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Abstract: A turn-on fluorescent probe, cage 1, was efficiently self-assembled by condensing 4,4′-
(benzothiadiazole-4,7-diyl)dibenzaldehyde and TREN in chloroform. The formation of cage 1 was
characterized and confirmed by NMR spectroscopy, mass spectrometry, and theoretical calculations.
The yield of cage 1 could be controlled by tuning the reaction conditions, such as the precursor
concentration. Interestingly, the addition of 10 equiv of Cd2+ relative to cage 1 could increase the
fluorescence almost seven-fold. 1H NMR and fluorescence experiments indicating fluorescence
enhancement may be caused by the decomposition of cage 1. Such a high selectivity toward Cd2+

implies that the cage could potentially be employed in cadmium detection.
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1. Introduction

Molecular cages, as one of the supramolecular architectures, provide a synthetic
three-dimensional cavity for binding guests, and offer a window for mimicking biological
processes in nature [1–8]. Since the first synthesis of cryptands and cavitands in 1969by Jean-
Marie Lehn and co-workers [9], various synthetic molecular cages have been reported and
have found a variety of potential applications in gas separation [10–14], catalysis [15–19],
molecular sensing, and other fields [20–25]. Among them, the synthesis of molecular
cages by the self-assembly method has attracted extensive attention in recent years due
to its simple synthesis and high yield. In 1988, MacDowell and Nelson [26] reported the
condensation of tris(2-aminoethyl)amine (TREN) and aldehydes to a make TREN-based
[2 + 3] cage in a yield of about 50%. Subsequently, reversible covalent linkages, such
as the condensation of amine and aldehydes, have been proved to be a good choice for
the high-yield synthesis of cage compounds. Dynamic bonds are formed in a reversible
forming/cleaving manner, allowing the self-assembled products to search for their thermo-
dynamic minimum. Recently, Li and coworkers [27] reported the controllable self-assembly
of pills and cages via imine condensation for silver cation detection. Later, their group [28]
also reported the in situ detection of silver cations in water by a capsule-shaped cage
formed by condensing a trialdehyde precursor and TREN. Khashab’s group [29] realized
the separation of a mixture of benzene and cyclohexane by thienothiophene cages which
were synthesized by a one-step reaction of thieno[2,3-b]thiophene-2,5-dicarboxaldehyde
and TREN in acetonitrile via an imine condensation reaction. Moreover, an azobenzene
cage [30] for energy efficient and highly selective p-xylene separation was also prepared by
condensing (E)-4,4′-(diazene-1,2-diyl)dibenzaldehyde and TREN. Although great efforts
have been made in the preparation of functional cages, the construction of new cages with
novel properties in high yield remains challenging.

Cadmium is an essential resource on earth, widely used in fertilizers and batteries [31–35].
With the increasing demand for batteries, the pollution of the environment with cadmium
ions is becoming increasingly serious. Cadmium is harmful to human health and can
cause lung, prostate, breast, or endometrial cancer [36,37]. Therefore, developing new
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methods to detect cadmium in the environment is urgent. Among the various detection
techniques, fluorescent probe detection has been proven to be the best choice, not only
for its simplicity and low detection limit, but also for its characteristics of intracellular
detection [38–40]. Although considerable efforts have been devoted to Cd2+ fluorescent
probes, the development of selective fluorescent probes for Cd2+ remains a great challenge
due to it being easily interfered with by other transition metals, especially Zn2+ ions in the
same group [41–43].

Recently, Li and coworkers reported the synthesis of a benzothiadiazole-based macro-
cycle and found that the intense fluorescence of the macrocycle in the solid state was
higher than the monomer [44]. We questioned whether the intense fluorescence of the
benzothiadiazole-based cage would increase compared to the monomers. Herein, as a
continuation of our interest for supramolecular chemistry [45–49], we report a turn-on
fluorescent probe based on a self-assembled cage for the selective detection of Cd2+. The
self-assembled cage 1 was obtained by the condensation of 4,4′-(benzothiadiazole-4,7-
diyl)dibenzaldehyde and TREN in chloroform via the [3 + 2] approach (Scheme 1). A
low precursor concentration can improve the yield of self-assembled cage 1. Interestingly,
cage 1 showed a selective response to cadmium ions. The fluorescence intensity of cage
1 was increased almost seven-fold after the addition of cadmium ions, implying that the
self-assembled cage represents a promising fluorescent probe for cadmium ion detection.
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Scheme 1. Structural formula and proton designations of cage 1, by condensing the corresponding 
bisaldehyde precursors 2 with the trisamino linker TREN in CDCl3. Red a, b, c and d are the associ-
ated proton signal of precursor 2. Blue a, b, c and d are the associated proton signal of cage 1. 
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First, 4,4′-(benzothiadiazole-4,7-diyl)dibenzaldehyde 2 was prepared according to 

the reported literature [50]. TREN was used as received without further purification. As 
shown in Figure 1II, after mixing 2 (1.55 mg, 7.5 mM) and TREN (0.44 mg, 5 mM) in CDCl3 
(0.6 mL) at room temperature for 12 h, a small amount of yellow precipitate was formed 
and the 1H NMR spectrum of the mixture showed one set of new signals that were differ-
ent from those of 2, suggesting that cage 1 with a relatively high symmetry was formed. 
However, according to the 1H NMR spectrum results (Figure 1I),compound 2 was not 
completely converted into cage 1, and a large amount of yellow precipitate would be gen-
erated if the reaction time was further prolonged. These results made us doubt whether 2 
and TREN could be completely converted to cage 1. We then studied the self-assembly of 
2 and TREN at low concentrations. To our surprise, when 2 (1.24 mg, 6 mM) and TREN 
(0.36 mg, 4 mM) were combined in CDCl3 (0.6 mL) at room temperature for 12 h, only a 
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Scheme 1. Structural formula and proton designations of cage 1, by condensing the corresponding
bisaldehyde precursors 2 with the trisamino linker TREN in CDCl3. Red a, b, c and d are the
associated proton signal of precursor 2. Blue a, b, c and d are the associated proton signal of cage 1.

2. Results and Discussion

First, 4,4′-(benzothiadiazole-4,7-diyl)dibenzaldehyde 2 was prepared according to the
reported literature [50]. TREN was used as received without further purification. As shown
in Figure 1II, after mixing 2 (1.55 mg, 7.5 mM) and TREN (0.44 mg, 5 mM) in CDCl3 (0.6 mL)
at room temperature for 12 h, a small amount of yellow precipitate was formed and the
1H NMR spectrum of the mixture showed one set of new signals that were different from
those of 2, suggesting that cage 1 with a relatively high symmetry was formed. However,
according to the 1H NMR spectrum results (Figure 1I),compound 2 was not completely
converted into cage 1, and a large amount of yellow precipitate would be generated if the
reaction time was further prolonged. These results made us doubt whether 2 and TREN
could be completely converted to cage 1. We then studied the self-assembly of 2 and TREN
at low concentrations. To our surprise, when 2 (1.24 mg, 6 mM) and TREN (0.36 mg, 4 mM)
were combined in CDCl3 (0.6 mL) at room temperature for 12 h, only a set of relatively sharp
resonances of cage 1 were observed in the 1H NMR spectrum, indicating that 2 and TREN
were completely converted to cage 1, and the yield was quantitative (Figure 1III). Protons a-
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c corresponding to cage 1 shifted remarkably up field (∆δ ≈ 1.82 ppm, 0.61 ppm, 0.71 ppm,
and 1.23 ppm, respectively) compared with protons a-c corresponding to 2, indicating
that the benzothiadiazole moiety experienced a shielded magnetic environment in the
cavity of cage 1. The structure of cage 1 was further confirmed by two-dimensional NMR
spectroscopy and mass spectrometry (see Supplementary Materials Figures S3, S4 and S6).
Moreover, at a lower concentration, 2 (0.62 mg, 3 mM) and TREN (0.18 mg, 2 mM) in CDCl3
(0.6 mL) could still completely self-assemble into cage 1 (Figure 1IV).
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Figure 1. Partial 1H NMR spectra (400 MHz, CDCl3, 298 K) of 2 (spectrum (I)), the self-assembled 
products by combining 2 (7.5 mM) and TREN (5.0 mM) (spectrum (II)), by combining 2 (6.0 mM) 
and TREN (4.0 mM) (spectrum (III)), and by combining 2 (3.0 mM) and TREN (2.0 mM) (spectrum 
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proton signal of precursor 2. Blue a, b, c, and d are the associated proton signal of cage 1. 

We attempted to obtain a single crystal of cage 1 that is suitable for X-ray diffraction 
analysis; however, this was unsuccessful. Density functional theory (DFT) methods were 
used to gain further insights into the formation of cage 1 by using Gaussian 09 software 
and choosing6-311G as the basis sets. In the optimized structure (Figure 2), the three ben-
zothiazole units of cage 1 are oriented in the manner of a three-blade propeller which may 
reduce the repulsive force between the benzothiazole units and facilitate the formation of 
the cage. 

Figure 1. Partial 1H NMR spectra (400 MHz, CDCl3, 298 K) of 2 (spectrum (I)), the self-assembled
products by combining 2 (7.5 mM) and TREN (5.0 mM) (spectrum (II)), by combining 2 (6.0 mM)
and TREN (4.0 mM) (spectrum (III)), and by combining 2 (3.0 mM) and TREN (2.0 mM) (spectrum
(IV)). All spectra were recorded after mixing the corresponding starting materials for 12 h at room
temperature, in order to allow the systems to reach equilibrium. Red a, b, c, and d are the associated
proton signal of precursor 2. Blue a, b, c, and d are the associated proton signal of cage 1.

We attempted to obtain a single crystal of cage 1 that is suitable for X-ray diffraction
analysis; however, this was unsuccessful. Density functional theory (DFT) methods were
used to gain further insights into the formation of cage 1 by using Gaussian 09 software
and choosing6-311G as the basis sets. In the optimized structure (Figure 2), the three
benzothiazole units of cage 1 are oriented in the manner of a three-blade propeller which
may reduce the repulsive force between the benzothiazole units and facilitate the formation
of the cage.
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Figure 2. DFT-optimized structures of cage 1: (a) side view, (b) top view. Color code: C, gray; N,
green; S, yellow. Protons have been omitted for clarity.

In order to expand the application of cage 1, we first tested the coordination properties
of cage 1 withvarious metal cations by fluorescence experiments. A number of metal
cations, such as Co2+, Ba2+, Pb2+, Mg2+, Zn2+, Fe2+, Ni2+, Ag+, Cu2+, and Cd2+, were added
to a solution of cage 1. As shown in Figure 3, it was found that the fluorescence of cage 1 is
slightly quenched after the addition of Ag+ or Cu2+, which is different from other results
where Ag+ can completely quench the fluorescence of the TREN-based cage [27]. In contrast,
Co2+, Ba2+, Pb2+, Mg2+, Zn2+, Fe2+, Ni2+, or Cd2+ are able to enhance the fluorescence of
cage 1. It is noteworthy that the addition of 10 equiv of Cd2+ relative to cage 1 could
increase the fluorescence by almost seven times, while other cations could only slightly
increase the fluorescence of cage 1. This enhancing behavior might potentially be employed
to the selective detect of cadmium ions without interference by zinc and other cations.
Moreover, 1H NMR experiments were further carried out to investigate the mechanism
of Cd2+ to enhance the fluorescence of the cage. As shown in Supplementary Materials
Figure S7, after the addition of 0.5 equiv of Cd2+ cation, the protons corresponding to cage
1 shifted remarkably downfield and a small amount of TREN was formed, suggesting that
decomposition of the cage may have occurred. Moreover, the fluorescence of cage 1 that is
coordinated with the Cd2+ cation is similar to that of compound 2 (Figure 3d), indicating
that the fluorescence enhancement may be caused by the decomposition of cage 1. To the
best of our knowledge, this system is the first example of cadmium detection based on self-
assembled cage formed by tris(2-aminoethyl)amine (TREN) and aldehyde condensation.
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Figure 3. (a) Fluorescence emission spectra of cage 1 after the addition of 10 equiv of various metal 
cations in the mixture solvent of CHCl3 and CH3CN (v/v = 10:1) at 295 K. Excitation at 372 nm. [1]0 = 
1.0 × 10−5 M. (b) Emission spectra (λex = 372 nm) of 1 (5.0 × 10−6 M) in the presence of Cd2+ in the 
mixture solvent of CHCl3 and CH3CN (v/v = 10:1) at 295 K. The concentration of Cd2+ for curves from 
top to bottom are 0, 0.5 (0.1 eq of 1), 1.0 (0.2 eq of 1), 1.5 (0.3 eq of 1), 2.0 (0.4 eq of 1), 2.5 (0.5 eq of 1), 
3.0 (0.6 eq of 1), 3.5 (0.7 eq of 1), 4.0 (0.8 eq of 1), 4.5 (0.9 eq of 1), 5.0 (1.0 eq of 1), 6.0 (1.2 eq of 1), 7.0 
(1.4 eq of 1), 8.0 (1.6 eq of 1), 10.0 (2.0 eq of 1), 12.0 (2.4 eq of 1), and 15.0 (3.0 eq of 1) (× 10−6 M). (c) 
UV–visspectrum of cage 1. [1]0 = 1.0 × 10−5 M. (d) Fluorescence emission spectra of 2, cage 1, and 1-
Cd2+. [2]0 = 1.0 × 10−5 M, [1]0 = 1.0 × 10−5 M. (e) Photograph of the solutions used for (a) under a 365 
nm ultraviolet lamp, demonstrating the relative fluorescence intensity of cage 1 upon coordination 
with various metal cations. 
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used without further purification. 1H NMR, 13C NMR spectra were recorded on a Bruker 
DMX400 NMR spectrometer. 4,4′-(Benzothiadiazole-4,7-diyl)dibenzaldehyde 2 was pre-
pared according to the reported literature [50]. Electrospray ionization mass spectra (ESI-
MS) were recorded on a Thermo Fisher®Exactive LC-MS spectrometer (Thermo Fisher Sci-
entific, Waltham, MA, USA). 
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Figure 3. (a) Fluorescence emission spectra of cage 1 after the addition of 10 equiv of various metal
cations in the mixture solvent of CHCl3 and CH3CN (v/v = 10:1) at 295 K. Excitation at 372 nm.
[1]0 = 1.0 × 10−5 M. (b) Emission spectra (λex = 372 nm) of 1 (5.0 × 10−6 M) in the presence of Cd2+

in the mixture solvent of CHCl3 and CH3CN (v/v = 10:1) at 295 K. The concentration of Cd2+ for
curves from top to bottom are 0, 0.5 (0.1 eq of 1), 1.0 (0.2 eq of 1), 1.5 (0.3 eq of 1), 2.0 (0.4 eq of 1), 2.5
(0.5 eq of 1), 3.0 (0.6 eq of 1), 3.5 (0.7 eq of 1), 4.0 (0.8 eq of 1), 4.5 (0.9 eq of 1), 5.0 (1.0 eq of 1), 6.0
(1.2 eq of 1), 7.0 (1.4 eq of 1), 8.0 (1.6 eq of 1), 10.0 (2.0 eq of 1), 12.0 (2.4 eq of 1), and 15.0 (3.0 eq of 1)
(× 10−6 M). (c) UV–visspectrum of cage 1. [1]0 = 1.0 × 10−5 M. (d) Fluorescence emission spectra of
2, cage 1, and 1-Cd2+. [2]0 = 1.0 × 10−5 M, [1]0 = 1.0 × 10−5 M. (e) Photograph of the solutions used
for (a) under a 365 nm ultraviolet lamp, demonstrating the relative fluorescence intensity of cage 1
upon coordination with various metal cations.

3. Materials and Methods
3.1. General Considerations

Unless otherwise noted, all reagents were obtained from commercial suppliers and
used without further purification. 1H NMR, 13C NMR spectra were recorded on a Bruker
DMX400 NMR spectrometer. 4,4′-(Benzothiadiazole-4,7-diyl)dibenzaldehyde 2 was pre-
pared according to the reported literature [50]. Electrospray ionization mass spectra (ESI-
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MS) were recorded on a Thermo Fisher®Exactive LC-MS spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA).

3.2. Typical Procedure for the Synthesis of Cage 1

Cage 1 was obtained by condensing 2 (1.24 mg, 6 mM) and tris(2-aminoethyl)amine(TREN)
(0.36 mg, 4 mM) in CDCl3 (0.6 mL). The solution was sealed in an NMR tube for 12 h
without stirring to allow the system to reach equilibrium. 1H NMR (400 MHz, Chloroform-
d) δ 8.34 (s, 6H), 7.59 (d, J = 8.0 Hz, 12H), 7.39 (d, J = 8.0 Hz, 12H), 6.71 (s, 6H), 3.91 (s, 12H),
2.90 (s, 12H). 13C NMR (101 MHz, CDCl3) δ 161.96, 153.58, 137.89, 136.15, 132.17, 129.05,
128.41, 127.11, 57.90, 52.22. ESI-MS cald. for [M + Na]+: 1239.42, found: 1239.15.

4. Conclusions

In summary, a turn-on fluorescent probe, cage 1, was self-assembled by condens-
ing 4,4′-(benzothiadiazole-4,7-diyl)dibenzaldehyde and TREN via imine condensation in
chloroform. The yield of cage 1 could be improved by lowering the precursor concentra-
tion. Moreover, the addition of cadmium ions could remarkably enhance the fluorescence
intensity of the system by decomposing cage 1. An easy preparation of cage 1 and a
selective turn-on fluorescent sensor for Cd2+ over other cations were achieved using the
present system, which is promising for practical applications in the selective detection of
Cd2+ in petrochemical industry wastes. Further work will focus on the development of a
water-soluble self-assembled cage for the detection of Cd2+ in water and living cells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041841/s1, Synthesis of cage 1, Scheme S1; 1H and
13C spectra of cage 1, Figures S1 and S2; 1H-1H COSY and 1H-1H NOESY spectra of cage 1, Figures
S3 and S4; Fluorescence photographs of cage 1 after addition of 10 equiv of Cd2+, Figure S5; ESI-MS
spectrum of cage 1, Figure S6; 1H NMR spectroscopic of cage 1 after addition of Cd2+, Figure S7.
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