Dissolution of Molybdenum in Hydrogen Peroxide: A Thermodynamic, Kinetic and Microscopic Study of a Green Process for 99mTc Production
Abstract
:1. Introduction
2. Experimental Sections
2.1. Materials and Methods
2.2. Characterization Methods
3. Discussion
3.1. Studies on the Dissolutions Process
- Oxidation of metallic molybdenum from the surface toward the center to form a mixture of low- and intermediate-valence molybdenum oxide.
- Strong oxidation of these ions to the highest valence state by reaction with concentrated hydrogen peroxide to form some soluble oxyhydroxides and peroxides of molybdenum, such MoO2(O2)22− or MoO2HO(O2)2− [34].
- Reaction of these species with NaOH to form Na2MoO4.
3.2. Microscopic Characterization
3.3. Spectroscopic Characterization
Wavenumber (cm−1) | Attribution |
---|---|
115 | Collective Mode (MoO4) |
302 | δ (Mo–O) |
380 | δ (Mo–O) |
808 | νas (Mo–O) |
891 | νs (Mo–O) |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Agostini, P.; Angiolini, M.; Alberghi, C.; Candido, L.; Capogni, M.; Capone, M.; Cataldo, S.; D’Annibale, F.; D’Arienzo, M.; Diamanti, D.; et al. SORGENTINA-RF project: Fusion neutrons for 99Mo medical radioisotope SORGENTINA-RF. Eur. Phys. J. Plus 2021, 136, 1140. [Google Scholar] [CrossRef]
- Capogni, M.; Pietropaolo, A.; Quintieri, L. 99mTc production via 100Mo(n,2n)99Mousing 14 MeV neutrons from a D-T neutron source: Discussion for a scientific case. In RT/2016/32/ENEA; ENEA: Rome, Italy, 2016. [Google Scholar]
- Gregoire, T. Meeting the Moly-99 Challenge. Nuclear News. 2018. Available online: http://www.shinefusion.com/wp-content/uploads/2018/07/2018.06.20-Meeting-the-moly-99-challenge-Nuclear-News-ANS-article.pdf/ (accessed on 3 March 2022).
- Kobayashi, T.; Sueki, K.; Ebihara, M.; Nakahara, H.; Imamura, M.; Masuda, A. Half-lives of Technectium 97, 98. Radiochim. Acta 1993, 63, 29. [Google Scholar] [CrossRef]
- Pillai MR, A.; Dash, A.; Knapp, F.F., Jr. Sustained Availability of 99mTc: Possible Paths Forward. J. Nucl. Med. 2013, 54, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, S.; Das, S.S.; Barua, L. A simple and rapid technique for recovery of 99mTc from low specific activity (n,γ)99Mo based on solvent extraction and column chromatography. Appl. Radiat. Isot. 2012, 68, 1–4. [Google Scholar] [CrossRef] [PubMed]
- NEA-OECD. Report on the Supply of Medical Radioisotopes: An Assessment of Long-Term Global Demand for Technetium-99m; Nuclear European Agency, Organisation for Economic Co-Operation and Development: Paris, France, 2011. [Google Scholar]
- Martini, P.; Boschi, A.; Cicoria, G.; Uccelli, L.; Pasquali, M.; Duatti, A.; Pupillo, G.; Marengo, M.; Loriggiola, M.; Esposito, J. A solvent-extraction module for cyclotron production of high-purity technetium-99m. Appl. Radiat. Isot. 2016, 118, 302. [Google Scholar] [CrossRef]
- Martini, P.; Boschi, A.; Cicoria, G.; Zagni, F.; Corazza, A.; Uccelli, L.; Pasquali, M.; Pupillo, G.; Marengo, M.; Loriggiola, M.; et al. In-house cyclotron production of high-purity Tc-99m and Tc-99m radiopharmaceuticals. Appl. Radiat. Isot. 2018, 139, 325. [Google Scholar] [CrossRef]
- Esposito, J.; Vecchi, G.; Pupillo, G.; Taibi, A.; Uccelli, L.; Boschi, A.; Gambaccini, M. Evaluation of 99Mo and 99𝑚Tc Productions Based on a High-Performance Cyclotron. Sci. Technol. Nucl. Install. 2013, 2013, 972381. [Google Scholar] [CrossRef] [Green Version]
- Van der Keur, H. Medical Radioisotopes Production without a Nuclear Reactor. 2010. Available online: WorldWideScience.org (accessed on 12 June 2022).
- Wang, Y.; Chen, D.; dos Santos Augusto, R.; Liang, J.; Qin, Z.; Liu, J.; Liu, Z. Production Review of Accelerator-Based Medical Isotopes. Molecules 2022, 27, 5294. [Google Scholar] [CrossRef]
- Hasan, S.; Prelas, M.A. Molybdenum-99 production pathways and the sorbents for 99Mo/99mTc generator systems using (n, γ) 99Mo: A review. SN Appl. Sci. 2020, 2, 1782. [Google Scholar] [CrossRef]
- NEA, N.E. The Supply of Medical Radioisotopes. 2018 Medical Isotope Demand and Capacity Projection for the 2018–2023 Period. NEA/SEN/HLGMR. 2018. Available online: www.oecd-nea.org (accessed on 1 July 2022).
- Ferrucci, B.; Ottaviano, G.; Rizzo, A.; Ubaldini, A. Future development of global molybdenum-99 production and saving of atmospheric radioxenon emissions by using nuclear fusion-based approaches. J. Environ. Radioact. 2022, 255, 107049. [Google Scholar] [CrossRef]
- Tonchev, A.P.; Stoyer, M.A.; Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Gooden, M.E.; Arnold, C.W.; Bond, E.; Bredeweg, T.; et al. Energy Evolution of the Fission-Product Yields from Neutron-Induced Fission of 235U, 238U, and 239Pu: An Unexpected Observation. In Fission and Properties of Neutron-Rich Nuclei; LLNL-PROC: Sanibel Island, FL, USA, 2017; p. 381. [Google Scholar]
- Capogni, M.; Pietropaolo, A.; Quintieri, L.; Angelone, M.; Boschi, A.; Capone, M.; Cherubini, N.; De Felice, P.; Dodaro, A.; Duatti, A.; et al. 14 MeV Neutrons for 99Mo/99mTc Production: Experiments, Simulations and Perspectives. Molecules 2018, 23, 1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flammini, D.; Bedogni, R.; Moro, F.; Pietropaolo, A. On the Slowing down of 14 MeV Neutrons. J. Neutr. Res. 2020, 22, 249. [Google Scholar] [CrossRef]
- Fonnesu, N.; Scaglione, S.; Spassovsky, I.P.; Pietropaolo, A.; Zito, P.; The SRF Collaboration. On the definition of the deuterium-tritium ion beam parameters for the SORGENTINA-RF fusion neutron source. Eur. Phys. J. Plus 2022, 137, 1150. [Google Scholar] [CrossRef]
- Nawar, M.F.; Türler, A. New strategies for a sustainable 99mTc supply to meet increasing medical demands: Promising solutions for current problems. Front. Chem. 2022, 10, 926258. [Google Scholar] [CrossRef]
- Schaffer, P.; Bénard, F.; Bernstein, A.; Buckley, K.; Celler, A.; Cockburn, N.; Corsaut, J.; Dodd, M.; Economou, C.; Eriksson, T.; et al. Direct Production Of 99mTc via 100Mo(p,2n) on Small Medical Cyclotrons. Phys. Procedia 2015, 66, 383. [Google Scholar] [CrossRef] [Green Version]
- Tkac, P.; Rotsch, D.A.; Chemerisov, S.D.; James, P.; Byrnes, J.P.; Bailey, J.L.; Wiedmeyer, S.G. Large-scale dissolution of sintered Mo disks. J. Radioanal. Nucl. Chem. 2021, 327, 617. [Google Scholar] [CrossRef]
- Magnusson, O. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics. In Eurachem Guide, 2nd ed.; 2014; ISBN 978-91-87461-59-0. [Google Scholar]
- Beary, E.S.; Paulsen, P.J. Selective application of chemical separations to isotope dilution inductively coupled plasma mass spectrometric analyses of standard reference materials. Anal. Chem. 1993, 65, 1602. [Google Scholar] [CrossRef]
- Hazza, M.L.; El-Dahshan, M.E. The effect of molybdenum on the corrosion behaviour of some steel alloys. Desalination 1994, 95, 199. [Google Scholar] [CrossRef]
- Cairang, W.; Li, T.; Xue, D.; Yang, H.; Cheng, P.; Chen, C.; Sun, Y.; Zeng, Y.; Ding, X.; Sun, J. Enhancement of the corrosion resistance of Molybdenum by La2O3 dispersion. Corros. Sci. 2021, 186, 109469. [Google Scholar] [CrossRef]
- Ahmadein, M.; El-Kady, O.A.; Mohammed, M.M.; Essa, F.A.; Alsaleh, N.A.; Djuansjah, J.; Elsheikh, A.H. Improving the mechanical properties and coefficient of thermal expansion of molybdenum-reinforced copper using powder metallurgy. Mater. Res. Express 2021, 8, 096502. [Google Scholar] [CrossRef]
- Barceloux, D.G. Molybdenum. J. Toxicol. Clin. Toxicol. 1999, 37, 231. [Google Scholar] [CrossRef] [PubMed]
- Shabalin, I.L. Molybdenum. In Ultra-High Temperature Materials, I; Springer: Dordrecht, The Netherlands, 1999; Volume 231. [Google Scholar] [CrossRef]
- Alves de Castro, I.; Shankar Datta, R.; Ou, J.O.; Castellanos-Gomez, A.; Sriram, S.; Daeneke, T.; Kalantar-zade, K. Molybdenum Oxides—From Fundamentals to Functionality. Adv. Mater. 2017, 29, 1701619. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yajima, T.; Soma, T.; Ohtomo, A. Epitaxial growth of MoO3 polymorphs and impacts of Li-ion electrochemical reactions on their structural and electronic properties. Appl. Phys. Express 2022, 15, 055505. [Google Scholar] [CrossRef]
- Sato, M.; Fujishita, H.; Sato, S.; Hoshino, S. Structural transitions in Mo8O23. J. Phys. C Solid State Phys. 1986, 19, 3059. [Google Scholar] [CrossRef]
- Ekström, T. Formation of ternary phases of Mo5O14 and Mo17O47 structure in the molybdenum-wolfram-oxygen system. Mater. Res. Bull. 1972, 7, 19. [Google Scholar] [CrossRef]
- Guro, V.P. Molybdenum dissolution in mixtures of H2O2 and concentrated HNO3 and H2SO4 in the presence of tungsten. Inorg. Mater. 2008, 44, 239. [Google Scholar] [CrossRef]
- Tkac, P.; Rotsch, D.A.; Chemerisov, S.D.; Bailey, J.L.; Krebs, J.F.; Vandergrift, G.F. Optimization of the Dissolution of Molybdenum Disks: FY-16 Results; Nuclear Engineering Division, Argonne National Laboratories, ANL/NE: Argonne, IL, USA, 2016. [Google Scholar]
- Cieszykowska, I.; Jerzyk, K.; Żółtowska, M.; Janiak, T.; Birnbaum, G. Studies on electrochemical dissolution of sintered molybdenum discs as a potential method for targets dissolution in 99mTc production. J. Radioanal. Nucl. Chem. 2022, 331, 1029. [Google Scholar] [CrossRef]
- Lima, C.L.; Saraiva, G.D.; Freire PT, C.; Maczka, M.; Paraguassu, W.; de Sousae, F.F.; Mendes Filhoa, J. Temperature-induced phase transformations in Na2WO4 and Na2MoO4 crystals. J. Raman Spectrosc. 2011, 42, 799. [Google Scholar] [CrossRef]
- Sydorchuk, V.; Khalameida, S.; Zazhigalov, V.; Zakutevskii, O. Some properties of a vanadium molybdenum oxide composite produced by mechanochemical treatment in various media. Russ. J. Inorg. Chem. 2013, 58, 1349. [Google Scholar] [CrossRef]
- Lyon, S.B. Corrosion of Molybdenum and its Alloys. In Shreir’s Corrosion; Cottis, B., Graham, M., Lindsay, R., Lyon, S., Richardson, T., Scantlebury, D., Stott, H., Eds.; Elsevier: Oxford, UK, 2010; pp. 2157–2167. ISBN 978-0-444-52787-5. [Google Scholar]
- Tyurin, A.G. Estimation of the Effect of Molybdenum on Chemical and Electrochemical Stability of Iron-Based Alloys. Prot. Met. 2003, 39, 367. [Google Scholar] [CrossRef]
- Morris, M.J. Molybdenum 1994. Coord. Chem. Rev. 1996, 152, 309. [Google Scholar] [CrossRef]
- Gough, K.; Holmes, S.; Matosky, N.; Oney, T.; Rutledge, J. Pressure Oxidation of Molybdenum Concentrates; Technical Report Kroll Institute for Extractive Metallurgy; Colorado School of Mines: Golden, CO, USA, 2013. [Google Scholar] [CrossRef]
- Zhang, N.; Königsberger, E.; Duan, S.; Lin, K.; Yi, H.; Zeng, D.; Zhao, Z.; Hefter, G. Nature of Monomeric Molybdenum (VI) Cations in Acid Solutions Using Theoretical Calculations and Raman Spectroscopy. J. Phys. Chem. B 2019, 123, 3304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-L.; Hua, J.-T.; Zhang, L.-F. Raman Studies on Species in Single and Mixed Solutions of Molybdate and Vanadate. Chin. J. Chem. Phy. 2016, 29, 425. [Google Scholar] [CrossRef] [Green Version]
- Badawy, W.A.; Al-Kharafi, F.M. Corrosion and passivation behaviors of molybdenum in aqueous solutions of different pH. Electrochim. Acta 1998, 44, 693. [Google Scholar] [CrossRef]
- Aveston, J.; Anacker, E.W.; Johnson, J.S. Hydrolysis of Molybdenum (VI). Ultracentrifugation, acidity measurements and Raman spectra of polymolybdates. Inor. Chem. 1964, 3, 735. [Google Scholar] [CrossRef]
- Misirlioglu, Z.; Aksüt, A. Corrosion of Molybdenum in Aqueous Media. Corrosion 2002, 58, 899. [Google Scholar] [CrossRef]
- Harsimran, S.; Santoshc, K.; Rakesh, K. Overview of corrosion and its control: A critical review. Proc. Eng. Sci. 2021, 3, 13–24. [Google Scholar] [CrossRef]
- Page, C.L. Corrosion and protection of reinforcing steel in concrete. Durability of Concrete and Cement Composites. In Woodhead Publishing Series in Civil and Structural Engineering; Page, C., Page, M., Eds.; Woodhead Publishing: Sawston, UK, 2007; p. 136. [Google Scholar]
- Wang, Z.; Di-Franco, F.; Seyeux, A.; Zanna, S.; Maurice, V.; Marcus, P. Passivation-Induced Physicochemical Alterations of the Native Surface Oxide Film on 316L Austenitic Stainless Steel. J. Electrochem. Soc. 2019, 166, C3376. [Google Scholar] [CrossRef]
- Frankelt, G.S. Pitting Corrosion of Metals: A Review of the Critical Factors. J. Electrochem. Soc. 1998, 145, 2186. [Google Scholar] [CrossRef]
- Abbas, S.A.; Mahmood, I.; Sajjad, M.; Noor, N.A.; Mahmood, Q.; Naeem, M.A.; Mahmood, A.; Ramay, S.M. Spinel-type Na2MoO4 and Na2WO4 as promising optoelectronic materials: First-principle DFT calculations. Chem. Phys. 2020, 538, 110902. [Google Scholar] [CrossRef]
- Fortes, A.D. Crystal structures of spinel-type Na2MoO4 and Na2WO4 revisited using neutron powder diffraction. Acta Cryst. E Cryst. Commun. 2015, 71, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dkhilalli, F.; Megdiche Borchani, S.; Rasheed, M.; Barille, R.; Shihab, S.; Guidara, K.; Megdiche, M. Characterizations and morphology of sodium tungstate particles. R. Soc. Open Sci. 2018, 5, 172214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, S.J.; West, Y.D. Use of the FT Raman spectrum of Na2MoO4 to study sample heating by the laser. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 2011. [Google Scholar] [CrossRef]
Reaction Time | Mean Pellet Diameter (µm) | Mean Pellet Length (µm) |
---|---|---|
0 min | 1490 ± 10 | 1710 ± 10 |
30 min | 1253 ± 10 | 1113 ± 10 |
60 min | 1265 ± 10 | 935 ± 10 |
120 min | 1210 ± 10 | 626 ± 10 |
Reaction Time | Mean Corrosion Lines Diameter (µm) | Mean Corrosion Lines Length (µm) | Max Value of Corrosion Lines Diameter (µm) | Max Value Corrosion Lines Length (µm) |
---|---|---|---|---|
30 min | 1253 ± 10 | 1113 ± 10 | 118 | 271 |
60 min | 1265 ± 10 | 935 ± 10 | 108 | 408 |
120 min | 1210 ± 10 | 626 ± 10 | 126 | 626 |
Element | Concentration (ppb) | ||
---|---|---|---|
Pellets (LCTMM Co.) | Powder (Merck, DE) | Purified Sodium Molybdate | |
V | 0.361 | 1.061 | 0.252 |
Cr | 23.72 | 12.18 | 8.793 |
Mn | 2.998 | 1.184 | 1.620 |
Fe | 161.2 | 75.78 | 76.81 |
Co | 8.181 | 2.478 | 9.574 |
Ni | 16.99 | 18.51 | 9.995 |
Cu | 2.204 | 1.397 | 0.901 |
Zn | 4.130 | 2.446 | 1.242 |
Ag | 0 * | 0 * | 0 * |
Cd | 71.28 | 53.69 | 77.63 |
Hg | 0.449 | 0.452 | 0 * |
Tl | 0 * | 0 * | 0 * |
Pb | 1.653 | 1.026 | 8.556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicconi, F.; Ubaldini, A.; Fiore, A.; Rizzo, A.; Cataldo, S.; Agostini, P.; Pietropaolo, A.; Salvi, S.; Cuzzola, V.; on behalf of the SRF Collaboration. Dissolution of Molybdenum in Hydrogen Peroxide: A Thermodynamic, Kinetic and Microscopic Study of a Green Process for 99mTc Production. Molecules 2023, 28, 2090. https://doi.org/10.3390/molecules28052090
Cicconi F, Ubaldini A, Fiore A, Rizzo A, Cataldo S, Agostini P, Pietropaolo A, Salvi S, Cuzzola V, on behalf of the SRF Collaboration. Dissolution of Molybdenum in Hydrogen Peroxide: A Thermodynamic, Kinetic and Microscopic Study of a Green Process for 99mTc Production. Molecules. 2023; 28(5):2090. https://doi.org/10.3390/molecules28052090
Chicago/Turabian StyleCicconi, Flavio, Alberto Ubaldini, Angela Fiore, Antonietta Rizzo, Sebastiano Cataldo, Pietro Agostini, Antonino Pietropaolo, Stefano Salvi, Vincenzo Cuzzola, and on behalf of the SRF Collaboration. 2023. "Dissolution of Molybdenum in Hydrogen Peroxide: A Thermodynamic, Kinetic and Microscopic Study of a Green Process for 99mTc Production" Molecules 28, no. 5: 2090. https://doi.org/10.3390/molecules28052090
APA StyleCicconi, F., Ubaldini, A., Fiore, A., Rizzo, A., Cataldo, S., Agostini, P., Pietropaolo, A., Salvi, S., Cuzzola, V., & on behalf of the SRF Collaboration. (2023). Dissolution of Molybdenum in Hydrogen Peroxide: A Thermodynamic, Kinetic and Microscopic Study of a Green Process for 99mTc Production. Molecules, 28(5), 2090. https://doi.org/10.3390/molecules28052090