Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques
Abstract
:1. Introduction
2. Surface Properties of Flammable Building Materials
3. Chemical Composition and Physical Micromorphology of Flame-Retardant Coatings
3.1. Inorganic Materials in Flame-Retardant Coatings
3.2. Organic Molecules in Flame-Retardant Coatings
3.3. Layered Nanomaterials in Flame-Retardant Coatings
3.4. Nanotubes and Nanorods in Flame-Retardant Coatings
3.5. Polymers in Flame-Retardant Coatings
4. Processing Techniques of Flame-Retardant Coatings
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brushlinsky, N.; Sokolov, S.; Wagner, P.; Messerschmidt, B. The CTIF World Fire Statistics Report No. 27. CTIF International Association of Fire and Rescue Services Center of Fire Statistics. 2022. Available online: https://www.ctif.org/news/ctif-world-fire-statistics-report-no-27-now-available-download#:~:text=The%20current%20report%20%E2%84%96%2027,since%20the%20start%20in%202005 (accessed on 12 November 2022).
- Mtani, I.W.; Mbuya, E.C. Urban fire risk control: House design, upgrading and replanning. Jamba J. Disaster Risk Stud. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Shen, J.J.; Liang, J.W.; Lin, X.F.; Lin, H.J.; Yu, J.; Yang, Z.G. Recent progress in polymer-based building materials. Int. J. Polym. Sci. 2020, 2020, 8838160. [Google Scholar] [CrossRef]
- Kashiwagi, T. Polymer combustion and flammability—Role of the condensed phase. Symp. Int. Combust. 1994, 25, 1423–1437. [Google Scholar] [CrossRef]
- Green, J. Mechanisms for flame retardancy and smoke suppression—A review. J. Fire Sci. 1996, 14, 426–442. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, L.; Liang, G.; Gu, A. Developing intrinsic halogen-free and phosphorus-free flame retardant biobased benzoxazine resins with superior thermal stability and high strength. Eur. Polym. J. 2022, 180, 111581. [Google Scholar] [CrossRef]
- Zhu, M.; Ma, Z.; Liu, L.; Zhang, J.; Huo, S.; Song, P. Recent advances in fire-retardant rigid polyurethane foam. J. Mater. Sci. Technol. 2022, 112, 315–328. [Google Scholar] [CrossRef]
- Delva, L.; Hubo, S.; Cardon, L.; Ragaert, K. On the role of flame retardants in mechanical recycling of solid plastic waste. Waste Manage. 2018, 82, 198–206. [Google Scholar] [CrossRef]
- Guo, L.-C.; Lv, Z.; Zhu, T.; He, G.; Hu, J.; Xiao, J.; Liu, T.; Yu, S.; Zhang, J.; Zhang, H.; et al. Associations between serum polychlorinated biphenyls, halogen flame retardants, and renal function indexes in residents of an E-waste recycling area. Sci. Total Environ. 2023, 858, 159746. [Google Scholar] [CrossRef]
- Runkel, A.A.; Krizanec, B.; Lipicar, E.; Baskar, M.; Hrzenjak, V.; Kodba, Z.C.; Kononenko, L.; Kanduc, T.; Mazej, D.; Tratnik, J.S.; et al. Organohalogens: A persisting burden in Slovenia? Environ. Res. 2021, 198, 111224. [Google Scholar] [CrossRef]
- Shen, K.K. Chapter 11—Review of recent advances on the use of boron-based flame retardants. In Polymer Green Flame Retardants; Papaspyrides, C.D., Kiliaris, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 367–388. [Google Scholar]
- Van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.; Li, Y.; Shao, Q.; Yan, X.; Han, C.; Wang, Z.; Liu, Z.; Guo, Z. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polym. Adv. Technol. 2018, 29, 668–676. [Google Scholar] [CrossRef]
- Chiu, S.-H.; Wang, W.-K. Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer 1998, 39, 1951–1955. [Google Scholar] [CrossRef]
- Chai, H.; Duan, Q.; Jiang, L.; Sun, J. Effect of inorganic additive flame retardant on fire hazard of polyurethane exterior insulation material. J. Therm. Anal. Calorim. 2019, 135, 2857–2868. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, P.; Chen, Z.; Li, L.; Huang, Y. Flame retardancy, thermal stability, and hygroscopicity of wood materials modified with melamine and amino trimethylene phosphonic acid. Constr. Build. Mater. 2021, 267, 121042. [Google Scholar] [CrossRef]
- Blum, A.; Ames, B.N. Flame-Retardant Additives as Possible Cancer Hazards. Science 1977, 195, 17–23. [Google Scholar] [CrossRef]
- Li, Z.R.; He, C.; Thai, P.; Wang, X.Y.; Braunig, J.; Yu, Y.J.; Luo, X.J.; Mai, B.X.; Mueller, J.F. Organophosphate esters and their specific metabolites in chicken eggs from across Australia: Occurrence, profile, and distribution between yolk and albumin fractions. Environ. Pollut. 2020, 262, 114260. [Google Scholar] [CrossRef] [PubMed]
- Persson, J.; Wang, T.; Hagberg, J. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools. Sci. Total Environ. 2018, 628–629, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Neisius, N.M.; Gaan, S. Recent developments in flame retardant polymeric coatings. Prog. Org. Coat. 2013, 76, 1642–1665. [Google Scholar] [CrossRef]
- Emmons, H.W.; Atreya, A. The science of wood combustion. Proc. Indian Acad. Sci. 1982, 5, 259–268. [Google Scholar] [CrossRef]
- McKenna, S.T.; Hull, T.R. The fire toxicity of polyurethane foams. Fire Sci. Rev. 2016, 5, 3. [Google Scholar] [CrossRef]
- Rutkowski, J.V.; Levin, B.C. Acrylonitrile–butadiene–styrene copolymers (ABS): Pyrolysis and combustion products and their toxicity—A review of the literature. Fire Mater. 1986, 10, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Mechtcherine, V.; Michel, A.; Liebscher, M.; Schneider, K.; Großmann, C. Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: Material and automation perspectives. Autom. Constr. 2020, 110, 103002. [Google Scholar] [CrossRef]
- Ardanuy, M.; Claramunt, J.; Toledo Filho, R.D. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015, 79, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Spadea, S.; Farina, I.; Carrafiello, A.; Fraternali, F. Recycled nylon fibers as cement mortar reinforcement. Constr. Build. Mater. 2015, 80, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Rawat, P.; Liu, S.; Guo, S.; Zillur Rahman, M.; Yang, T.; Bai, X.; Yao, Y.; Mobasher, B.; Zhu, D. A state-of-the-art review on mechanical performance characterization and modelling of high-performance textile reinforced concretes. Constr. Build. Mater. 2022, 347, 128521. [Google Scholar] [CrossRef]
- Kim, S.G.; Park, J.K.; Kim, D.J. Direct tensile responses of aramid fiber reinforced cementitious composites and textile reinforced cementitious composites with 3D spacer fabric at high strain rates. Constr. Build. Mater. 2018, 168, 232–243. [Google Scholar] [CrossRef]
- Shree, R.; Gunasekaran, G. Development of elastomeric intumescent fire-retardant coating for protection of structures at sub-zero temperature condition. Mater. Chem. Phys. 2023, 296, 127229. [Google Scholar] [CrossRef]
- Maznah Kabeb, S.; Hassan, A.; Mohamad, Z.; Sharer, Z.; Mokhtar, M.; Ahmad, F. Sustainable flame retardant coating based graphene oxide and montmorillonite. Mater. Today. 2022, 51, 1327–1331. [Google Scholar] [CrossRef]
- Chen, S.-N.; Lin, C.; Hsu, H.-L.; Chen, X.-H.; Huang, Y.-C.; Hsieh, T.-H.; Ho, K.-S.; Lin, Y.-J. Inorganic Flame-Retardant Coatings Based on Magnesium Potassium Phosphate Hydrate. Materials 2022, 15, 5317. [Google Scholar] [CrossRef]
- Piperopoulos, E.; Scionti, G.; Atria, M.; Calabrese, L.; Proverbio, E. Flame-Retardant Performance Evaluation of Functional Coatings Filled with Mg(OH)2 and Al(OH)3. Polymers 2022, 14, 372. [Google Scholar] [CrossRef]
- Mohd Sabee, M.M.S.; Itam, Z.; Beddu, S.; Zahari, N.M.; Mohd Kamal, N.L.; Mohamad, D.; Zulkepli, N.A.; Shafiq, M.D.; Abdul Hamid, Z.A. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers 2022, 14, 2911. [Google Scholar] [CrossRef]
- Fu, M.; Chen, W.; Deng, H.; Chen, C.; Fan, Z.; Li, B.; Li, X. Halloysite-based aerogels by bidirectional freezing with mechanical properties, thermal insulation and flame retardancy. Appl. Clay Sci. 2022, 225, 106547. [Google Scholar] [CrossRef]
- Wang, C.; Huo, S.; Ye, G.; Shi, Q.; Fang, Z.; Wang, H.; Liu, Z. Phenylboronic acid-decorated ZrP nanosheets for enhancing fire resistance, smoke suppression, and water/acid/alkali tolerance of intumescent coatings. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130292. [Google Scholar] [CrossRef]
- Dhumal, P.S.; Lokhande, K.D.; Bondarde, M.P.; Bhakare, M.A.; Some, S. Heat resistive, binder-free 3d-dough composite as a highly potent flame-retardant. J. Appl. Polym. Sci. 2022, 139, 52146. [Google Scholar] [CrossRef]
- Kolibaba, T.J.; Brehm, J.T.; Grunlan, J.C. Renewable nanobrick wall coatings for fire protection of wood. Green Mater. 2020, 8, 131–138. [Google Scholar] [CrossRef]
- Ma, D.X.; Yang, Y.; Yin, G.Z.; Vazquez-Lopez, A.; Jiang, Y.; Wang, N.; Wang, D.Y. ZIF-67 In Situ Grown on Attapulgite: A Flame Retardant Synergist for Ethylene Vinyl Acetate/Magnesium Hydroxide Composites. Polymers 2022, 14, 4408. [Google Scholar] [CrossRef]
- Peng, W.M.; Zhang, G.; Wang, X.J.; Zhang, M.L.; Yan, G.M.; Yang, J. Fire-safe and tough semi-aromatic polyamide enabled by halloysite-based self-assembled microrods. Appl. Clay Sci. 2022, 229, 106657. [Google Scholar] [CrossRef]
- Ahmad, F.; Ullah, S.; Merican, N.H.B.H.; Onate, E.; Al-Sehemi, A.G.; Yeoh, G.H. An investigation on thermal performance of wollastonite and bentonite reinforced intumescent fire-retardant coating for steel structures. Constr. Build. Mater. 2019, 228, 116734. [Google Scholar] [CrossRef]
- Kazmina, O.; Lebedeva, E.; Mitina, N.; Kuzmenko, A. Fire-proof silicate coatings with magnesium-containing fire retardant. J. Coat. Technol. Res. 2018, 15, 543–554. [Google Scholar] [CrossRef]
- Gao, C.; Huo, S.; Cao, Z. Solid wastes toward flame retardants for polymeric materials: A review. Front. Mater. 2021, 8, 712188. [Google Scholar] [CrossRef]
- Yew, M.C.; Yew, M.K.; Saw, L.H.; Ng, T.C.; Durairaj, R.; Beh, J.H. Influences of nano bio-filler on the fire-resistive and mechanical properties of water-based intumescent coatings. Prog. Org. Coat. 2018, 124, 33–40. [Google Scholar] [CrossRef]
- Abdullah, M.N.i.; Mustapha, M.; Sallih, N.; Ahmad, A.; Mustapha, F.; Dahliyanti, A. Study and use of rice husk ash as a source of aluminosilicate in refractory coating. Materials 2021, 14, 3440. [Google Scholar] [CrossRef] [PubMed]
- Beh, J.H.; Yew, M.C.; Saw, L.H.; Yew, M.K. Fire resistance and mechanical properties of intumescent coating using novel bioash for steel. Coatings 2020, 10, 1117. [Google Scholar] [CrossRef]
- Rybinski, P.; Syrek, B.; Bradlo, D.; Zukowski, W.; Anyszka, R.; Imiela, M. Influence of cenospheric fillers on the thermal properties, ceramisation and flammability of nitrile rubber composites. J. Compos. Mater. 2018, 52, 2815–2827. [Google Scholar] [CrossRef]
- Malucelli, G. Biomacromolecules and bio-sourced products for the design of flame retarded fabrics: Current state of the art and future perspectives. Molecules 2019, 24, 3774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sag, J.; Goedderz, D.; Kukla, P.; Greiner, L.; Schonberger, F.; Doring, M. Phosphorus-containing flame retardants from biobased chemicals and their application in polyesters and epoxy resins. Molecules 2019, 24, 3746. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Liu, L.; Song, L.; Hu, Y.; Jiang, S.; Zhao, H. Reinforcement of layer-by-layer self-assembly coating modified cellulose nanofibers to reduce the flammability of polyvinyl alcohol. Cellulose 2019, 26, 3183–3192. [Google Scholar] [CrossRef]
- Li, S.; Lin, X.; Liu, Y.; Li, R.; Ren, X.; Huang, T.-S. Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric. Cellulose 2019, 26, 4213–4223. [Google Scholar] [CrossRef]
- Guo, W.; Wang, X.; Huang, J.; Zhou, Y.; Cai, W.; Wang, J.; Song, L.; Hu, Y. Construction of durable flame-retardant and robust superhydrophobic coatings on cotton fabrics for water-oil separation application. Chem. Eng. J. 2020, 398, 125661. [Google Scholar] [CrossRef]
- Deniz, A.; Zaytoun, N.; Hetjens, L.; Pich, A. Polyphosphazene-tannic acid colloids as building blocks for bio-based flame-retardant coatings. ACS Appl. Polym. Mater. 2020, 2, 5345–5351. [Google Scholar] [CrossRef]
- Xia, Z.Y.; Kiratitanavit, W.; Facendola, P.; Thota, S.; Yu, S.; Kumar, J.; Mosurkal, R.; Nagarajan, R. Fire resistant polyphenols based on chemical modification of bio-derived tannic acid. Polym. Degrad. Stab. 2018, 153, 227–243. [Google Scholar] [CrossRef]
- Xia, Z.Y.; Singh, A.; Kiratitanavit, W.; Mosurkal, R.; Kumar, J.; Nagarajan, R. Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid. Thermochim. Acta 2015, 605, 77–85. [Google Scholar] [CrossRef]
- Ramirez, J.; Berrio, M.E.; Diaz-Gomez, A.; Montoya, L.F.; Jaramillo, A.F.; Montalba, C.; Fernandez, K.; Medina, C.; Melendrez, M.F. Comparative study of fire-resistant coatings based on high and low molecular weight tannins. J. Coat. Technol. Res. 2021, 19, 453–465. [Google Scholar] [CrossRef]
- Li, S.; Zhu, J.; Yu, J.; Wang, Y.; Hu, Z. Mussel-inspired polydopamine/polystyrene composites with 3D continuous structure and improved thermal, mechanical, and flame retarding properties. J. Appl. Polym. Sci. 2019, 136, 47740. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Liu, S.; Zhang, Y.; Du, Z.; Qu, L. Bio-inspired fabrication of fire-retarding, magnetic-responsive, superhydrophobic sponges for oil and organics collection. Appl. Clay Sci. 2019, 172, 19–27. [Google Scholar] [CrossRef]
- Wang, S.; Du, X.; Deng, S.; Fu, X.; Du, Z.; Cheng, X.; Wang, H. A polydopamine-bridged hierarchical design for fabricating flame-retarded, superhydrophobic, and durable cotton fabric. Cellulose 2019, 26, 7009–7023. [Google Scholar] [CrossRef]
- Pöhler, T.; Widsten, P.; Hakkarainen, T. Improved fire retardancy of cellulose fibres via deposition of nitrogen-modified biopolyphenols. Molecules 2022, 27, 3741. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, W.; Zhou, S.; Xing, T.; Sun, G.; Chen, G. Polydopamine-induced growth of mineralized gamma-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chem. Eng. J. 2020, 382, 122988. [Google Scholar] [CrossRef]
- Davesne, A.-L.; Lazar, S.; Bellayer, S.; Qin, S.; Grunlan, J.C.; Bourbigot, S.; Jimenez, M. Hexagonal boron nitride platelet-based nanocoating for fire protection. ACS Appl. Nano Mater. 2019, 2, 5450–5459. [Google Scholar] [CrossRef]
- Esmailpour, A.; Majidi, R.; Taghiyari, H.R.; Ganjkhani, M.; Armaki, S.M.M.; Papadopoulos, A.N. Improving fire retardancy of beech wood by graphene. Polymers 2020, 12, 303. [Google Scholar] [CrossRef]
- Wang, C.; Ge, X.; Jiang, Y. Synergistic effect of graphene oxide/montmorillonite-sodium carboxymethycellulose ternary mimic-nacre nanocomposites prepared via a facile evaporation and hot-pressing technique. Carbohydr. Polym. 2019, 222, 115026. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zhang, Y.; Tao, Y.; Lu, J.; Liu, J.; Wang, B.; Song, L.; Jie, G.; Hu, Y. Durable electromagnetic interference (EMI) shielding ramie fabric with excellent flame retardancy and Self-healing performance. J. Colloid Interface Sci. 2021, 602, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.L.; Yin, L.; Pan, H.F.; Mao, S.H.; Liu, L.; Zhou, K.Q. Novel exploration of the flame retardant potential of bimetallic MXene in epoxy composites. Compos. B Eng. 2022, 237, 109862. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, N.; Li, D.; Zhu, J. Thermal properties of two-dimensional layered materials. Adv. Funct. Mater. 2017, 27, 1604134. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, G.; Xing, T. Rational design and preparation of flame retardant silk fabrics coated with reduced graphene oxide. Appl. Surf. Sci. 2019, 474, 203–210. [Google Scholar] [CrossRef]
- Carosio, F.; Maddalena, L.; Gomez, J.; Saracco, G.; Fina, A. Graphene oxide exoskeleton to produce self-extinguishing, nonignitable, and flame-resistant flexible foams: A mechanically tough alternative to inorganic aerogels. Adv. Mater. Interfaces 2018, 5, 1801288. [Google Scholar] [CrossRef]
- Maddalena, L.; Carosio, F.; Gomez, J.; Saracco, G.; Fina, A. Layer-by-layer assembly of efficient flame retardant coatings based on high aspect ratio graphene oxide and chitosan capable of preventing ignition of PU foam. Polym. Degrad. Stab. 2018, 152, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Shao, X.; Zhao, Z.; Liu, X.; Jiang, L.; Huang, K.; Zhao, S. Synergistic Fire Hazard Effect of a Multifunctional Flame Retardant in Building Insulation Expandable Polystyrene through a Simple Surface-Coating Method. ACS Omega 2020, 5, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Lai, X.; Li, H.; Gao, J.; Zeng, X.; Huang, X.; Lin, X. A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities. Chem. Eng. J. 2019, 369, 8–17. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Zhang, J.-W.; Cao, C.-F.; Guo, K.-Y.; Zhao, L.; Zhang, G.-D.; Gao, J.-F.; Tang, L.-C. Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chem. Eng. J. 2020, 386, 123894. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, Y.; Chen, G.; Yang, F.; Zhang, H.; Cao, C.; Zuo, B. Nacre-like graphene oxide paper bonded with boric acid for fire early-warning sensor. J. Hazard. Mater. 2021, 403, 123645. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.-F.; Yu, B.; Chen, Z.-Y.; Qu, Y.-X.; Li, Y.-T.; Shi, Y.-Q.; Ma, Z.-W.; Sun, F.-N.; Pan, Q.-H.; Tang, L.-C.; et al. Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nanomicro Lett. 2022, 14, 92. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wang, Y.; Feng, Y.; Chen, F.-F.; Zhu, Y.-J.; Yu, Y. Graphene oxide/polyethyleneimine/hydroxyapatite nanowire composite paper: Unexpected mechanical robustness after fire attacking and fire alarm application. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107061. [Google Scholar] [CrossRef]
- Jang, A.R.; Hong, S.; Hyun, C.; Yoon, S.I.; Kim, G.; Jeong, H.Y.; Shin, T.J.; Park, S.O.; Wong, K.; Kwak, S.K.; et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 2016, 16, 3360–3366. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, R.; Takada, K.; Pal, T.; Maeda, H.; Kambe, T.; Nishihara, H. Coordination nanosheets (CONASHs): Strategies, structures and functions. ChemComm 2017, 53, 5781–5801. [Google Scholar] [CrossRef]
- Qiu, X.; Li, Z.; Li, X.; Yu, L.; Zhang, Z. Construction and flame-retardant performance of layer-by-layer assembled hexagonal boron nitride coatings on flexible polyurethane foams. J. Appl. Polym. Sci. 2019, 136, 47839. [Google Scholar] [CrossRef]
- Liu, H.; Du, Y.; Lei, S.; Liu, Z. Flame-retardant activity of modified boron nitride nanosheets to cotton. Text. Res. J. 2020, 90, 512–522. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef]
- Yu, B.; Tawiah, B.; Wang, L.-Q.; Yin Yuen, A.C.; Zhang, Z.-C.; Shen, L.-L.; Lin, B.; Fei, B.; Yang, W.; Li, A.; et al. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 2019, 374, 110–119. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, S.; Liang, R.; Sun, P.; Hai, Y.; Zhang, L. Thermal-triggered insulating fireproof layers: A novel fire-extinguishing MXene composites coating. Chem. Eng. J. 2020, 391, 123621. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, Y.; Tian, W.; Liu, J.; Lu, J.; Wang, B.; Xing, W.; Hu, Y. Highly Efficient MXene-Coated Flame Retardant Cotton Fabric for Electromagnetic Interference Shielding. Ind. Eng. Chem. Res. 2020, 59, 14025–14036. [Google Scholar] [CrossRef]
- Vahabi, H.; Saeb, M.R.; Formela, K.; Cuesta, J.-M.L. Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant. Prog. Org. Coat. 2018, 119, 8–14. [Google Scholar] [CrossRef]
- Liang, W.; Wang, R.; Wang, C.; Jia, J.; Sun, H.; Zhang, J.; Yang, Y.; Zhu, Z.; Li, A. Facile preparation of attapulgite-based aerogels with excellent flame retardancy and better thermal insulation properties. J. Appl. Polym. Sci. 2019, 136, 47849. [Google Scholar] [CrossRef]
- Nosaka, T.; Lankone, R.; Westerhoff, P.; Herckes, P. Flame retardant performance of carbonaceous nanomaterials on polyester fabric. Polym. Test. 2020, 86, 106497. [Google Scholar] [CrossRef]
- Pan, H.; Ma, W.; Zhang, Z.; Liu, Y.; Lu, F.; Yu, B. Construction of layer-by-layer assembled green coating on titanate nanotubes to improve the flame retardancy of epoxy resin. J. Appl. Polym. Sci. 2020, 137, 49369. [Google Scholar] [CrossRef]
- Wei, H.; Wang, F.; Qian, X.; Li, S.; Hu, Z.; Sun, H.; Zhu, Z.; Liang, W.; Ma, C.; Li, A. Superhydrophobic fluorine-rich conjugated microporous polymers monolithic nanofoam with excellent heat insulation property. Chem. Eng. J. 2018, 351, 856–866. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, S.; Liu, C.; Mu, P.; Su, Y.; Sun, H.; Liang, W.; Li, A. Ionic liquid and magnesium hydrate incorporated conjugated microporous polymers nanotubes with superior flame retardancy and thermal insulation. Polymer 2020, 194, 122387. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, M.; Wang, S.F.; Fu, H.Q. Superhydrophobic and flame retardant polydimethylsiloxane coatings with layered double hydroxide and ammonium polyphosphate. Prog. Org. Coat. 2022, 172, 107117. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, S.; Liang, R.; Liao, Z.; You, G. A green highly-effective surface flame-retardant strategy for rigid polyurethane foam: Transforming UV-cured coating into intumescent self-extinguishing layer. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105534. [Google Scholar] [CrossRef]
- Wang, F.; Guo, Z. Facile fabrication of ultraviolet light cured fluorinated polymer layer for smart superhydrophobic surface with excellent durability and flame retardancy. J. Colloid Interface Sci. 2019, 547, 153–161. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, P.; Zhang, J.; Tian, W.; Jia, R.; Nawaz, H.; Jin, K.; Zhang, J. A facile strategy to fabricate cellulose-based, flame-retardant, transparent and anti-dripping protective coatings. Chem. Eng. J. 2020, 379, 122270. [Google Scholar] [CrossRef]
- Ma, T.; Li, L.; Wang, Q.; Guo, C. Construction of intumescent flame retardant and hydrophobic coating on wood substrates based on thiol-ene click chemistry without photoinitiators. Compos. B Eng. 2019, 177, 107357. [Google Scholar] [CrossRef]
- Kundu, C.K.; Wang, X.; Hou, Y.; Hu, Y. Construction of flame retardant coating on polyamide 6.6 via UV grafting of phosphorylated chitosan and sol-gel process of organo-silane. Carbohydr. Polym. 2018, 181, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-E.; Yan, Y.-W.; Zhao, H.-B.; Jian, R.-K.; Wang, Y.-Z. A facile and efficient flame-retardant and smoke-suppressant resin coating for expanded polystyrene foams. Compos. B Eng. 2020, 185, 107797. [Google Scholar] [CrossRef]
- Jin, H.; Zhou, X.; Xu, T.; Dai, C.; Gu, Y.; Yun, S.; Hu, T.; Guan, G.; Chen, J. Ultralight and hydrophobic palygorskite-based aerogels with prominent thermal insulation and flame retardancy. ACS Appl. Mater. Interfaces 2020, 12, 11815–11824. [Google Scholar] [CrossRef] [PubMed]
- Davesne, A.L.; Jimenez, M.; Samyn, F.; Bourbigot, S. Thin coatings for fire protection: An overview of the existing strategies, with an emphasis on layer-by-layer surface treatments and promising new solutions. Prog. Org. Coat. 2021, 154, 106217. [Google Scholar] [CrossRef]
- Kim, Y.N.; Ha, Y.-M.; Park, J.E.; Kim, Y.-O.; Jo, J.Y.; Han, H.; Lee, D.C.; Kim, J.; Jung, Y.C. Flame retardant, antimicrobial, and mechanical properties of multifunctional polyurethane nanofibers containing tannic acid-coated reduced graphene oxide. Polym. Test. 2021, 93, 107006. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Carbohydr. Polym. 2020, 246, 116641. [Google Scholar] [CrossRef]
- Batool, S.; Guo, W.W.; Gill, R.; Xin, W.; Hu, Y. Chitin based multi-layered coatings with flame retardancy an approach to mimic nacre: Synthesis, characterization and mechanical properties. Carbohydr. Polym. 2022, 291, 119488. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, H. Preparation of layer-by-layer self-assembled coating modified polyethylene terephthalate fabric with flame retardancy and UV protection based on ZnO nanopaticles. Polym.-Plast. Tech. Mat. 2019, 58, 1046–1053. [Google Scholar] [CrossRef]
- Lin, P.; Xu, Y.; Hou, J.; Zhang, X.; Ma, L.; Che, W.; Yu, Y. Improving the flame retardancy of bamboo slices by coating with melamine-phytate via layer-by-layer assembly. Front. Mater. 2021, 8, 690603. [Google Scholar] [CrossRef]
- Chu, F.; Xu, Z.; Mu, X.; Cai, W.; Zhou, X.; Hu, W.; Song, L. Construction of hierarchical layered double hydroxide/poly(dimethylsiloxane) composite coatings on ramie fabric surfaces for oil/water separation and flame retardancy. Cellulose 2020, 27, 3485–3499. [Google Scholar] [CrossRef]
- Bae, M.; Lee, H.; Choi, G.; Kang, J. An effective expanded graphite coating on polystyrene bead for improving flame retardancy. Materials 2021, 14, 6729. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.-F. Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques. Molecules 2023, 28, 1842. https://doi.org/10.3390/molecules28041842
Li F-F. Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques. Molecules. 2023; 28(4):1842. https://doi.org/10.3390/molecules28041842
Chicago/Turabian StyleLi, Fang-Fang. 2023. "Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques" Molecules 28, no. 4: 1842. https://doi.org/10.3390/molecules28041842
APA StyleLi, F. -F. (2023). Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques. Molecules, 28(4), 1842. https://doi.org/10.3390/molecules28041842