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Abstract: Carbonyl olefinations are among the most important organic syntheses that form C=C
bonds, as they usually have high yields and in addition offer excellent stereoselectivity. Due to these
advantages, carbonyl olefinations have important pharmaceutical and industrial applications. These
reactions contain an additional step of an α-functionalized carbanion to an aldehyde or ketone to
produce alkenes, but syntheses performed using metal carbene complexes are also known. The
Wittig reaction is an example of carbonyl olefination, one of the best ways to synthesize alkenes. This
involves the chemical reaction between an aldehyde or ketone with a so-called Wittig reagent, for
instance phosphonium ylide. Triphenylphosphine-derived ylides and trialkylphosphine-derived
ylides are the most common phosphorous compounds used as Wittig reagents. The Wittig reaction
is commonly involved in the synthesis of novel anti-cancer and anti-viral compounds. In recent
decades, the use of ultrasound on the Wittig reaction (and on different modified Wittig syntheses,
such as the Wittig–Horner reaction or the aza-Wittig method) has been studied as a green synthesis.
In addition to the advantage of green synthesis, the use of ultrasounds in general also improved the
yield and reduced the reaction time. All of these chemical syntheses conducted under ultrasound
will be described further in the present review.

Keywords: Wittig reaction; Wittig–Horner synthesis; ultrasound; carbonyl olefination

1. Introduction

The Wittig reaction is a chemical reaction between an aldehyde or ketone and a phos-
phonium ylide in the presence of a base to provide two compounds: an alkene, which has
the position of the double bond well specified, and phosphine oxide. Triphenyl phospho-
rylide is often referred to as a Wittig reagent. This reaction was discovered in 1954 [1] by
Georg Wittig. He received the Nobel Prize in Chemistry in 1979 for its discovery. It is a
convenient chemical reaction for the synthesis of alkenes. Usually, disubstituted (cis, trans,
or 1,1-disubstituted alkenes, Figure 1) and trisubstituted alkenes can be obtained with good
yields, but for tetrasubstituted alkenes the yields are lower. Wittig reactions imply the cou-
pling between aldehydes or ketones with monosubstituted triphenylphosphonium ylides.
Interest in obtaining trisubstituted or tetrasubstituted alkenes (Figure 1) has increased in
recent decades because of their higher stability in comparison with monosubstituted and
disubstituted ones. Furthermore, tri- and tetrasubstituted alkenes are important synthetic
targets and occasionally their synthesis can be difficult due to steric issues.

Molecules 2023, 28, 1958. https://doi.org/10.3390/molecules28041958 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28041958
https://doi.org/10.3390/molecules28041958
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-2262-6122
https://orcid.org/0000-0003-3289-8006
https://doi.org/10.3390/molecules28041958
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28041958?type=check_update&version=1


Molecules 2023, 28, 1958 2 of 20
Molecules 2023, 28, x FOR PEER REVIEW 2 of 19 
 

 

 

Figure 1. The structure of monosubstituted (1), disubstituted (2), trisubstituted (3), and tetrasubsti-

tuted (4) alkenes. 

When Wittig synthesis is conducted in classic conditions the yields are rather low, 

but when using ultrasound, it was observed that the yield increases significantly, espe-

cially for obtaining tetrasubstituted alkenes. The Wittig reaction can give as products both 

E- and Z-alkenes or alkene derivatives. The ratio of E- and Z-isomers could be modified 

and controlled by changing several parameters (the electronic nature of the ylide carban-

ion, the presence of lithium salts, the use of phosphonium salt derived either from trial-

kylphosphine or triarylphosphine) [1–9]. The geometry of the double bond is depicted by 

the nature of the ylide. If the ylides are unstable (they contain an alkyl chain), the reaction 

product will usually be a Z-alkene. The selectivity of the reaction is moderate. On the other 

hand, if the ylides are stabilized (for instance by using an ester or a ketone), the product 

of the reaction will mostly be an E-alkene. The reaction that takes place in this case showed 

higher selectivity. In the case of semistabilized ylides (they contain an aryl substituent) 

the selectivity is rarely good and in general a mixture of E-/Z-isomers are obtained with 

different ratios [1–9]. 

The Wittig mechanism implies hypothetical betaine intermediates and lithium halide 

adducts. The stereoselectivity of the reaction depends on the formation of the covalent 

oxaphosphetane and on the result of the combination between steric, rehybridization ef-

fects of phosphorous, and on lithium salts [10,11]. In the first step, the alkylation of tri-

phenylphosphine with the halogenated derivative takes place with the formation of a qua-

ternary phosphonium salt. The deprotonation of the phosphonium salt in the presence of 

the base (as nBuLi, NaNH2, NaH, alkoxides, KOH (NaOH), K2CO3, tertiary amine), pro-

duces the phosphorylide (phosphorane). After elimination, if an α-bromoester is used, an 

enolate ion equivalent is obtained as the phosphorylide is stabilized by conjugation. If the 

alkylation of triphenylphosphine is undertaken with α-chloroether, a vinyl ether is 

formed. This undergoes acid hydrolysis. Then the reaction of phosphorylide (the nucleo-

philic reactant) with the carbonyl compound takes place with the formation of an oxa-

phosphetane intermediate with a four-atom ring, which, by elimination, leads to the for-

mation of the two stereoisomeric alkenes. In order to obtain the more stable alkene, a 

phosphorylide stabilized with electron-withdrawing groups, such as vinyl, phenyl, or es-

ter, should be used. For the less-stable alkene, a phosphorylide not stabilized by conjuga-

tion is recommended. The obtained Z:E ratios, can be better explained as a function of the 

level of stabilization (charge delocalization) of the ylide by a mechanism based on a cy-

cloaddition process [12,13]. 

An important application of the Wittig reaction with industrial importance is the syn-

thesis of juvenile hormones, vitamin A, β-carotene, or other aromas and flavors [14]. In 

Wittig syntheses, various phosphorus reagents can be used. The ‘‘classic’’ Wittig reaction 

uses a phosphonium ylide, the Horner–Wadsworth–Emmons reaction uses a phospho-

nate anion, and the Horner–Wittig uses a phosphine oxide anion [15,16]. For a nitrogen 

analogue of a Wittig reagent, phosphazenes (λ5 -phosphazenes, iminophosphoranes, or 

phosphine imines) are used in the aza-Wittig reaction [17]. 

The Wittig and aza-Wittig syntheses become powerful tools in organic synthesis and 

allow the construction of some acyclic and cyclic compounds. These reactions produce a 

Figure 1. The structure of monosubstituted (1), disubstituted (2), trisubstituted (3), and tetrasubsti-
tuted (4) alkenes.

When Wittig synthesis is conducted in classic conditions the yields are rather low, but
when using ultrasound, it was observed that the yield increases significantly, especially
for obtaining tetrasubstituted alkenes. The Wittig reaction can give as products both E-
and Z-alkenes or alkene derivatives. The ratio of E- and Z-isomers could be modified and
controlled by changing several parameters (the electronic nature of the ylide carbanion, the
presence of lithium salts, the use of phosphonium salt derived either from trialkylphosphine
or triarylphosphine) [1–9]. The geometry of the double bond is depicted by the nature
of the ylide. If the ylides are unstable (they contain an alkyl chain), the reaction product
will usually be a Z-alkene. The selectivity of the reaction is moderate. On the other hand,
if the ylides are stabilized (for instance by using an ester or a ketone), the product of the
reaction will mostly be an E-alkene. The reaction that takes place in this case showed
higher selectivity. In the case of semistabilized ylides (they contain an aryl substituent)
the selectivity is rarely good and in general a mixture of E-/Z-isomers are obtained with
different ratios [1–9].

The Wittig mechanism implies hypothetical betaine intermediates and lithium halide
adducts. The stereoselectivity of the reaction depends on the formation of the covalent
oxaphosphetane and on the result of the combination between steric, rehybridization
effects of phosphorous, and on lithium salts [10,11]. In the first step, the alkylation of
triphenylphosphine with the halogenated derivative takes place with the formation of a
quaternary phosphonium salt. The deprotonation of the phosphonium salt in the presence
of the base (as nBuLi, NaNH2, NaH, alkoxides, KOH (NaOH), K2CO3, tertiary amine),
produces the phosphorylide (phosphorane). After elimination, if an α-bromoester is used,
an enolate ion equivalent is obtained as the phosphorylide is stabilized by conjugation.
If the alkylation of triphenylphosphine is undertaken with α-chloroether, a vinyl ether
is formed. This undergoes acid hydrolysis. Then the reaction of phosphorylide (the
nucleophilic reactant) with the carbonyl compound takes place with the formation of an
oxaphosphetane intermediate with a four-atom ring, which, by elimination, leads to the
formation of the two stereoisomeric alkenes. In order to obtain the more stable alkene, a
phosphorylide stabilized with electron-withdrawing groups, such as vinyl, phenyl, or ester,
should be used. For the less-stable alkene, a phosphorylide not stabilized by conjugation is
recommended. The obtained Z:E ratios, can be better explained as a function of the level of
stabilization (charge delocalization) of the ylide by a mechanism based on a cycloaddition
process [12,13].

An important application of the Wittig reaction with industrial importance is the
synthesis of juvenile hormones, vitamin A, β-carotene, or other aromas and flavors [14]. In
Wittig syntheses, various phosphorus reagents can be used. The “classic” Wittig reaction
uses a phosphonium ylide, the Horner–Wadsworth–Emmons reaction uses a phosphonate
anion, and the Horner–Wittig uses a phosphine oxide anion [15,16]. For a nitrogen analogue
of a Wittig reagent, phosphazenes (λ5 -phosphazenes, iminophosphoranes, or phosphine
imines) are used in the aza-Wittig reaction [17].

The Wittig and aza-Wittig syntheses become powerful tools in organic synthesis and
allow the construction of some acyclic and cyclic compounds. These reactions produce a
high yield and require mild conditions (neutral solvents, absence of catalysts, generally at
mild temperatures) [18,19].
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The Wittig syntheses have been strongly developed and improved during recent
decades. Several extensions of the method recently developed are the phospha-Wittig
reaction [20], the thia-Wittig reaction [21], and the phospha-bora-Wittig reaction [22]. The
phospha-bora-Wittig reaction is used for the direct preparation of phosphaalkenes, starting
with aldehydes, ketones, esters, or amides. The intermediate phosphaborene reacts with the
carbonyl compounds to form 1,2,3- phosphaboraoxetanes, which then undergoes thermal
or Lewis acid-promoted cycloreversion, leading to the formation of phosphaalkenes [22].

A simple search on www.webofscience.com performed on 10 January 2023 for the
period 2012–2022 showed that more than 12,000 papers were published in this area. Given
that many protocols for the preparation of organic derivatives suffer from limitations such
as long reaction times, yields, and selectivity, it is necessary to investigate the power of
ultrasound in the promotion of these kinds of reactions.

2. Wittig Reactions under Sonication Conditions

The organophosphorus derivatives represent an important class of chemical compounds
due to their numerous applications in several fields of great interest. The organophospho-
rus derivatives are involved in several reactions and syntheses, for example, the Wittig
and Horner–Wadsworth–Emmons olefinations, the Arbuzov synthesis, or the Staudinger
reaction. The organophosphorus derivatives have applications as active pharmaceuti-
cal ingredients and agrochemicals. In addition, the phosphorus-containing compounds
are used among others, such as ligands for organometallic complexes, as precursors for
products with flame retardant properties and for obtaining organic–inorganic hybrids
(metal–organic frameworks) and surface grafted materials (including the use of ultrasound
for their synthesis) [1–9,23–35].

Phosphorus is an essential element in life, found in many biogenic molecules (DNA,
RNA, and adenosine triphosphate (ATP)). Phosphorus is also found in many other impor-
tant biomolecules, including cell membrane phospholipids such as sphingomyelin. There
are also many examples of active pharmaceutical ingredients (APIs) containing phosphorus
with important applications in the treatment of different afflictions. Consequently, a grow-
ing interest in the synthesis of phosphorus compounds has occurred in recent decades. One
of the main goals of the researchers involved in this field was to conduct these syntheses
under green conditions. Therefore, green syntheses in the field of phosphorus compounds
were developed significantly using ultrasounds, microwaves, green solvents, sol-gel, and
others. When ultrasounds (US) or microwaves (MW) were used, an increase in the yield
was observed [26–32].

As already mentioned, one common synthetic route for the synthesis of alkenes is
the Wittig reaction (together with its modified versions, as Horner–Wittig and aza-Wittig
processes). First described in 1954, the Wittig reaction [1–4] has two main steps:

- the first step is the deprotonation reaction of a phosphonium salt (5) to obtain a
phosphorous ylide (6)

- the phosphorous ylide (6) reacts with a compound containing a carbonyl group, an
aldehyde (7), or a ketone to give the corresponding alkene (8) and phosphine oxide (9)
(Figure 2)
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Obtaining alkenes is of great interest to researchers because alkenes could be used
further as reagents for several chemical syntheses in coupling reactions and asymmetric
transformations, hydrogenation, cyclopropanations, cycloadditions, epoxidations, diol
formation, and so on. Most research on the Wittig reaction has been focused, especially
in recent years, on triphenylphosphine-derived phosphonium salts [6]. Non-stabilized
ylides generally have an alkyl group as the side chain. Under lithium-salt-free conditions,
these ylides showed a significant Z-selectivity [3,4,11,12]. Ylides that were stabilized with
neighboring vinyl or aryl groups showed rather low selectivity and usually lead to the
formation of mixtures with E and Z isomers [6,23–26].

Triphenylphosphine-derived ylides are the most common phosphorous reagents in-
volved in the Wittig reaction. The synthesis of E-alkenes, starting from non-stabilized or
semi-stabilized triphenylphosphoranes, is not sustainable by using the standard Wittig
process. In this case, if used, the Wittig synthesis requires several modifications. If the
phenyl substituents from a triphenylphosphorane were replaced with short-chain alkyl
substituents (i.e., ethyl, propyl) with lower hydrophobic character, a significant increase
in E-alkene isomer production was observed [36–38]. Thus, the non-stabilized and semi-
stabilized ylides derived from trialkylphosphines showed high E-isomer selectivity when
used in the Wittig reaction [6]. More recently, the Wittig reaction proved to be very useful in
the field of organocatalysis [39,40]. Compounds as styrenes, dienes, vinyl ethers, or allenes,
synthesized by using the Wittig reaction, are used in organocatalysis [6]. Organocatalysis
includes a variety of chemical transformations and is used to describe any process that is
facilitated by the use of a non-metallic organic catalyst [41–46].

The Wittig synthesis could be conducted using ultrasound in order to increase the
interface area (and therefore the contact) between the reagents (i.e., ylide and aldehyde or
ketone). Classic Wittig methods [1–4] are usually performed at low temperatures using
strong bases. The ultrasound plays the role of a solvent by increasing the mixing process.
In addition, the effects of the sonic waves are higher when the reaction is performed in
small channels (diameter from 10 µm to 100 µm) than in a standard flask [47].

For example, the synthesis of several cinnamic esters and their derivatives using
the Wittig reaction is of great interest because such compounds are further employed
in several chemical industry areas of great interest (flavors, synthetic dyes, perfumes).
Moreover, cinnamic moiety is found in many biologically active molecules. From this
class of compounds, 4-methoxy-ethyl-cinnamate 12 (Figure 3) is a monoamine oxidase
inhibitor. Monoamine oxidase inhibitors were the first type of antidepressant medication
developed [47,48].
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Figure 3. Synthesis of ethyl 4-methoxy-ethyl-cinnamate [47].

It was observed that cinnamic esters are synthesized easier, faster, and with a higher
yield when the entire reactor is immersed in an ultrasonic bath. Several methods for the
synthesis of this class of compounds have been published [47–53]. One example is the
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reaction of anisaldehyde 10 with (ethoxycarbonylmethyl)-triphenylphosphonium bromide
11 for obtaining ethyl 4-methoxy-ethyl-cinnamate 12 (Figure 3) [47,53].

El-Batta et al. proved that water is an effective environment for Wittig reactions by
using stabilized ylides and aldehydes [54]. P-anisaldehyde slowly reacts with the ylides to
obtain a mixture of E/Z cinnamic ester isomers after four hours at 20 ◦C, with a yield of 66%
at a ratio E/Z 92/8. When the temperature of the reaction increased to 90 ◦C, after 30 min
the yield of cinnamic ester increased to 90% without affecting or changing the E/Z-ratio.
The water efficiency in the reaction environment in comparison with organic solvents is
obvious, as the same reaction has been reported in refluxing DCM (four hours, 8% yield),
in refluxing benzene (two days, 73% yield), and in ionic liquids at 60 ◦C (three days, 82%
yield) [55–57]. On the other hand, when this synthesis procedure was performed in an
ultrasonic bath, the product was obtained with a 70% yield in a shorter time. The protocol
can be applied to different aldehydes, alkyl phosphonium salts, and bases for the Wittig
synthesis of E-cinnamic esters under ultrasound in moderate to very good yields in the
absence of any other phase transfer catalyst and in a shorter reaction time [47].

The Wittig synthesis (sometime called the Wittig olefination) is one of the most famous
phosphine-based reactions. The development of continuous flow processes for Wittig
olefination reactions has undergone intensive study in recent decades, with the aim of
increasing the yield. The combination of flow chemistry with microwave irradiation or
ultrasonication opens a new perspective from this point of view. Many pharmaceutical
compounds were synthesized through the Wittig olefination [58] by using a combination
of ultrasound technology and continuous flow [59–61]. Riccaboni et al. [47] developed
a catalyst-free continuous flow biphasic system for the Wittig synthesis of disubstituted
alkenes 15 (Figure 4) [62,63].
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Figure 4. Ultrasound-assisted Wittig olefination in biphasic media [47].

The synthesis was performed starting from an aldehyde (13), triphenyl-phosphonium
bromide (14), and NaOH at a ratio of the used reagents 13:14:NaOH of 1:2:5 (an excess of
phosphonium bromide 14 and of NaOH was used). The reaction mixture was immersed
in an ultrasonic bath for enhancing the interfacial interactions in the absence of a phase-
transfer catalyst (Figure 4) [47,62–64].

Modest to quantitative yields were obtained at room temperature after five minutes.
The authors reported the in situ preparation of the phosphonium salt 14 by mixing triph-
enylphosphine (PPh3) and ethyl 2-bromoacetate. When the phosphonium salt 14 was
prepared in situ, the yields of the synthesis increased [27]. A similar Wittig synthesis
was proposed by Krajnc et al. [65]. Benzyl-triphenyl-phosphonium bromide salt (17) and
o- or p-methoxy-benzaldehydes (16) were mixed at a 1:1 eq. ratio in CH2Cl2 and injected
together with an aqueous solution of 0.1 M NaOH. The corresponding stilbene derivative
18 (Figure 5) was obtained after a maximum reaction time of 9–10 min. The yields changed
from 68% for o-methoxybenzaldehydes to 90% for p- methoxybenzaldehydes.
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Figure 5. Continuous flow process for the synthesis of stilbene derivatives 18 by Wittig reaction
with a benzyltriphenyl-phosphonium bromide salt 17 acting both as reactant and phase-transfer
catalyst [65].

Viviano et al. synthesized different active pharmaceutical ingredients using a Wittig
olefination process [66]. Starting from the aldehyde 19, different synthetic routes were used
in order to synthesize the 4-aryl-3-buten-2-one intermediates 21a–c. The reaction can be
conducted as a continuous flow process (Figure 6A) as follows: aldehyde 19 reacts with
(acetylmethylene)triphenyl-phosphorane 20 in DMF and the products 4-aryl-3-buten-2-one
intermediates 21a–c in good yields (around 98%) at 210 ◦C for 10 min. Then, 4-aryl-3-buten-
2-ones 21a–c were further converted under pressure using a Raney-Ni catalyst through
a hydrogenolysis reaction (Figure 6B) [27]. The hydrogenolysis represents a chemical
reaction where a carbon–carbon or carbon–heteroatom bond is cleaved or undergoes “lysis”
by hydrogen.
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Figure 6. (A) The continuous flow Wittig olefination (B) the further reduction of the compounds
21a-c [66].
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The hydrogenolysis reaction of the alkene 21a takes place in ethanol and the hy-
drogenolysis process of alkenes 21b and 21c takes place in DMF. At temperatures ranging
from 20 ◦C to 100 ◦C, the final products with active pharmaceutical properties were ob-
tained in good yields, as follows: 22a—91%, 22b—90%, 22c—94%. The compounds 22a
and 22b are commonly used in cosmetics. On the other hand, the compound 22c, cur-
rently named nabumethone, is a nonsteroidal anti-inflammatory drug used to reduce pain,
swelling, and joint stiffness from arthritis. Nabumethone can be used only with a doctor or
pharmacist’s recommendation [66].

The previously discussed examples showed the Wittig reaction employed alone on
different syntheses. Moreover, the Wittig reaction could be involved in the synthesis of
phosphorus compounds in tandem with other types of chemical processes in a one-step
procedure. For instance, the halogenation of an ylide and the oxidation of an alcohol with
the common reagent MnO2 as the oxidant and a Wittig reaction together could be conducted
in a one-step procedure using ultrasounds. In the work published by Karama et al. [67] the
(carboethoxymethylene)triphenyl-phosphorane 23 reacted with a reactive alcohol (as for
instance aromatic, allylic and propargylic alcohols) in the presence of N-bromosuccinimide
(NBS) and manganese dioxide, in CH2Cl2 (Figure 7).
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Figure 7. The tandem halogenation–oxidation–Wittig reaction in one-step, conducted under ultrason-
ication [67].

When a reactive alcohol was used, a mixture of Z- and E-isomers (Table 1) of the
α-bromo-α,β-unsaturated esters 25a–g were obtained by the one-step halogenations–
oxidation–Wittig chemical process in good yields (around 90%).

On the other hand, when low-reactive alcohols were employed, such as alkanols, the
obtained yields decreased significantly [67]. An example shown in Table 1 includes the use
of octanol, which gave a yield of only 21%. For this one-step synthesis involving a Wittig
reaction, 10 mmol of manganese dioxide was added to a solution containing 1.4 mmol of
N-bromosuccinimide (NBS), 1.3 mmol of (carboethoxymethylene)triphenylphosphorane,
and 1 mmol alcohol in 12 mL of CH2Cl2 as solvent. The resulted mixture was further
sonicated for 10 h and the products were obtained with the yields and Z:E ratios shown in
Table 1 corresponding to the used reagents [67].

Another example of using the Wittig reaction as a green method (in this case also the
use of ultrasounds) using phosphonium ylide as reagent is the work of Maity et al. [68].
The Wittig process was performed under ultrasonication, starting from aldehydes (26, 29)
and ylides (27). The products 28 and 30 were further obtained with high yields as a mixture
of E- and Z-isomers (E/Z = 76/24 in the case of the product 28, and 84/16 in the case of the
compound 30) [68] (Figure 8a,b).
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Table 1. One-pot synthesis of unsaturated esters 25a–g [67].

R Product Yield (%) Z:E
Ratio
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Wittig reaction of o-vanillin 31 with alkyltriphenyl phosphonium bromides 32 in the pres-

ence of K2CO3 leads to the formation of styrene 35 in 72–81% yields (Figure 9) [5,64].  
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The ultrasound irradiation for the Wittig reaction is usually performed in a water
bath of an ultrasonic cleaner with a frequency of approximately 40 KHz and a power of
approximately 250 W [69]. Currently, several products of growing interest are synthesized
in this way. Benzoquinones, for instance, represent an important class of biologically
active compounds, which were also obtained by the Wittig reaction performed under
ultrasound. [64,69] 2-methoxy-6-alkyl-1,4-benzoquinones are compounds that occur in
nature (usually in plants) and most of them have significant biological activity (anti-cancer
activity and 5-1ipoxygenase inhibitory activity). Lipoxygenase enzymes catalyze the
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deoxygenation processes of polyunsaturated fatty acids to obtain lipids. The ultrasound-
assisted Wittig reaction of o-vanillin 31 with alkyltriphenyl phosphonium bromides 32 in
the presence of K2CO3 leads to the formation of styrene 35 in 72–81% yields (Figure 9) [5,64].
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Figure 9. The Wittig synthesis of 2-methoxy-6-alkyl-1,4-benzoquinones, performed under ultrasoni-
cation [64].

This reaction requires a mixture of DMSO (34) and water as solvents at 90–100 ◦C.
Then, the2-methoxy-6-alkenyl-1,4-benzoquinones can be obtained through the hydrogenol-
ysis reaction. If the hydrogenolysis of the styrene 35 is performed directly to obtain
2-methoxy-6-alkenyl-1,4-benzoquinone, the double bond from its structure is actually re-
duced. Consequently, the styrene 35 was first treated with metallic sodium in n-butanol. In
this way, the 2-methoxy-6-alkyl-phenols 36 were further successfully synthesized in 74–84%
yields after one hour at 80–90 ◦C. The conjugated olefin was reduced but the isolated olefin
was not affected [5,64].

This step of the synthesis was followed by the oxidation of 2-methoxy-6-alkylphenols
36 with Fremy’s salt (KSO3)2NO (37). Then, 2-methoxy-6-alkyl-1,4-benzoquinones 38 was
obtained as a solid yellow product in 79–92% yields [64].

3. Aza-Wittig Reactions Performed under Sonication Conditions

As previously mentioned, the aza-Wittig synthesis is a modified Wittig reaction that
leads to products containing C=N bonds. In recent years, the aza-Wittig reaction has
attracted a lot of interest because it has showed huge potential for the synthesis of a large
variety of phosphorus- and nitrogen-containing heterocycles [19,70–73]. Such heterocyclic
compounds could be used further in the synthesis of functionalized iminophosphoranes.
The existence of nucleophilicity in the nitrogen atom made the use of these iminophospho-
ranes possible as aza-Wittig reagents. Iminophosphoranes are important reagents in organic
chemistry syntheses, especially for obtaining different compounds with biological and
pharmacological activity [19,74–77]. For example, compounds including 1,3,4-oxadiazole
structures showed important pharmacological and therapeutic activities (anti-inflammatory
and hypotensive effects) [78,79].

A simple and efficient example of using ultrasound for the synthesis of hetero-
cyclic compounds through the aza-Wittig process is the preparation of substituted 1,3,4-
oxadiazole derivatives (Figure 10) [77,80,81].
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Figure 10. Synthesis of substituted 1,3,4-oxadiazole derivatives under ultrasonic irradiation [77].

The condensation of biacetyl 39, 4-methylcinnamic acid 40, and N-isocyaniminotriphenyl-
phosphorane 41 was carried out in several solvents (CH2Cl2, DMF, THF, CH3CN, 1,4-
dioxane and EtOH) under ultrasound at room temperature. N-isocyan-iminotriphenyl-
phosphorane (1 mmol), biacetyl (1 mmol), and E-cinnamic acid (1 mmol) were mixed with
15 mL of solvent (one of the above-mentioned solvents). The obtained reaction mixture
was then placed in an ultrasonic bath with a power of 100 W. The method to obtain
fully substituted 1,3,4-oxadiazole derivatives (42) under ultrasound offered important
advantages of faster reaction rates, higher yields, and nevertheless higher purity of the
product, in comparison with the classic stirring methods (even if the classic synthesis was
performed at higher temperature) [77]. Under stirring conditions, after 12 h the product
42 was obtained at a 90% yield. On the other hand, under ultrasonication by using an
ultrasonic bath of 100 W, the product 42 was obtained at a 97% yield in only 16 min.
Therefore, a small increase in the reaction yield was observed under ultrasonication. In
addition, the main advantage was a decrease in the time necessary to complete the synthesis
(from 12 h to only 16 min). The power of the ultrasonic bath also favorably influenced the
results. The yield obtained for the use of an ultrasonic irradiation of 100 W for 16 min was
better than the yield observed for the use of an ultrasonic irradiation of 150 W for the same
period of 16 min [77].

In another report by Rouhami et al. [82], disubstituted 1,3,4-oxadiazole derivatives (46)
were successfully synthesized using the aza-Wittig reaction under ultrasound irradiation
(Figure 11). The synthesis conducted under ultrasound can be defined as a chemical
synthesis performed in a liquid medium in the presence of pressure waves.
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Figure 11. Synthesis of disubstituted 1,3,4-oxadiazole derivatives (46) under ultrasound irradia-
tion. [82].

The carboxylic acid 44 (1 mmol), acenaphthoquinone 45 (1 mmol), (N-isocyanimino)
triphenylphosphorane 41 (1 mmol), and CH3CN (10 mL) as solvent were mixed together.
The resulted mixture was irradiated by ultrasound using an ultrasonic bath at 100 W.
During ultrasound irradiation, the temperature was kept at approximately 25 ◦C by cooling
in an ice bath. The yields of the synthesis in Figure 11 show an increase from around
80% to a maximum 93%, and the reaction time decreased from 24 h to only 15 min when
ultrasounds were used [82].

Another study of the ultrasonication effect on a modified Wittig synthesis (Staudinger–
aza-Wittig reaction) was reported in the work published by Scondo et al. [83]. The
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Staudinger reaction represents a reduction in organic azides yielding the correspond-
ing primary amines. The reaction was developed by Hermann Staudinger in 1919. The
synthesis reported in the work of Scondo et al. (Figure 12) is related to cyclodextrins, an
important class of cyclic oligosaccharides containing a macrocyclic ring of glucose units
inter-connected by 1,4 glyosidic bonds [83].
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Cyclodextrins (CyDs) are used in the food industry, in different chemical industries,
in agriculture and environmental engineering, and as pharmaceutical products in drug-
delivery systems. As a consequence, CyDs have attracted a growing interest in recent years
due to their various applications in these important research fields [84]. The regioselective
functionalization of their hydroxyls groups strongly improved their catalytic activities at the
supramolecular level. Recent papers compared several CyDs functionalization carried out
both under conventional conditions and under ultrasonication [85–92]. The results showed
a significant improvement in the yields and in the reaction times. Isocyanate and urea
formation in a Staudinger–aza-Wittig reaction takes place better with higher yields under
ultrasonication. In the synthesis by a Staudinger–aza-Wittig reaction of different cyclodex-
trins derivatives performed by Scondo et al., the ultrasound source was a Bandelin-HD2070
generator (20 KHz, 70 W). The 6A-azido-6A-deoxy-per-O-acetylated-β-cyclodextrin 47
was treated with triphenylphosphine 48 in the presence of CO2 as the electrophile and
benzylamine 52 as the nucleophile in anhydrous DMF. The 6A-benzylureido-6A-deoxyper-
O-acetyl-β-cyclodextrin 53 was obtained in a shorter time and in an excellent yield in
comparison with the synthesis conducted in classic conditions [83].

4. Wittig–Horner Reactions Conducted Using Ultrasound

The Horner–Wardsworth–Emmons (HWE) method is a chemical reaction between a
phosphonate carbanion and a carbonyl compound (as aldehydes or ketones) to produce
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mostly E-alkenes [3,4,91,93–100]. Leopold Horner published a modified Wittig reaction in
1958 using phosphonate-stabilized carbanions as reagents [91,93]. William Wardsworth
and William Emmons added further changes to this procedure [91,94]. It is named the
Horner–Wadsworth–Emmons (HWE) or the Wittig–Horner synthesis. In contrast to phos-
phonium ylides used in the classic Wittig reaction, the phosphonate-stabilized carbanions
are more nucleophilic but less basic. The novelty and the advantage of HWE synthesis
is that the phosphonate-stabilized carbanions can be alkylated. Unlike phosphonium
ylides, the dialkylphosphate salt could be easily removed and separated by an aqueous
extraction procedure.

In recent decades, the positive effects of using ultrasound in order to develop green
syntheses has been studied and applied to the Horner–Wardsworth–Emmons process
(HWE). For instance, different dihydrostilbenes were synthesized by Wittig–Horner chem-
ical syntheses under ultrasound. Dihydrostilbenes (Figure 13 and Table 2) represent an
important class of natural products of great interest.
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Table 2. The radicals R, R1, and R2 from the structure of dihydrostilbenes 54a–k.

Dihydrostilbenes R R1 R2

54a CH3 OH H

54b H OH H

54c CH3 NH2 H

54d H NH2 H

54e CH3 H OH

54f H H OH

54g CH3 H F

54h H H F

54i H H OCH3

54j H H N(CH3)2

54k CH3 OCH3 OH

Due to their pharmacological effects, anti-oxidant activities [85], cancer preventive
effects [86], anti-tumor activities [87], inhibition of cyclooxygenase [88], and inhibition of
platelet aggregation [89–91], dihydrostilbenes are involved in many applications of great
interest. Cyclooxygenase (COX), also known as prostaglandin-endoperoxide synthase, is an
enzyme responsible for the formation of prostanoids (as tromboxane) and prostaglandins
(as prostacyclin) from arachidonic acid. Prostanoids are active lipid mediators that regulate
inflammatory response. The prostaglandins are physiologically active lipid compounds.
Prostaglandins have hormone-like effects and are found in almost every tissue in humans.
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Every prostaglandin contains 20 carbon atoms (including a 5-C ring). In addition, some
synthetic dihydrostilbenes (Figure 13, Table 2) showed strong anti-mitotic activity in a
broad spectrum of human cancer lines [90]. Moreover, nucleoside-analogous compounds,
such as N-glycosylated 4-halomethyl 1H- or 2H-1,2,3-triazoles, are of great interest as
radiomimetic substances, bactericides, and viricides, respectively [102].

As a consequence, the development of a synthesis with high yield and high selectivity,
in mild and green conditions, in a shorter reaction time, and with different dihydrostilbenes
was an important goal for the researchers in this field in recent decades. The method used
for the synthesis of the compounds 54a and 54b is described in Figure 14.
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Figure 14. Synthesis route of natural dihydrostilbene compounds 54a,b (if R is CH3 the product is
54a and if R is H the product is 54b) [101].

Benzyl chlorides 55 are precursors of dihydrostilbenes 54a and 54b. The first step for
the synthesis of those stilbene derivatives is the Michaelis–Arbuzov reaction of 55 with
P(OEt)3 (56). This reaction provided the intermediate compound 57, which could be then
used directly in the next step (Figure 14) in the Wittig–Horner reaction. The products of
the Wittig–Horner reaction (58) were converted further by a catalytic hydrogenation to the
natural dihydrostilbenes 54a and 54b, with 94.5% and 98.3% yields, respectively. These
stilbenes were obtained from the reduction of the double bond and the removal of the
benzyl protecting group (Figure 14) [101].

Furthermore, different biologically active fluorinated 1,2,3-triazoles were synthesized
by the Wittig–Horner method under ultrasound [92–98]. The main step of the fluorinated
1,2,3-triazoles synthesis is the 1,3-dipolar cycloaddition. Perfuoroalkyl-substituted vinyl
sulfones are used in the syntheses of different fluorinated heteroaromatic compounds by
1,3-cycloaddition. Therefore, (E)-1-perfluoroalkyl-2-phenylsulfonyl-ethenes 63–65 were
synthesized by an ultrasound-assisted Wittig–Horner olefination from the perfluoroalkanals
59–61 and the phosphonate 62 (Figure 15) [103–105].

As fluoral CF3CHO (59) is gaseous, the procedure for the preparation of 63 was slightly
modified in comparison with the syntheses used for obtaining compounds 64 and 65. When
the syntheses were performed under ultrasound, the reaction time decreased significantly.
For example, compound 63 was synthesized from fluoral at a temperature of -78ºC after
three hours. At the same time, the other two products (64 and 65) were obtained under
sonication in only 30 min. All three compounds 63–65 were synthesized by Wittig–Horner
olefination in moderate yields (51–58%). The sonication was obtained with an ultrasonic
bath Vibracell VCX-400 at a frequency of 20 kHz with a power of 120 W.
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Figure 15. The synthesis of (E)-1-perfluoroalkyl-2-phenylsulfonyl-ethenes (63–65) by an ultrasound-
assisted Wittig–Horner olefination [105].

The compounds 63–65 were used further for the synthesis of 4-perfkuoroalkyl-substituted
1,2,3- triazoles 67–69 (an example is the 1,3-dipolar cycloaddition of the azide 66 with the
homologous vinyl sulfones 63–65 in refluxing toluene). Only a single regio-isomeric 1,2,3-
triazole derivative was formed in this reaction (Figure 16) [105].
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Figure 16. The synthesis of perfluorinated triazole derivatives by the 1,3-dipolar cycloadditions of
the azides with vinyl sulfones [105].

The reversed nucleosides 67–69 (i.e., 4-perfluoroalkyl-substituted 1,2,3-triazoles linked
to the C-atom 6 of D-galactose and D-altrose) were synthesized by 1,3-dipolar cycloaddi-
tions using the monosaccharide azide 66 and the perfluoroalkyl-substituted phenyl vinyl
sulfones 63–65, at yields of 72–75% (Figure 16). Various natural antibiotics contain carbohy-
drate moieties with amino-deoxy structures, especially heterocycles linked to sugars. These
compounds represent an interesting group of mimetic products, such as the examples of
1,2,3-triazole derivatives synthesized in the work published by Hager et al. [105–108].

A Wittig–Homer synthesis between sulfonomethyl-phosphonate (70) and p-nitro
acetophenone (p-NO2PhCOCH3) was reported in [109]. The synthesis was performed
under ultrasonic irradiation (Figure 17) [90].

They observed that the use of ultrasound helped the synthesis through a significant
increase in yield for the obtained product, vinyl sulfone (72). When the Wittig–Horner
synthesis is applied starting from ketones, the yields are rather low. However, by using
ultrasound for two hours, the vinyl sulfone (72) was obtained at a higher yield (Table 3).
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Figure 17. Example of carbon–carbon bond formation by a Wittig–Horner reaction conducted under
ultrasound [90,109].

Table 3. Conditions, 72:71 ratio, overall yield, and E/Z ratio of the compound 72.

Base Conditions Ratio 72:71 Ratio E/Z Yield (%)

BuLi Stirring 95:5 75:25 33

BuLi Ultrasound 85:15 60:40 48

NaH Ultrasound 60:40 80:20 66

The authors showed that the E-/Z-isomerism observed is related to ultrasonic cavita-
tion since pure E-vinyl sulfone is 20% isomerized by sonication in THF [90,103,109]. Such
isomerization reactions have never been observed in sonochemistry, except under catalysis.
When ultrasounds were used for the Wittig–Horner synthesis plotted in Figure 17 using
BuLi as base, the overall yield increased from 33% to 48%, but the ratio E/Z decreased. If
NaH was used as base instead of BuLi, the ratio E/Z of the compound 72 was improved
(80:20) and the overall yield increased even more, up to 66%. The 72:71 and E/Z ratios were
determined by 1H NMR spectroscopy [109]. The authors commented that sonication is
well known to promote single electron transfers in solutions and non-stabilized ylides can
react via a non-ionic pathway. On the other hand, stabilized ylides react under sonication
via transient radical species under heterogeneous catalysis [90].

As an example of reactions of perfluoroalkylated building blocks, the synthesis of
trifluoromethylated alkenes should be mentioned (Figure 18 and Table 4).
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Table 4. The substituents X and Y used in the structure of the phosphonate reagent 73 and found on
the structures of the products 75 obtained from the Wittig–Horner synthesis showed in Figure 18.

X Y Yield % Z:E

SO2CH3 H 54 61:39

SO2C6H5 H 63 43:57

OCH3 CN 50 58:42

The products 75 are synthesized in a Z/E-mixture by the Wittig–Horner method,
as shown in Table 4, (Figure 18), starting from trifluoroacetophenone 74 and different
phosphonates 73, in THF and in the presence of BuLi. The yields increased from 50% to
63% function of the substituents X and Y (Table 4) [32,92,103].
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5. Conclusions

The Wittig reaction is one of the most powerful and attractive methods for the con-
struction of various alkenes. The Wittig reaction is one of the most useful reactions for
the synthesis of olefins. In the last few decades, this reaction has been extensively studied
and employed in synthesis on an industrial scale. The so called “enabling techniques”,
mainly non-conventional energy sources such as microwaves (MW) [30,31,53,61,88,109] and
ultrasound (US) [22,32,46,47,59–64,77–81,85–90,92,101,102,105,110–112], can significantly
improve the reaction yields in organic synthesis. Moreover, by using ultrasound in Wittig
reactions and their modified versions for different organic syntheses, the E/Z ratio of the
obtained products can be controlled. The E/Z ratio of the synthesized compound was
determined by 1H NMR spectroscopy.

Ultrasound-promoted synthesis has attracted much attention during the past few
decades as a green synthetic path. The syntheses performed under ultrasound are faster
due to the formation, growth, and collapse of acoustic bubbles in the reaction medium.
The use of ultrasound helps those Wittig syntheses described in the present review by
shortening the reaction time and by increasing the yield of products.
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