Ultrasound-Assisted Extraction of Total Phenolic Compounds and Antioxidant Activity Evaluation from Oregano (Origanum vulgare ssp. hirtum) Using Response Surface Methodology and Identification of Specific Phenolic Compounds with HPLC-PDA and Q-TOF-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Model Fitting
2.2. Optimization of the Extraction Conditions
2.3. Verification of the Models
2.4. Antioxidan Activity Evaluation and Total Phenolic Determination
2.5. Determination and Identification of Phenolic Compounds in Oregano Samples by HPLC-PDA and UHPLC-QTOF-MS
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of the Samples
3.3. Ultrasound-Assisted Extraction (UAE)
3.4. Evaluation of Antioxidant Activity
3.5. Determination of Phenolic Compounds
3.6. Determination of Phenolic Compounds with HPLC-PDA
3.7. Identification of Phenolic Compounds with HPLC-QTOF-MS
3.8. Experimental Design
3.9. Verification of the Statistical Model
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majeed, M.; Hussain, A.I.; Chatha, S.A.S.; Khosa, M.K.K.; Kamal, G.M.; Kamal, M.A.; Zhang, X.; Liu, M. Optimization Protocol for the Extraction of Antioxidant Components from Origanum vulgare Leaves Using Response Surface Methodology. Saudi J. Biol. Sci. 2016, 23, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bautista-Hernández, I.; Aguilar, C.N.; Martínez-ávila, G.C.G.; Torres-León, C.; Ilina, A.; Flores-Gallegos, A.C.; Kumar Verma, D.; Chávez-González, M.L. Mexican Oregano (Lippia graveolens Kunth) as Source of Bioactive Compounds: A Review. Molecules 2021, 26, 5156. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Grijalva, E.P.; Antunes-Ricardo, M.; Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Basilio Heredia, J. Cellular Antioxidant Activity and in Vitro Inhibition of α-Glucosidase, α-Amylase and Pancreatic Lipase of Oregano Polyphenols under Simulated Gastrointestinal Digestion. Food Res. Int. 2019, 116, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Grijalva, E.P.; Picos-Salas, M.A.; Leyva-López, N.; Criollo-Mendoza, M.S.; Vazquez-Olivo, G.; Heredia, J.B. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits. Plants 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Yadav, S.S. A Review on Health Benefits of Phenolics Derived from Dietary Spices. Curr. Res. Food Sci. 2022, 5, 1508–1523. [Google Scholar] [CrossRef]
- Mar, P.D.; el Khalfi, B.; Soukri, A. Protective Effect of Oregano and Sage Essentials Oils against the Effect of Extracellular H2O2 and SNP in Tetrahymena thermophila and Tetrahymena pyriformis. J. King Saud Univ. Sci. 2020, 32, 279–287. [Google Scholar] [CrossRef]
- Shirvani, H.; Bazgir, B.; Shamsoddini, A.; Saeidi, A.; Tayebi, S.M.; Escobar, K.A.; Laher, I.; VanDusseldorp, T.A.; Weiss, K.; Knechtle, B.; et al. Oregano (Origanum vulgare) Consumption Reduces Oxidative Stress and Markers of Muscle Damage after Combat Readiness Tests in Soldiers. Nutrients 2023, 15, 137. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Jafari Khorsand, G.; Morshedloo, M.R.; Mumivand, H.; Emami Bistgani, Z.; Maggi, F.; Khademi, A. Natural Diversity in Phenolic Components and Antioxidant Properties of Oregano (Origanum vulgare L.) Accessions, Grown under the Same Conditions. Sci. Rep. 2022, 12, 5813. [Google Scholar] [CrossRef]
- Kruma, Z.; Andjelkovic, M.; Verhe, R.; Kreicbergs, V. PHENOLIC COMPOUNDS In BASIL, OREGANO And THYME. 2008. Available online: https://llufb.llu.lv/conference/foodbalt/2008/Foodbalt-Proceedings-2008-99-103.pdf (accessed on 17 April 2008).
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- Cizmarova, B.; Hubkova, B.; Bolerazska, B.; Marekova, M.; Birkova, A. Caffeic Acid: A Brief Overview of Its Presence, Metabolism, and Bioactivity. Bioact. Compd. Health Di.s 2020, 3, 74–81. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, R.; Wang, X.; Shen, H.-M. Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Curr. Cancer Drug Targets 2008, 8, 634–646. [Google Scholar] [CrossRef]
- Luo, Y.; Shang, P.; Li, D. Luteolin: A Flavonoid That Has Multiple Cardio-Protective Effects and Its Molecular Mechanisms. Front Pharm. 2017, 8, 692. [Google Scholar] [CrossRef] [Green Version]
- Aranha, C.P.M.; Jorge, N. Antioxidant Potential of Oregano Extract (Origanum vulgare L.). Br. Food J. 2012, 114, 954–965. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in Ultrasound Assisted Extraction of Bioactive Compounds from Cash Crops—A Review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.P.; Nguyen, L.N.H.; Le, N.P.T.; Mai, T.P.; Nguyen, D.Q. Optimization of the Ultrasonic-Assisted Extraction Process to Obtain Total Phenolic and Flavonoid Compounds from Watermelon (Citrullus lanatus) Rind. Curr. Res. Food Sci. 2022, 5, 2013–2021. [Google Scholar] [CrossRef]
- Rao, M.V.; Sengar, A.S.; C K, S.; Rawson, A. Ultrasonication—A Green Technology Extraction Technique for Spices: A Review. Trends Food Sci. Technol. 2021, 116, 975–991. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Martínez-Ávila, G.C.; Wong-Paz, J.E.; Belmares-Cerda, R.; Rodríguez-Herrera, R.; Aguilar, C.N. Ultrasound-Assisted Extraction of Phenolic Compounds from Laurus nobilis L. and Their Antioxidant Activity. Ultrason. Sonochem. 2013, 20, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Oreopoulou, A.; Goussias, G.; Tsimogiannis, D.; Oreopoulou, V. Hydro-Alcoholic Extraction Kinetics of Phenolics from Oregano: Optimization of the Extraction Parameters. Food Bioprod. Process. 2020, 123, 378–389. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Casazza, A.A.; Aliakbarian, B.; Sannita, E.; Perego, P. High-Pressure High-Temperature Extraction of Phenolic Compounds from Grape Skins. Int. J. Food Sci. Technol. 2012, 47, 399–405. [Google Scholar] [CrossRef]
- Mahindrakar, K.V.; Rathod, V.K. Ultrasonic Assisted Aqueous Extraction of Catechin and Gallic Acid from Syzygium Cumini Seed Kernel and Evaluation of Total Phenolic, Flavonoid Contents and Antioxidant Activity. Chem. Eng. Process. —Process Intensif. 2020, 149, 107841. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Xu, M.; Wang, Y.-M.; Wu, D.-M.; Chen, J.-H. Optimizing Ultrasonic Ellagic Acid Extraction Conditions from Infructescence of Platycarya Strobilacea Using Response Surface Methodology. Molecules 2010, 15, 7923–7932. [Google Scholar] [CrossRef]
- Silva, E.M.; Rogez, H.; Larondelle, Y. Optimization of Extraction of Phenolics from Inga Edulis Leaves Using Response Surface Methodology. Sep. Purif Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Zhong, K.; Wang, Q. Optimization of Ultrasonic Extraction of Polysaccharides from Dried Longan Pulp Using Response Surface Methodology. Carbohydr Polym. 2010, 80, 19–25. [Google Scholar] [CrossRef]
- Kim, D.-O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Phenolic Phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef]
- Liberal, Â.; Fernandes, Â.; Polyzos, N.; Petropoulos, S.A.; Dias, M.I.; Pinela, J.; Petrović, J.; Soković, M.; Ferreira, I.C.F.R.; Barros, L. Bioactive Properties and Phenolic Compound Profiles of Turnip-Rooted, Plain-Leafed and Curly-Leafed Parsley Cultivars. Molecules 2020, 25, 5606. [Google Scholar] [CrossRef]
- Tang, E.L.-H.; Rajarajeswaran, J.; Fung, S.; Kanthimathi, M.S. Petroselinum Crispum Has Antioxidant Properties, Protects against DNA Damage and Inhibits Proliferation and Migration of Cancer Cells. J. Sci. Food Agric. 2015, 95, 2763–2771. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Nawaz, H.; Pohorly, J.; Mittal, G.; Kakuda, Y.; Jiang, Y. Extraction of Polyphenolics from Plant Material for Functional Foods—Engineering and Technology. Food Rev. Int. 2005, 21, 139–166. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.J.; Tomas, M.; et al. Functional Implications of Bound Phenolic Compounds and Phenolics–Food Interaction: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health Functionality of Apigenin: A Review. Int. J. Food Prop. 2017, 20, 1197–1238. [Google Scholar] [CrossRef]
- Taheri, Y.; Sharifi-Rad, J.; Antika, G.; Yilmaz, Y.B.; Tumer, T.B.; Abuhamdah, S.; Chandra, S.; Saklani, S.; Kiliç, C.S.; Sestito, S.; et al. Paving Luteolin Therapeutic Potentialities and Agro-Food-Pharma Applications: Emphasis on in Vivo Pharmacological Effects and Bioavailability Traits. Oxid. Med. Cell Longev. 2021, 2021, 1987588. [Google Scholar] [CrossRef] [PubMed]
- Vinceković, M.; Viskić, M.; Jurić, S.; Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Donsì, F.; Barba, F.J.; Režek Jambrak, A. Innovative Technologies for Encapsulation of Mediterranean Plants Extracts. Trends Food Sci. Technol. 2017, 69, 1–12. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Miller’, N.J.; Rice-Evans, C.; Davies, M.; Gopinathan’, V.; Milner’, A. A Novel Method for Measuring Antioxidant Capacity and Its Application to Monitoring the Antioxidant Status in Premature Neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Özyürek, M.; Güçlü, K.; Apak, R. The Main and Modified CUPRAC Methods of Antioxidant Measurement. TrAC—Trends Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology Step 5 Note for Guidance on Validation of Analytical Procedures: Text and Methodology (CPMP/ICH/381/95) Approval by CPMP November 1994 Date for Coming into Operation. 1995. Available online: https://www.fda.gov/media/152208/download (accessed on 17 November 2005).
Run | Independent Factors | Dependndent Factors | |||||
---|---|---|---|---|---|---|---|
Experimental Values | Predicted Values | ||||||
X1 Temperature (°C) | X2 Time(min) | X3 Ethanol (% v/v) | TPC (mg/g) 1 | DPPH (mg/g) 1 | TPC (mg/g) 1 | DPPH (mg/g) 1 | |
1 | 60 (0) | 20 (−1) | 80 (+1) | 80.0 | 30.4 | 77.2 | 30.8 |
2 | 40 (−1) | 30 (0) | 80 (+1) | 25.0 | 22.2 | 23.8 | 20.3 |
3 | 80 (+1) | 30 (0) | 80 (+1) | 95.0 | 41.3 | 103.6 | 43.9 |
4 | 60 (0) | 30 (0) | 70 (0) | 73.3 | 46.8 | 78.1 | 38.8 |
5 | 80 (+1) | 20 (−1) | 70 (0) | 180.0 | 71.7 | 194.4 | 78.4 |
6 | 40 (−1) | 20 (−1) | 70 (0) | 30.9 | 39.3 | 31.5 | 36.2 |
7 | 60 (0) | 40 (+1) | 80 (+1) | 64.7 | 27.7 | 67.4 | 28.2 |
8 | 40 (−1) | 30 (0) | 60 (−1) | 25.0 | 26.2 | 28.3 | 30.6 |
9 | 80 (+1) | 30 (0) | 60 (−1) | 205.0 | 75.2 | 150,7 | 66.4 |
10 | 60 (0) | 40 (+1) | 60 (−1) | 134.8 | 55.9 | 141.4 | 55.2 |
11 | 40 (−1) | 40 (+1) | 70 (0) | 40.9 | 42.2 | 36.6 | 43.0 |
12 | 60 (0) | 30 (0) | 70 (0) | 69.5 | 31.6 | 78.1 | 38.8 |
13 | 80 (+1) | 40 (+1) | 70 (0) | 250.0 | 95.6 | 289.3 | 93.2 |
14 | 60 (0) | 20 (−1) | 60 (−1) | 75.0 | 36.5 | 71.9 | 35.8 |
15 | 60 (0) | 30 (0) | 70 (0) | 95.0 | 39.6 | 78.1 | 38.8 |
1 TPC | 1 DPPH | |||||
---|---|---|---|---|---|---|
Source | 2 DF | F-Value | p-Value | DF | F-Value | p-Value |
Model | 8 | 80.68 | 0.000 | 8 | 17.30 | 0.001 |
Linear | 3 | 194.68 | 0.000 | 3 | 31.87 | 0.000 |
Time | 1 | 10.83 | 0.017 | 1 | 3.55 | 0.108 |
Temperature | 1 | 550.09 | 0.000 | 1 | 71.62 | 0.000 |
EtOH Conc | 1 | 23.13 | 0.003 | 1 | 20.45 | 0.004 |
Square | 3 | 11.30 | 0.007 | 3 | 11.98 | 0.006 |
Time∗Time | 1 | 17.93 | 0.005 | 1 | 8.37 | 0.028 |
Temperature∗Temperature | 1 | 5.74 | 0.054 | 1 | 9.58 | 0.021 |
EtOH Conc∗EtOH Conc | 1 | 7.68 | 0.032 | 1 | 15.50 | 0.008 |
2-Way Interaction | 2 | 13.74 | 0.006 | 2 | 3.43 | 0.102 |
Time∗Temperature | 1 | - | - | 1 | - | - |
Time∗EtOH Conc | 1 | 14.24 | 0.009 | 1 | 4.05 | 0.091 |
Temperature∗EtOH Conc | 6 | 13.24 | 0.011 | 6 | 2.81 | 0.145 |
Error | 4 | 4 | ||||
Lack-of-Fit | 2 | 0.10 | 0.973 | 2 | 0.14 | 0.953 |
Pure Error | 14 | 14 | ||||
R2 | 0.9772 | 0.9390 | ||||
Adjusted R2 | 0.9544 | 0.8780 | ||||
Predicted R2 | 0.9108 | 0.8084 |
1 Predictive Equations | ||
---|---|---|
TPC | (Equation (1)) | −TPC−0.5 −1.013 – 0.00053 X2 + 0.00852 X1 + 0.01692 X3 + 0.000142 X22 – 0.000049 X12 – 0.000104 X32 – 0.000105 X2 X3 |
DPPH | (Equation (2)) | ln(DPPH)= −8.39 – 0.0171X2 – 0.0431X1 + 0.389X3 + 0.001946 X22 + 0.000520 X12 – 0.002647 X32 – 0.001301 X2X3 |
Independent Factors 1 | Predicted Values 1 | Experimental Values | Desirability 2 |
---|---|---|---|
TPC (mg/gDM) | 363.0 a | 362.1 ± 1.8 a | 1.0000 |
DPPH (mg/gDM) | 108.5 a | 108.6 ± 0.9 a | 1.0000 |
1 Parameters | Oregano Optimized Extract | Calibration Curve |
---|---|---|
DPPH (mg TE/g) | 108.6 ± 0.9 | y = −0.0849x + 0.625 |
ABTS (mg TE/g) | 115.2 ± 1.2 | y = −97.31x + 67.084 |
FRAP (mg TE/g) | 13.7 ± 0.8 | y = 58.018x − 2.944 |
CUPRAC (mg TE/g) | 1.2 ± 0.2 | y = 161.7x+ 0.7858 |
TPC (mg GAE/g) | 362.1 ± 1.8 | y = 0.018x + 0.102 |
Factor Levels and Range | ||||
---|---|---|---|---|
Factors | Codes | −1 | 0 | 1 |
Temperature (°C) | X1 | 40 | 60 | 80 |
Time (min) | X2 | 20 | 30 | 40 |
Ethanol (%, v/v) | X3 | 60 | 70 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalaki, A.; Karantonis, H.C.; Kritikou, A.S.; Thomaidis, N.S.; Dasenaki, M.E. Ultrasound-Assisted Extraction of Total Phenolic Compounds and Antioxidant Activity Evaluation from Oregano (Origanum vulgare ssp. hirtum) Using Response Surface Methodology and Identification of Specific Phenolic Compounds with HPLC-PDA and Q-TOF-MS/MS. Molecules 2023, 28, 2033. https://doi.org/10.3390/molecules28052033
Michalaki A, Karantonis HC, Kritikou AS, Thomaidis NS, Dasenaki ME. Ultrasound-Assisted Extraction of Total Phenolic Compounds and Antioxidant Activity Evaluation from Oregano (Origanum vulgare ssp. hirtum) Using Response Surface Methodology and Identification of Specific Phenolic Compounds with HPLC-PDA and Q-TOF-MS/MS. Molecules. 2023; 28(5):2033. https://doi.org/10.3390/molecules28052033
Chicago/Turabian StyleMichalaki, Afroditi, Haralabos C. Karantonis, Anastasia S. Kritikou, Nikolaos S. Thomaidis, and Marilena E. Dasenaki. 2023. "Ultrasound-Assisted Extraction of Total Phenolic Compounds and Antioxidant Activity Evaluation from Oregano (Origanum vulgare ssp. hirtum) Using Response Surface Methodology and Identification of Specific Phenolic Compounds with HPLC-PDA and Q-TOF-MS/MS" Molecules 28, no. 5: 2033. https://doi.org/10.3390/molecules28052033
APA StyleMichalaki, A., Karantonis, H. C., Kritikou, A. S., Thomaidis, N. S., & Dasenaki, M. E. (2023). Ultrasound-Assisted Extraction of Total Phenolic Compounds and Antioxidant Activity Evaluation from Oregano (Origanum vulgare ssp. hirtum) Using Response Surface Methodology and Identification of Specific Phenolic Compounds with HPLC-PDA and Q-TOF-MS/MS. Molecules, 28(5), 2033. https://doi.org/10.3390/molecules28052033