Biocompatibility and Biological Effects of Surface-Modified Conjugated Polymer Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Pdots, Pdots@SH, Pdots@COOH, and Pdots@NH2
2.2. In Vitro Assessment of Biocompatibility
2.3. In Vivo Imaging and Biodistribution
2.4. In Vivo Toxicology Study
3. Materials & Methods
3.1. Materials
3.2. Synthesis of Pdots, Pdots@SH, Pdots@COOH, and Pdots@NH2
3.3. Characterizations
3.4. Cell Culture
3.5. In Vitro Cytotoxicity Assay
3.6. Cell Apoptosis Assay
3.7. In Vitro Cell Uptake
3.8. Intracellular Reactive Oxygen Species (ROS) Detection
3.9. Animals
3.10. In Vivo Imaging and Biodistribution
3.11. Animal Treatments
3.12. Hematology Analysis and Blood Biochemical Assay
3.13. Histopathological Examination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021, 14, 85. [Google Scholar] [CrossRef]
- Song, H.; Su, Y.; Zhang, L.; Lv, Y. Quantum dots-based chemiluminescence probes: An overview. Luminescence 2019, 34, 530–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, C.M.; Hastman, D.A.; Mathur, D.; Susumu, K.; Oh, E.; Medintz, I.L.; Díaz, S.A. Direct and Efficient Conjugation of Quantum Dots to DNA Nanostructures with Peptide-PNA. ACS Nano 2021, 15, 9101–9110. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lai, H.; Guo, H.; Peng, D.; Han, L.; Gu, Y.; Wei, Z.; Zhao, D.; Zheng, N.; Hu, D.; et al. Side-Chain-Tuned Molecular Packing Allows Concurrently Boosted Photoacoustic Imaging and NIR-II Fluorescence. Angew. Chem. (Int. Ed. Engl.) 2022, 61, e202117433. [Google Scholar] [CrossRef] [PubMed]
- Caltagirone, C.; Bettoschi, A.; Garau, A.; Montis, R. Silica-based nanoparticles: A versatile tool for the development of efficient imaging agents. Chem. Soc. Rev. 2015, 44, 4645–4671. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Liu, Y.; Cao, Y.; Liu, Z. Engineering Macrophage Exosome Disguised Biodegradable Nanoplatform for Enhanced Sonodynamic Therapy of Glioblastoma. Adv. Mater. (Deerfield Beach Fla.) 2022, 34, e2110364. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Wang, C.W.; Yuan, Z.; Chang, H.T. Fluorescent gold nanoclusters: Recent advances in sensing and imaging. Anal. Chem. 2015, 87, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Kargozar, S.; Hoseini, S.J.; Milan, P.B.; Hooshmand, S.; Kim, H.W.; Mozafari, M. Quantum Dots: A Review from Concept to Clinic. Biotechnol. J. 2020, 15, e2000117. [Google Scholar] [CrossRef]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Palner, M.; Pu, K.; Shao, S.; Rao, J. Semiconducting Polymer Nanoparticles with Persistent Near-Infrared Luminescence for In Vivo Optical Imaging. Angew. Chem. (Int. Ed. Engl.) 2015, 54, 11477–11480. [Google Scholar] [CrossRef] [Green Version]
- Repenko, T.; Rix, A.; Ludwanowski, S.; Go, D.; Kiessling, F.; Lederle, W.; Kuehne, A.J.C. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications. Nat. Commun. 2017, 8, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, B.; Chen, J.; Chen, N.; Middha, E.; Xu, S.; Pan, Y.; Wu, M.; Li, K.; Liu, C.; Liu, B. High-Resolution 3D NIR-II Photoacoustic Imaging of Cerebral and Tumor Vasculatures Using Conjugated Polymer Nanoparticles as Contrast Agent. Adv. Mater. (Deerfield Beach Fla.) 2019, 31, e1808355. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhao, H.; He, K.; Du, W.; Kong, Y.; Wang, Z.; Li, M.; Shen, Q.; Sun, P.; Fan, Q. NIR-II Excitation Phototheranostic Nanomedicine for Fluorescence/Photoacoustic Tumor Imaging and Targeted Photothermal-Photonic Thermodynamic Therapy. Small (Weinh. Der Bergstr. Ger.) 2021, 17, e2102527. [Google Scholar] [CrossRef]
- Dong, Z.; Liang, P.; Guan, G.; Yin, B.; Wang, Y.; Yue, R.; Zhang, X.; Song, G. Overcoming Hypoxia-Induced Ferroptosis Resistance via a (19) F/(1) H-MRI Traceable Core-Shell Nanostructure. Angew. Chem. (Int. Ed. Engl.) 2022, 61, e202206074. [Google Scholar] [CrossRef] [PubMed]
- Özenler, S.; Yucel, M.; Tüncel, Ö.; Kaya, H.; Özçelik, S.; Yildiz, U.H. Single Chain Cationic Polymer Dot as a Fluorescent Probe for Cell Imaging and Selective Determination of Hepatocellular Carcinoma Cells. Anal. Chem. 2019, 91, 10357–10360. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Y.; Fang, Y.; Miao, Q.; Zhen, X.; Ding, D.; Pu, K. Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS Nano 2016, 10, 4472–4481. [Google Scholar] [CrossRef]
- Fernando, L.P.; Kandel, P.K.; Yu, J.; McNeill, J.; Ackroyd, P.C.; Christensen, K.A. Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules 2010, 11, 2675–2682. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; White, C.C.; Jin, Y.; Hu, X.; Hayden, S.; Zhang, X.; Gao, X.; Kavanagh, T.J.; Chiu, D.T. Toxicity and oxidative stress induced by semiconducting polymer dots in RAW264.7 mouse macrophages. Nanoscale 2015, 7, 10085–10093. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Zhang, Z.; Zhou, J.; Sun, Z.; Deng, Y.; Lin, G.; Ying, M.; Wang, X.; Yong, K.T.; Wu, C.; et al. The biocompatibility studies of polymer dots on pregnant mice and fetuses. Nanotheranostics 2017, 1, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Guzman, K.A.; Finnegan, M.P.; Banfield, J.F. Influence of surface potential on aggregation and transport of titania nanoparticles. Env. Sci. Technol. 2006, 40, 7688–7693. [Google Scholar] [CrossRef]
- Laurent, Q.; Martinent, R.; Lim, B.; Pham, A.T.; Kato, T.; López-Andarias, J.; Sakai, N.; Matile, S. Thiol-Mediated Uptake. JACS Au 2021, 1, 710–728. [Google Scholar] [CrossRef]
- Andersson, P.O.; Lejon, C.; Ekstrand-Hammarström, B.; Akfur, C.; Ahlinder, L.; Bucht, A.; Osterlund, L. Polymorph- and size-dependent uptake and toxicity of TiO₂ nanoparticles in living lung epithelial cells. Small (Weinh. Der Bergstr. Ger.) 2011, 7, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Bruinink, A.; Wang, J.; Wick, P. Effect of particle agglomeration in nanotoxicology. Arch. Toxicol. 2015, 89, 659–675. [Google Scholar] [CrossRef] [PubMed]
- Keene, A.M.; Peters, D.; Rouse, R.; Stewart, S.; Rosen, E.T.; Tyner, K.M. Tissue and cellular distribution of gold nanoparticles varies based on aggregation/agglomeration status. Nanomedicine 2012, 7, 199–209. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Chen, M.; Yang, Y.; Ge, G.; Tang, L.; He, S.; Zeng, Z.; Li, X.; Li, G.; Xiong, W.; et al. Biocompatibility and Biological Effects of Surface-Modified Conjugated Polymer Nanoparticles. Molecules 2023, 28, 2034. https://doi.org/10.3390/molecules28052034
Guo W, Chen M, Yang Y, Ge G, Tang L, He S, Zeng Z, Li X, Li G, Xiong W, et al. Biocompatibility and Biological Effects of Surface-Modified Conjugated Polymer Nanoparticles. Molecules. 2023; 28(5):2034. https://doi.org/10.3390/molecules28052034
Chicago/Turabian StyleGuo, Wanni, Mingjian Chen, Yuxin Yang, Guili Ge, Le Tang, Shuyi He, Zhaoyang Zeng, Xiaoling Li, Guiyuan Li, Wei Xiong, and et al. 2023. "Biocompatibility and Biological Effects of Surface-Modified Conjugated Polymer Nanoparticles" Molecules 28, no. 5: 2034. https://doi.org/10.3390/molecules28052034
APA StyleGuo, W., Chen, M., Yang, Y., Ge, G., Tang, L., He, S., Zeng, Z., Li, X., Li, G., Xiong, W., & Wu, S. (2023). Biocompatibility and Biological Effects of Surface-Modified Conjugated Polymer Nanoparticles. Molecules, 28(5), 2034. https://doi.org/10.3390/molecules28052034