. BMC Nephrol. 2020, 21, 418. [Google Scholar]
- Iqbal, H.; Razzaq, A.; Uzair, B.; Ul Ain, N.; Sajjad, S.; Althobaiti, N.A.; Albalawi, A.E.; Menaa, B.; Haroon, M.; Khan, M.; et al. Breast Cancer Inhibition by Biosynthesized Titanium Dioxide Nanoparticles Is Comparable to Free Doxorubicin but Appeared Safer in BALB/c Mice. Materials 2021, 14, 3155. [Google Scholar] [CrossRef]
- Avsievich, T.; Popov, A.; Bykov, A.; Meglinski, I. Mutual interaction of red blood cells influenced by nanoparticles. Sci. Rep. 2019, 9, 5147. [Google Scholar] [CrossRef]
- Ooka, M.; Lynch, C.; Xia, M. Application of In Vitro Metabolism Activation in High-Throughput Screening. Int. J. Mol. Sci. 2020, 21, 8182. [Google Scholar] [CrossRef] [PubMed]
- Pakdemirli, A.; Karaca, C.; Sever, T.; Daşkin, E.; Leblebici, A.; Yiğitbaşi, T.; Başbinar, Y. Carvacrol alters soluble factors in HCT-116 and HT-29 cell lines. Turk. J. Med. Sci. 2020, 50, 271–276. [Google Scholar] [PubMed]
- Nguyen, R.T.; Sayeed, V.A. Repackaged oral dosage forms: Beyond-use dating and product safety concerns. Am. J. Health Syst. Pharm. 2013, 70, 1724–1727. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [PubMed]
- Duong, V.A.; Nguyen, T.T.; Maeng, H.J. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules 2020, 25, 4781. [Google Scholar] [CrossRef] [PubMed]
- Shimojo, A.A.M.; Fernandes, A.R.V.; Ferreira, N.R.E.; Sanchez-Lopez, E.; Santana, M.H.A.; Souto, E.B. Evaluation of the Influence of Process Parameters on the Properties of Resveratrol-Loaded NLC Using 22 Full Factorial Design. Antioxidants 2019, 8, 272. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Akhtar, N.; Menaa, F.; Alharbi, W.; Alaryani, F.S.S.; Alqahtani, A.M.; Ahmad, F. Fabrication of Ethosomes Containing Tocopherol Acetate to Enhance Transdermal Permeation: In Vitro and Ex Vivo Characterizations. Gels 2022, 8, 335. [Google Scholar] [CrossRef]
- Senthilvel, C.K.; Karuppaiyan, K.; Pothumani, A.; Vedharethinam, A.; Jose, A.W.; Mohamed, J.M.M.; Sherbiny, M.E.; Ebrahim, H.A.; Shafey, M.E.; Dejene, M. Development of Atorvastatin Calcium Biloaded Capsules for Oral Administration of Hypercholesterolemia. Evid. Based Complement. Altern. Med. 2022, 2022, 4995508. [Google Scholar] [CrossRef]
- Khan, B.A.; Khalid, H.; Khan, M.K.; Hosny, K.M.; Khan, S.; Rizg, W.Y.; Safhi, A.Y.; Halwani, A.A.; Almehmady, A.M.; Menaa, F. Biodegradable Polymers-Based Smart Nanocrystals for Loxoprofen Delivery with Enhanced Solubility: Design, Fabrication and Physical Characterizations. Polymers 2022, 14, 3464. [Google Scholar] [CrossRef]
- Adeleye, O.A.; Bamiro, O.A.; Albalawi, D.A.; Alotaibi, A.S.; Iqbal, H.; Sanyaolu, S.; Femi-Oyewo, M.N.; Sodeinde, K.O.; Yahaya, Z.S.; Thiripuranathar, G.; et al. Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient. Materials 2022, 15, 5992. [Google Scholar] [CrossRef]
- Durowoju, I.B.; Bhandal, K.S.; Hu, J.; Carpick, B.; Kirkitadze, M. Differential Scanning Calorimetry—A Method for Assessing the Thermal Stability and Conformation of Protein Antigen. J. Vis. Exp. 2017, 121, 55262. [Google Scholar]
- Ream, J.A.; Lewis, L.K.; Lewis, K.A. Rapid agarose gel electrophoretic mobility shift assay for quantitating protein: RNA interactions. Anal. Biochem. 2016, 511, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Mohamed, J.M.M.; Gayasuddin, M.; Anazi, N.A.; Shaik, R.A.; Humoud, S.Y.A.; Ebrahim, D.; El-Sagheer, A.M.; Abdalghaffar Emam, M.S.A. Molecular docking and In vivo gastroprotective effect of Salvia fruticosa. Res. J. Pharm. Technol. 2023, 16, 314–322. [Google Scholar]
- Evans, B.C.; Nelson, C.E.; Yu, S.S.; Beavers, K.R.; Kim, A.J.; Li, H.; Nelson, H.M.; Giorgio, T.D.; Duvall, C.L. Ex Vivo Red Blood Cell Hemolysis Assay for the Evaluation of pH-responsive Endosomolytic Agents for Cytosolic Delivery of Biomacromolecular Drugs. J. Vis. Exp. 2013, 73, e50166. [Google Scholar]
- Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for cell viability assays. Food Front. 2020, 1, 332–349. [Google Scholar] [CrossRef]
- Mohamed, J.M.M.; Alqahtani, A.; Menaa, F.; Kayarohanam, S.; Fatease, A.A.; Alqahtani, T.; Alamri, A.; El-Sherbiny, M.; Ramkanth, S.; Janakiraman, A.K. In Vitro Physical Characterizations and Docking Studies on Carvedilol Nanocrystals. Crystals 2022, 12, 988. [Google Scholar] [CrossRef]
Preparation | Amount of Composition in mg | ||||
---|---|---|---|---|---|
GMS | PEG 5000 | DOTMA | CPC | DOTAP | |
DOTMA1 | 150.0 | 215.0 | 10 | - | - |
DOTMA2 | 150.0 | 215.0 | 20 | - | - |
DOTMA3 | 150.0 | 215.0 | 30 | - | - |
DOTMA4 | 150.0 | 315.0 | 10 | - | - |
DOTMA5 | 150.0 | 315.0 | 20 | - | - |
DOTMA6 | 150.0 | 315.0 | 30 | - | - |
CPC1 | 150.0 | 215.0 | - | 10 | - |
CPC2 | 150.0 | 215.0 | - | 20 | - |
CPC3 | 150.0 | 215.0 | - | 30 | - |
CPC4 | 150.0 | 315.0 | - | 10 | - |
CPC5 | 150.0 | 315.0 | - | 20 | - |
CPC6 | 150.0 | 315.0 | - | 30 | - |
DOTAP1 | 150.0 | 215.0 | - | - | 10 |
DOTAP2 | 150.0 | 215.0 | - | - | 20 |
DOTAP3 | 150.0 | 215.0 | - | - | 30 |
DOTAP4 | 150.0 | 315.0 | - | - | 10 |
DOTAP5 | 150.0 | 315.0 | - | - | 20 |
DOTAP6 | 150.0 | 315.0 | - | - | 30 |
Preparations | CPC 6 | DOTMA 6 | DOTAP 6 |
---|---|---|---|
ΔH; J·g−1 | |||
Pure PEG 5000 | 144.3 | 144.3 | 144.3 |
Blended | 122.2 | 110.4 | 110.8 |
Pure GMS | 147.6 | 147.6 | 147.6 |
Blended | 177.8 | 152.3 | 151.6 |
Pure DOTMA | - | 44.5 | - |
Blended | - | 41.8 | - |
Pure DOTAP | - | - | 153.6 |
Blended | - | - | 28.7 |
Pure CPC | 214.4 | - | - |
Blended | 71.8 | - | - |
Evaluations | 0 Month | 30 Days | 45 Days | 60 Days |
---|---|---|---|---|
PS (nm) | 183.44 ± 3.22 | 189.97 ± 4.01 | 198.63 ± 4.49 | 209.65 ± 5.21 |
PDI | 0.221 ± 0.11 | 0.228 ± 0.15 | 0.233 ± 0.19 | 0.268 ± 0.23 |
ZP (mV) | 34.7 ± 1.78 | 32.1 ± 1.62 | 28.7 ± 2.51 | 22.4 ± 3.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamri, A.; Alqahtani, A.; Alqahtani, T.; Al Fatease, A.; Asiri, S.A.; Gahtani, R.M.; Alnasser, S.M.; Mohamed, J.M.M.; Menaa, F. Design, Physical Characterizations, and Biocompatibility of Cationic Solid Lipid Nanoparticles in HCT-116 and 16-HBE Cells: A Preliminary Study. Molecules 2023, 28, 1711. https://doi.org/10.3390/molecules28041711
Alamri A, Alqahtani A, Alqahtani T, Al Fatease A, Asiri SA, Gahtani RM, Alnasser SM, Mohamed JMM, Menaa F. Design, Physical Characterizations, and Biocompatibility of Cationic Solid Lipid Nanoparticles in HCT-116 and 16-HBE Cells: A Preliminary Study. Molecules. 2023; 28(4):1711. https://doi.org/10.3390/molecules28041711
Chicago/Turabian StyleAlamri, Ali, Ali Alqahtani, Taha Alqahtani, Adel Al Fatease, Saeed Ahmed Asiri, Reem M. Gahtani, Sulaiman Mohammed Alnasser, Jamal Moideen Muthu Mohamed, and Farid Menaa. 2023. "Design, Physical Characterizations, and Biocompatibility of Cationic Solid Lipid Nanoparticles in HCT-116 and 16-HBE Cells: A Preliminary Study" Molecules 28, no. 4: 1711. https://doi.org/10.3390/molecules28041711
APA StyleAlamri, A., Alqahtani, A., Alqahtani, T., Al Fatease, A., Asiri, S. A., Gahtani, R. M., Alnasser, S. M., Mohamed, J. M. M., & Menaa, F. (2023). Design, Physical Characterizations, and Biocompatibility of Cationic Solid Lipid Nanoparticles in HCT-116 and 16-HBE Cells: A Preliminary Study. Molecules, 28(4), 1711. https://doi.org/10.3390/molecules28041711