Synthesis, Characterization, and Biological Evaluation of 2-(N-((2′-(2H-tetrazole-5-yl)-[1,1′-biphenyl]-4yl)-methyl)-pentanamido)-3-methyl Butanoic Acid Derivatives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Chemistry
3.3. ADME Studies
3.4. Free Radical Scavenging Activity
3.5. Anti-Hypertensive Activity
3.6. In Vitro Urease Enzyme Inhibition
3.7. Antimicrobial Screening
3.8. Molecular Docking
3.8.1. Ligand Preparation
3.8.2. Protein Preparation
3.8.3. Receptor-Grid Generation
3.8.4. Docking Studies
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jackson, R.; Bellamy, M. Antihypertensive drugs. BJA Educ. 2015, 15, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Otera, J.; Nishikido, J. Esterification: Methods, Reactions, and Applications; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Abualhasan, M.N.; Al-Masri, M.Y.; Manasara, R.; Yadak, L.; Abu-Hasan, N.S.J.S. Anti-Inflammatory and Anticoagulant Activities of Synthesized NSAID Prodrug Esters. Scientifica 2020, 2020, 9817502. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.C.; Kohli, D.V.; Sharma, S. Synthesis and biological evaluation of some new benzimidazoles derivatives 4′-{5-amino-2-[2-substituted-phenylamino)-phenyl-methyl]-benzimidazol-1 ylmethyl}-biphenyl-2-carboxylic acid: Nonpeptide angiotensin II receptor antagonists. Int. J. Drug Deliv. 2010, 2, 265–277. [Google Scholar] [CrossRef]
- Van Chien, T.; Anh, N.T.; Thao, T.T.P.; Phuong, L.D.; Tham, P.T.; Tung, N.Q.; Van Loc, T. Synthesis of Valsartan as drug for the treatment of hypertension. Vietnam J. Chem. 2019, 57, 343–346. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, R.P. In Vitro methods of assay of antioxidants: An overview. Food Rev. Int. 2008, 24, 392–415. [Google Scholar] [CrossRef]
- Garcia, G.; Rodriguez-Puyol, M.; Alajarin, R.; Serrano, I.; Sánchez-Alonso, P.; Griera, M.; Vaquero, J.J.; Rodriguez-Puyol, D.; Alvarez-Builla, J.; Diez-Marques, M.L. Losartan-antioxidant hybrids: Novel molecules for the prevention of hypertension-induced cardiovascular damage. J. Med. Chem. 2009, 52, 7220–7227. [Google Scholar] [CrossRef]
- Arshad, T.; Khan, K.M.; Rasool, N.; Salar, U.; Hussain, S.; Asghar, H.; Ashraf, M.; Wadood, A.; Riaz, M.; Perveen, S.; et al. 5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α-glucosidase and urease enzymes. Bioorg. Chem. 2017, 72, 21–31. [Google Scholar] [CrossRef]
- Krajewska, B.; Ureases, I. Functional, catalytic and kinetic properties: A review. J. Mol. Catal. B Enzym. 2009, 59, 9–21. [Google Scholar] [CrossRef]
- Holm, L.; Sander, C. Function, Bioinformatics. An evolutionary treasure: Unification of a broad set of amidohydrolases related to urease. Proteins Struct. Funct. Bioinform. 1997, 28, 72–82. [Google Scholar] [CrossRef]
- Belzer, C.; Kusters, J.; Kuipers, E.; Van Vliet, A.J.G. Urease induced calcium precipitation by Helicobacter species may initiate gallstone formation. Gut 2006, 55, 1678–1679. [Google Scholar] [CrossRef]
- Hanif, M.; Saleem, M.; Hussain, M.T.; Rama, N.H.; Zaib, S.; Aslam, M.A.M.; Jones, P.G.; Iqbal, J. Synthesis, urease inhibition, antioxidant and antibacterial studies of some 4-amino-5-aryl-3H-1,2,4-triazole-3-thiones and their 3,6-disubstituted 1,2,4-triazolo [3,4-b]1,3,4-thiadiazole derivatives. J. Braz. Chem. Soc. 2012, 23, 854–860. [Google Scholar] [CrossRef] [Green Version]
- Hanif, M.; Shoaib, K.; Saleem, M.; Rama, N.H.; Zaib, S.; Iqbal, J. Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1,3,4-oxadiazole derivatives. Int. Sch. Res. Not. 2012, 2012, 928901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Khan, K.M.; Parveen, S.; Shaikh, M.; Fatima, N.; Choudhary, M.I. Syntheses, in vitro urease inhibitory activities of urea and thiourea derivatives of tryptamine, their molecular docking and cytotoxic studies. Bioorganic Chem. 2019, 83, 595–610. [Google Scholar]
- Lin, W.; Mathys, V.; Ang, E.L.Y.; Koh, V.H.Q.; Gómez, J.M.M.; Ang, M.L.T.; Rahim, S.Z.Z.; Tan, M.P.; Pethe, K.; Alonso, S.; et al. Urease activity represents an alternative pathway for Mycobacterium tuberculosis nitrogen metabolism. Infect. Immun. 2012, 80, 2771–2779. [Google Scholar] [CrossRef] [Green Version]
- Young, G.M.; Amid, D.; Miller, V. A bifunctional urease enhances survival of pathogenic Yersinia enterocolitica and Morganella morganii at low pH. J. Bacteriol. 1996, 178, 6487–6495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Verma, S.; Kumar, S.; Ahmad, M.; Nischal, A.; Singh, S.; Dixit, R.K. Evaluation of oxidative stress and antioxidant status in chronic obstructive pulmonary disease. Scand. J. Immunol. 2017, 85, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-N.; Choi, J.-A.; Lee, J.; Son, S.-H.; Lee, S.-A.; Nguyen, T.-D.; Choi, S.-Y.; Song, C.-H. Ang II-Induced hypertension exacerbates the pathogenesis of tuberculosis. Cells 2021, 10, 2478. [Google Scholar] [CrossRef]
- Saleem, M.F.; Khan, M.A.; Ahmad, I.; Aslam, N.; Khurshid, U. Synthesis and characterization of some new Schiff base derivatives of gabapentin, and assessment of their antibacterial, antioxidant and anticonvulsant activities. Trop. J. Pharm. Res. 2021, 20, 145–153. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.B.; Biswas, M.; Alam, A.H.M.K.K. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 2015, 8, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, M.R.; Levy, D.; Crikelair, N.; Rocha, R.; Meng, X.; Glazer, R. Time to achieve blood-pressure goal: Influence of dose of valsartan monotherapy and valsartan and hydrochlorothiazide combination therapy. Am. J. Hypertens. 2007, 20, 807–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirayak, S.; Karaburun, A.C.; Beis, R. Some pyrrole substituted aryl pyridazinone and phthalazinone derivatives and their antihypertensive activities. Eur. J. Med. Chem. 2004, 39, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Hamad, A.; Khan, M.A.; Rahman, K.M.; Ahmad, I.; Ul-Haq, Z.; Khan, S.; Shafiq, Z. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorganic Chem. 2020, 102, 104057. [Google Scholar] [CrossRef]
- Peek, R.M.; Blaser, M.J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2002, 2, 28–37. [Google Scholar] [CrossRef]
- Abdullah, M.A.; Abuo-Rahma, G.E.-D.A.; Abdelhafez, E.-S.M.; Hassan, H.A.; Abd El-Baky, R.M. Design, synthesis, molecular docking, anti-Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives. Bioorganic Chem. 2017, 70, 1–11. [Google Scholar] [CrossRef]
- Hamad, A.; Khan, M.A.; Ahmad, I.; Imran, A.; Khalil, R.; Al-Adhami, T.; Rahman, K.M.; Zahra, N.; Shafiq, Z. Probing sulphamethazine and sulphamethoxazole based Schiff bases as urease inhibitors; synthesis, characterization, molecular docking and ADME evaluation. Bioorganic Chem. 2020, 105, 104336. [Google Scholar] [CrossRef]
- Chen, F.-A.; Wu, A.-B.; Shieh, P.; Kuo, D.-H.; Hsieh, C.-Y. Evaluation of the antioxidant activity of Ruellia tuberosa. Food Chem. 2006, 94, 14–18. [Google Scholar] [CrossRef]
- Ejaz, S.A.; Hassan, R.; Khalid, N. Synthesis, spectral characterization and enzyme inhibition Studies of different chlorinated sulfonamides. Pak. J. Pharm. Sci. 2014, 27, 1739–1745. [Google Scholar]
- Ashraf, M.A.; Mahmood, K.; Wajid, A.; Maah, M.J.; Yusoff, I. Synthesis, characterization and biological activity of Schiff bases. IPCBEE 2011, 10, 185. [Google Scholar]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger, L.J.S. Glide; LLC: New York, NY, USA, 2017. [Google Scholar]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Bashford, D.; Case, D.A. Generalized born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 2000, 51, 129–152. [Google Scholar] [CrossRef]
Code | TPSA | %Age Absorption | Lipophilicity | GI-Absorption | BBB | Lipinski |
---|---|---|---|---|---|---|
AV0 | 112.07 | 70.3 | 2.45 | High | NO | Yes (0) |
AV1 | 118.14 | 68.24 | 0.00 | Low | NO | N0 (2) |
AV2 | 127.37 | 65.05 | 3.59 | Low | NO | Yes (1) |
AV3 | 250.05 | 22.73 | 0.00 | Low | NO | N0 (2) |
AV4 | 127.09 | 65.15 | 3.01 | Low | NO | Yes (1) |
AV5 | 101.07 | 74.13 | 3.62 | Low | NO | N0 (2) |
AV6 | 135.21 | 62.35 | 2.83 | Low | NO | N0 (2) |
AV7 | 164.39 | 52.28 | 2.76 | Low | NO | N0 (2) |
AV8 | 101.07 | 74.13 | 3.80 | Low | NO | N0 (2) |
AV9 | 112.07 | 70.33 | 2.45 | High | NO | Yes (0) |
AV10 | 101.07 | 74.13 | 3.73 | Low | NO | N0 (2) |
AV11 | 138.37 | 61.26 | 2.96 | Low | NO | N0 (2) |
Code | Mean | %Age Inhibition ± SEM | Code | Mean | %Age Inhibition ± SEM |
---|---|---|---|---|---|
AV0 | 0.919 | 64.6± 0.50 | AV7 | 0.948 | 63.4 ± 0.46 |
AV1 | 0.676 | 73.9 ± 0.49 | AV8 | 0.120 | 95.3 ± 0.55 |
AV2 | 0.102 | 96.0 ± 0.49 | AV9 | 0.419 | 83.8 ± 0.64 |
AV3 | 0.204 | 92.1 ± 0.82 | AV10 | 0.145 | 94.4 ± 0.52 |
AV4 | 0.405 | 84.4 ± 0..63 | AV11 | 0.112 | 95.6 ± 0.54 |
AV5 | 0.696 | 73.1 ± 0.49 | Ascorbic acid | 0.093 | 96.4 ± 0.52 |
AV6 | 0.613 | 76.3 ± 0.46 |
Code | %ge inh. of Phenylephrine Cont. (±SEM) |
---|---|
AV0 | 65.3 ± 3.6 |
AV1 | 67.3 ± 4.7 |
AV2 | 76.4 ± 6.8 |
AV3 | 69.6 ± 5.3 |
AV4 | 69.4 ± 5.4 |
AV5 | 66.2 ± 4.2 |
AV6 | 67.4 ± 5.1 |
AV7 | 62.4 ± 2.7 |
AV8 | 71.6 ± 6.5 |
AV9 | 68.3 ± 4.7 |
AV10 | 69.8 ± 6.7 |
AV11 | 70.8 ± 7.7 |
Code (80 mg/kg) | Mean of Systolic Blood Pressure ± SEM |
---|---|
Control | 108.28 ± 6.87 |
DMSO | 81.10 ± 3.21 |
AV0 | 82.41 ± 4.32 |
AV1 | 81.78 ± 3.87 |
AV2 | 69.21 ± 1.72 |
AV3 | 79.31 ± 3.34 |
AV4 | 79.56 ± 2.78 |
AV5 | 81.92 ± 5.21 |
AV6 | 81.21 ± 3.21 |
AV7 | 85.61 ± 3.32 |
AV8 | 71.56 ± 4.32 |
AV9 | 80.17 ± 1.34 |
AV10 | 75.82 ± 4.12 |
AV11 | 72.71 ± 3.21 |
Code | IC50 ± SEM (µM) | Comp. Code | IC50 ± SEM (µM) |
---|---|---|---|
AV0 | 3.21 ± 0.95 | AV7 | 8.59 ± 1.12 |
AV1 | 2.56 ± 0.32 | AV8 | 3.52 ± 0.12 |
AV2 | 0.28 ± 0.15 | AV9 | 2.26 ± 1.04 |
AV3 | 1.56 ± 0.12 | AV10 | 2.05 ± 1.05 |
AV4 | 3.19 ± 0.95 | AV11 | 2.19 ± 0.17 |
AV5 | 1.29 ± 0.12 | Standard Thiourea | 4.24 ± 0.13 |
AV6 | 2.13 ± 0.97 |
Code | Zone of Inhibition Gram +ve Bacteria | Zone of Inhibition Gram -Ve Bacteria | ||
---|---|---|---|---|
B.pumilus Mean ± SEM | S. aureus Mean ± SEM | E. coli Mean ± SEM | P. aeruginosa Mean ± SEM | |
AV0 | 11.36 ± 0.49 | 12.13 ± 0.72 | 10.40 ± 0.69 | 12.43 ± 0.67 |
AV1 | 10.33 ± 0.40 | 10.83 ± 0.31 | 11.06 ± 0.55 | 10.36 ± 0.28 |
AV2 | 12.26 ± 0.69 | 12.90 ± 0.81 | 11.90 ± 0.26 | 09.33 ± 0.58 |
AV3 | 11.01 ± 0.89 | 11.53 ± 0.58 | 10.93 ± 0.58 | 11.73 ± 0.33 |
AV4 | 10.46 ± 0.67 | 10.16 ± 0.17 | 10.63 ± 0.40 | 10.31 ± 0.47 |
AV5 | 11.23 ± 0.61 | 13.50 ± 0.50 | 11.36 ± 0.63 | 09.36 ± 0.85 |
AV6 | 11.76 ± 1.06 | 12.86 ± 0.72 | 09.73 ± 0.44 | 10.73 ± 0.28 |
AV7 | 11.13 ± 0.80 | 12.10 ± 0.37 | 10.96 ± 0.18 | 10.76 ± 0.53 |
AV8 | 12.6 ± 0.60 | 12.66 ± 1.06 | 11.21 ± 0.41 | 12.23 ± 0.27 |
AV9 | 12.76 ± 0.84 | 14.40 ± 0.37 | 09.73 ± 0.23 | 10.90 ± 0.40 |
AV10 | 10.30 ± 0.21 | 12.13 ± 0.37 | 10.40 ± 0.56 | 12.63 ± 0.63 |
AV11 | 10.66 ± 0.52 | 12.53 ± 0.68 | 10.01 ± 0.55 | 11.46 ± 0.53 |
Ceftriaxone | 22.13 ± 0.14 | 24.60 ± 0.51 | 21.90 ± 0.18 | 23.33 ± 0.43 |
Derivative Code | Docking Score |
---|---|
V4 | −2.512 |
Standard (AHA) | −11.619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masood, A.; Khan, M.A.; Ahmad, I.; Breena; Raza, A.; Ullah, F.; Ali Shah, S.A. Synthesis, Characterization, and Biological Evaluation of 2-(N-((2′-(2H-tetrazole-5-yl)-[1,1′-biphenyl]-4yl)-methyl)-pentanamido)-3-methyl Butanoic Acid Derivatives. Molecules 2023, 28, 1908. https://doi.org/10.3390/molecules28041908
Masood A, Khan MA, Ahmad I, Breena, Raza A, Ullah F, Ali Shah SA. Synthesis, Characterization, and Biological Evaluation of 2-(N-((2′-(2H-tetrazole-5-yl)-[1,1′-biphenyl]-4yl)-methyl)-pentanamido)-3-methyl Butanoic Acid Derivatives. Molecules. 2023; 28(4):1908. https://doi.org/10.3390/molecules28041908
Chicago/Turabian StyleMasood, Anum, Mohsin Abbas Khan, Irshad Ahmad, Breena, Asim Raza, Farhat Ullah, and Syed Adnan Ali Shah. 2023. "Synthesis, Characterization, and Biological Evaluation of 2-(N-((2′-(2H-tetrazole-5-yl)-[1,1′-biphenyl]-4yl)-methyl)-pentanamido)-3-methyl Butanoic Acid Derivatives" Molecules 28, no. 4: 1908. https://doi.org/10.3390/molecules28041908
APA StyleMasood, A., Khan, M. A., Ahmad, I., Breena, Raza, A., Ullah, F., & Ali Shah, S. A. (2023). Synthesis, Characterization, and Biological Evaluation of 2-(N-((2′-(2H-tetrazole-5-yl)-[1,1′-biphenyl]-4yl)-methyl)-pentanamido)-3-methyl Butanoic Acid Derivatives. Molecules, 28(4), 1908. https://doi.org/10.3390/molecules28041908