Rye Dietary Fiber Components upon the Influence of Fermentation Inoculated with Probiotic Microorganisms
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rye Flour Composition
2.2. Contents of Individual Complex Carbohydrates in the Sourdoughs
2.3. Contents of Individual Complex Carbohydrates and Dietary Fiber in the Sourdough Breads
3. Materials and Methods
3.1. Materials
- -
- S.boulardii (CNCM I-745) (Biocodex, Warszawa, Poland)
- -
- Lpb.plantarum (DSM 9843) (Sanprobi SP.Z O.O.SP.K., Szczecin, Poland)
- -
- L.rhamnosus (DSM 14870) (Bayer Pharma, Warszawa, Poland)
- -
- B.coagulans (MTCC 5856) (Singularis Herbs Corporation Ltd., Lewes, DE, USA).
3.2. Sample Preparation
3.3. Carbohydrates Content Determination
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dziki, D. Rye Flour and Rye Bran: New Perspectives for Use. Process 2022, 10, 293. [Google Scholar] [CrossRef]
- Dodevska, M.; Djordjevic, B.R.; Sobajic, S.; Miletic, I.D.; Djordjevic, P.; Dimitrijevic-Sreckovic, V.S. Characterisation of dietary fibre components in cereals and legumes used in Serbian diet. Food Chem. 2013, 141, 1624–1629. [Google Scholar] [CrossRef]
- El-Salhy, M.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. Diet and Irritable Bowel Syndrome, with a Focus on Appetite-Regulating Gut Hormones. Nutr. J. 2015, 14, 14–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gélinas, P.; McKinnon, C.; Gagnon, F. Fructans, water-soluble fibre and fermentable sugars in bread and pasta made with ancient and modern wheat. Int. J. Food Sci. 2016, 51, 555–564. [Google Scholar] [CrossRef]
- Nowotna, A.; Gambuś, H.; Liebhard, P.; Praznik, W.; Ziobro, R.; Berski, W.; Krawontka, J. Characteristics of carbohydrate fraction of rye varieties. Acta Sci. Pol. Technol. Aliment 2006, 5, 87–96. [Google Scholar]
- Bender, D.; Schmatz, M.; Novalin, S.; Nemeth, R.; Chrysanthopoulou, F.; Tömösközi, S.; Török, K.; Schoenlechner, R.; D’Amico, S. Chemical and rheological characterization of arabinoxylan isolates from rye bran. Chem. Biol. Technol. Agric. 2017, 4, 14. [Google Scholar] [CrossRef]
- Loponen, J.; Gänzle, M.G. Use of Sourdough in Low FODMAP Baking. Foods 2018, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Mendis, M.; Simek, S. Arabinoxylans and human health. Food Hydrocoll. 2014, 42, 239–243. [Google Scholar] [CrossRef]
- Whelan, K.; Abrahmsohn, O.; David, G.J.P.; Staudacher, H.; Irving, P.; Lomer, M.C.E.; Ellis, P.R. Fructan content of commonly consumed wheat, rye and gluten-free breads. Int. J. Food Sci. Nutr. 2011, 62, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Pejcz, E.; Wojciechowicz-Budzisz, A.; Gil, Z.; Czaja, A.; Spychaj, R. Effect of naked barley enrichment on the quality and nutritional characteristic of bread-part II. The Effect on rye bread. Eng. Sci. Technol. Int. 2016, 2, 21. [Google Scholar] [CrossRef]
- Mansueto, P.; Seidita, A.; D’Alcamo, A.; Carroccio, A. Role of FODMAPs in Patients With Irritable Bowel Syndrome: A Review. Nutr. Clin. Pract. 2015, 10, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catassi, G.; Lionetti, E.; Gatti, S.; Catassi, C. The Low FODMAP Diet: Many Question Marks for a Catchy Acronym. Nutrients 2017, 9, 292. [Google Scholar] [CrossRef] [PubMed]
- Koistinen, V.M.; Mattila, O.; Katina, K.; Poutanen, K.; Aura, A.M.; Hanhineva, K. Metabolic profling of sourdough fermented wheat and rye bread. Sci. Rep. 2018, 8, 5684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pétel, C.; Onno, B.; Prost, C. Sourdough volatile compounds and their contribution to bread: A review. Trends Food Sci. Technol. 2017, 59, 105–123. [Google Scholar] [CrossRef]
- Pejcz, E.; Spychaj, R.; Gil, Z. Technological Methods for Reducing the Content of Fructan in Wheat Bread. Foods 2019, 8, 663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics-A Step Beyond Pre- and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef] [PubMed]
- Păcularu-Burada, B.; Georgescu, L.A.; Vasile, M.A.; Rocha, J.M.; Bahrim, G.E. Selection of Wild Lactic Acid Bacteria Strains as Promoters of Postbiotics in Gluten-Free Sourdoughs. Microorganisms 2020, 8, 643. [Google Scholar] [CrossRef] [PubMed]
- Park, D.M.; Bae, J.H.; Kim, M.S.; Kim, H.; Kang, S.D.; Shim, S.; Lee, D.; Seo, J.H.; Kang, H.; Han, N.S. Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a Probiotic Starter for Sourdough Fermentation. FMB 2019, 29, 1729–1738. [Google Scholar] [CrossRef]
- Lazo-Vélez, M.A.; Serna-Saldívar, S.O.; Rosales-Medina, M.F.; Tinoco-Alvear, M.; Briones-García, M. Application of Saccharomyces cerevisiae var. boulardii in food processing: A review. J. Appl. Microbiol. 2018, 125, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Weckx, S.; Van der Meulen, R.; Maes, D.; Scheirlinck, I.; Huys, G.; Vandamme, P.; De Vuyst, L. Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations. Food Microbiol. 2010, 27, 1000–1008. [Google Scholar] [CrossRef]
- Pinheiro de Souza Oliveira, R.; Perego, P.; Nogueira de Oliveira, M.; Converti, A. Effect of inulin on the growth and metabolism of a probiotic strain of Lactobacillus rhamnosus in co-culture with Streptococcus thermophilus. LWT 2012, 47, 358–363. [Google Scholar] [CrossRef]
- Soares, M.B.; Martinez, R.C.R.; Pereira, E.P.R.; Balthazar, C.F.; Cruz, A.G.; Ranadheera, C.S.; Sant’Ana, A.S. The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res. Int. 2019, 125, 108542. [Google Scholar] [CrossRef] [PubMed]
- Poshadri, A.; Deshpande, H.W.; Khodke, U.M.; Katke, S.D. Bacillus coagulans and its Spore as Potential Probiotics in the Production of Novel Shelf- Stable Foods. Nutr. Food Sci. 2022, 10(3), 858–870. [Google Scholar] [CrossRef]
- Robert, H.; Gabriel, V.; Lefebvre, D.; Rabier, P.; Vayssier, Y.; Fontagné-Faucher, C. Study of the behaviour of Lactobacillus plantarum and Leuconostoc starters during a complete wheat sourdough breadmaking process. LWT 2006, 39, 256–265. [Google Scholar] [CrossRef]
- Menezes, L.A.A.; Minervini, F.; Filannino, P.; Sardaro, M.L.S.; Gatti, M.; De Dea Lindner, J. Effects of Sourdough on FODMAPs in Bread and Potential Outcomes on Irritable Bowel Syndrome Patients and Healthy Subjects. Front. Microbiol. 2018, 9, 1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struyf, N.; Laurent, J.; Lefevere, B.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations. Food Chem. 2017, 218, 89–98. [Google Scholar] [CrossRef]
- Korakli, M.; Gänzle, M.G.; Vogel, R.F. Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J. Appl. Microbiol. 2002, 92, 958–965. [Google Scholar] [CrossRef]
- Deleu, L.J.; Lemmens, E.; Redant, L.; Delcour, J.A. The major constituents of rye (Secale cereale L.) flour and their role in the production of rye bread, a food product to which a multitude of health aspects are ascribed. Cereal Chem. 2020, 97, 737–754. [Google Scholar] [CrossRef]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. COBIOT 2017, 44, 94–102. [Google Scholar] [CrossRef]
- Laatikainen, R.; Koskenpato, J.; Hongisto, S.-M.; Loponen, J.; Poussa, T.; Hillilä, M.; Korpela, R. Randomised clinical trial: Low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Aliment Pharmacol. Ther. 2016, 44, 460–470. [Google Scholar] [CrossRef]
- Graça, C.; Lima, A.; Raymundo, A.; Sousa, I. Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. Fermentation 2021, 7, 246. [Google Scholar] [CrossRef]
- Lau, S.W.; Chong, A.Q.; Chin, N.L.; Talib, R.A.; Basha, R.K. Sourdough Microbiome Comparison and Benefits. Microorganisms 2021, 9, 1355. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Comasio, A.; Kerrebroeck, S.V. Sourdough production: Fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit. Rev. Food Sci. Nutr. 2021, 15, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Canesin, M.R.; Baú Betim Cazarin, C. Nutritional quality and nutrient bioaccessibility in sourdough bread. Curr. Opin. Food Sci. 2021, 40, 81–86. [Google Scholar] [CrossRef]
- Qaisrani, T.B.; Qaisrani, M.M.; Qaisrani, T.M. Arabinoxylans from psyllium husk: A review. J. Agric. Sci. Environ. 2016, 6, 33–39. [Google Scholar]
- Martín-Garcia, A.; Riu-Aumatell, M.; López-Tamames, E. Influence of Process Parameters on Sourdough Microbiota, Physical Properties and Sensory Profile. Food Rev. Int. 2021, 37, 1–15. [Google Scholar] [CrossRef]
- Lanzerstorfer, P.; Rechenmacher, E.; Lugmayr, O.; Stadlbauer, V.; Höglinger, O.; Vollmar, A.; Weghuber, J. Effects of various commercial whole-grain breads on postprandial blood glucose response and glycemic index in healthy subjects. Austin J. Clin. Med. 2018, 5, 1031. Available online: https://austinpublishinggroup.com/clinical-medicine/fulltext/ajcm-v5-id1031.pdf (accessed on 15 December 2022).
- Nyyssölä, A.; Ellilä, S.; Nordlund, E.; Poutanen, K. Reduction of FODMAP content by bioprocessing. Food Sci. Technol. 2020, 99, 257–272. [Google Scholar] [CrossRef]
- Struyf, N.; Verspreet, J.; Courtin, C.M. FODMAP Reduction in Yeast-Leavened Whole Wheat Bread. Cereal Foods World 2018, 63, 152–154. [Google Scholar] [CrossRef]
- Perri, G.; Rizzello, C.G.; Ampollini, M.; Celano, G.; Coda, R.; Gobbetti, M.; De Angelis, M.; Calasso, M. Bioprocessing of Barley and Lentil Grains to Obtain In Situ Synthesis of Exopolysaccharides and Composite Wheat Bread with Improved Texture and Health Properties. Foods 2021, 10, 1489. [Google Scholar] [CrossRef]
- Cox, L.M.; Cho, I.; Young, S.A.; Anderson, W.H.K.; Waters, B.J.; Hung, S.-C.; Gao, Z.; Mahana, D.; Bihan, M.; Alekseyenko, A.V.; et al. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. FASEB J. 2012, 27, 692–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihhalevski, A.; Nisamedtinov, I.; Hälvin, K.; Ošeka, A.; Paalme, T. Stability of B-complex vitamins and dietary fiber during rye sourdough bread production. J. Cereal Sci. 2013, 57, 30–38. [Google Scholar] [CrossRef]
- McCleary, B.V.; Murphy, A.; Mugford, D.C. Measurement of Total Fructan in Foods by Enzymatic/Spectrophotometric Method: Collaborative Study. J. AOAC Int. 2000, 83, 356–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCleary, B.V.; Codd, R. Measurement of (1-3) (1-4)-β-D-glucan in barley and oats: A streamlined enzymic procedure. J. Sci. Food Agric. 1991, 55, 303–312. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, VA, USA, 2006; Volume I–II. [Google Scholar]
- Kieliszek, M.; Pobiega, K.; Piwowarek, K.; Kot, A.M. Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021, 26, 1858. [Google Scholar] [CrossRef] [PubMed]
Type of Fermentation | Starch | Total Arabinoxylans | Soluble Arabinoxylans | Arabinoxylans Insoluble | Fructans | β-Glucans | Total Fiber | Soluble Fiber | Insoluble Fiber |
---|---|---|---|---|---|---|---|---|---|
Rye flour | 58.67 ± 0.08 | 8.12 ± 0.05 | 2.11 ± 0.19 | 6.01 ± 0.14 | 3.82 ± 0.012 | 1.07 ± 0.02 | 10.39 ± 0.32 | 1.12 ± 0.40 | 9.27 ± 0.07 |
Control bread | 57.56 ± 0.91 bc | 8.61 ± 0.19 cd | 1.42 ± 0.08 c | 7.19 ± 0.11 c | 1.46 ± 0.19 a | 0.30 ± 0.01 e | 10.84 ± 0.33 b | 1.66 ± 0.50 ab | 9.18 ± 0.17 bc |
Spontaneous fermentation | 57.15 ± 0.33 c | 8.39 ± 0.18 d | 2.30 ± 0.68 a | 6.10 ± 0.86 e | 1.32 ± 0.06 a | 0.41 ± 0.08 d | 9.78 ± 0.92 c | 0.63 ± 1.09 c | 9.14 ± 0.17 c |
S.boulardii | 58.79 ± 0.11 a | 9.65 ± 0.24 b | 1.77± 0.03 b | 7.89 ± 0.27 b | 0.62 ± 0.12 b | 0.39 ± 0.01 d | 10.01 ± 0.00 c | 0.80 ± 0.24 bc | 9.21 ± 0.23 bc |
Lpb. plantarum | 58.27 ± 1.27 ab | 9.02 ± 0.83 c | 2.22 ± 0.39 a | 6.81 ± 1.22 cd | 1.31 ± 0.62 a | 0.49 ± 0.01 b | 12.16 ± 0.42 a | 2.21 ± 0.17 a | 9.95 ± 0.25 a |
L. rhamnosus | 57.61 ± 0.56 bc | 8.19 ± 0.11 d | 1.90 ± 0.07 b | 6.28 ± 0.18 de | 1.15 ± 0.12 a | 0.53 ± 0.01 a | 10.82 ± 0.52 b | 1.13 ± 0.35 bc | 9.69 ± 0.17 ab |
B.coagulans | 55.91 ± 0.69 d | 10.54 ± 0.39 a | 1.91 ± 0.25 b | 8.60 ± 0.65 a | 1.33 ± 0.35 a | 0.45 ± 0.06 c | 10.26 ± 1.74 bc | 1.16 ± 0.95 bc | 9.10 ± 0.79 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koj, K.; Pejcz, E. Rye Dietary Fiber Components upon the Influence of Fermentation Inoculated with Probiotic Microorganisms. Molecules 2023, 28, 1910. https://doi.org/10.3390/molecules28041910
Koj K, Pejcz E. Rye Dietary Fiber Components upon the Influence of Fermentation Inoculated with Probiotic Microorganisms. Molecules. 2023; 28(4):1910. https://doi.org/10.3390/molecules28041910
Chicago/Turabian StyleKoj, Kamila, and Ewa Pejcz. 2023. "Rye Dietary Fiber Components upon the Influence of Fermentation Inoculated with Probiotic Microorganisms" Molecules 28, no. 4: 1910. https://doi.org/10.3390/molecules28041910
APA StyleKoj, K., & Pejcz, E. (2023). Rye Dietary Fiber Components upon the Influence of Fermentation Inoculated with Probiotic Microorganisms. Molecules, 28(4), 1910. https://doi.org/10.3390/molecules28041910