A New Method to Determine Antioxidant Activities of Biofilms Using a pH Indicator (Resazurin) Model System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mechanical Properties
2.2. Permeability
2.3. Calibration of AES-R Systems
2.4. Antioxidation Activity of GBFs Using the AES-R System
3. Material and Method
3.1. Sample and Reagent
3.2. Preparation of Gelatin Biopolymer Film (GBF)
3.3. Film Thickness
3.4. Measurement of Mechanical Properties
3.5. Measurement of Water Vapor and Oxygen Permeability
3.6. Preparation of Model Food System
3.7. Color Measurement Corresponding to Antioxidation Activity
3.8. DPPH Free Radical Scavenging Test
3.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Colak, B.Y.; Gouanve, F.; Degraeve, P.; Espuche, E.; Prochazka, F. Study of the Influences of Film Processing Conditions and Glycerol Amount on the Water Sorption and Gas Barrier Properties of Novel Sodium Caseinate Films. J. Membr. Sci. 2015, 478, 1–11. [Google Scholar] [CrossRef]
- Molinaro, S.; Cruz-Romero, M.; Sensidoni, A.; Morris, M.; Lagazio, C.; Kerry, J.P. Combination of High-Pressure Treatment, Mild Heating and Holding Time Effects as a Means of Improving the Barrier Properties of Gelatin-Based Packaging Films Using Response Surface Modeling. Innov. Food Sci. Emerg. Technol. 2015, 30, 15–23. [Google Scholar] [CrossRef]
- Jamshidian, M.; Arab Tehrany, E.; Cleymand, F.; Leconte, S.; Falher, T.; Desobry, S. Effects of Synthetic Phenolic Antioxidants on Physical, Structural, Mechanical and Barrier Properties of Poly Lactic Acid Film. Carbohydr. Polym. 2012, 87, 1763–1773. [Google Scholar] [CrossRef]
- Bhatia, S.; Al-Harrasi, A.; Al-Azri, M.S.; Ullah, S.; Bekhit, A.E.-D.; Pratap-Singh, A.; Chatli, M.K.; Anwer, M.K.; Aldawsari, M.F. Preparation and Physiochemical Characterization of Bitter Orange Oil Loaded Sodium Alginate and Casein Based Edible Films. Polymers 2022, 14, 3855. [Google Scholar] [CrossRef]
- Kim, Y.-T.; Hong, Y.-S.; Kimmel, R.M.; Rho, J.-H.; Lee, C.-H. New Approach for Characterization of Gelatin Biopolymer Films Using Proton Behavior Determined by Low Field 1H NMR Spectrometry. J. Agric. Food Chem. 2007, 55, 10678–10684. [Google Scholar] [CrossRef]
- Pérez Córdoba, L.J.; Sobral, P.J.A. Physical and Antioxidant Properties of Films Based on Gelatin, Gelatin-Chitosan or Gelatin-Sodium Caseinate Blends Loaded with Nanoemulsified Active Compounds. J. Food Eng. 2017, 213, 47–53. [Google Scholar] [CrossRef]
- Rezaee, M.; Askari, G.; EmamDjomeh, Z.; Salami, M. Effect of Organic Additives on Physiochemical Properties and Anti-Oxidant Release from Chitosan-Gelatin Composite Films to Fatty Food Simulant. Int. J. Biol. Macromol. 2018, 114, 844–850. [Google Scholar] [CrossRef]
- Alipal, J.; Mohd Pu'ad, N.A.S.; Lee, T.C.; Nayan, N.H.M.; Sahari, N.; Basri, H.; Idris, M.I.; Abdullah, H.Z. A Review of Gelatin: Properties, Sources, Process, Applications, and Commercialisation. Mater. Today Proc. 2021, 42, 240–250. [Google Scholar] [CrossRef]
- Saxena, T.; Karumbaiah, L.; Valmikinathan, C.M. Proteins and Poly(Amino Acids). Nat. Synth. Biomed. Polym. 2014, 43–65. [Google Scholar] [CrossRef]
- Duconseille, A.; Astruc, T.; Quintana, N.; Meersman, F.; Sante-Lhoutellier, V. Gelatin Structure and Composition Linked to Hard Capsule Dissolution: A Review. Food Hydrocoll. 2015, 43, 360–376. [Google Scholar] [CrossRef]
- Chen, H.; Shan, Z.H.; Woo, M.W.; Chen, X.D. Preparation and Characteristic of Gelatine/Oxidized Corn Starch and Gelatin/Corn Starch Blend Microspheres. Int. J. Biol. Macromol. 2017, 94, 326–334. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, Q.; Chu, Y.; Tao, N.; Deng, S.; Wang, L.; Li, L. Application of Gelatin in Food Packaging: A Review. Polymers 2022, 14, 436. [Google Scholar] [CrossRef]
- Oversteegen, S.M.; Roth, R. General Methods for Free-Volume Theory. J. Chem. Phys. 2005, 122, 214502. [Google Scholar] [CrossRef] [Green Version]
- Peppas, N.A.; Narasimhan, B. Mathematical Models in Drug Delivery: How Modeling Has Shaped the Way We Design New Drug Delivery Systems. J. Control. Release 2014, 190, 75–81. [Google Scholar] [CrossRef]
- Zadeh, E.M.; Yu, A.; Fu, L.; Dehghan, M.; Sbarski, I.; Harding, I. Physical and Thermal Characterization of Graphene Oxide Modified Gelatin-Based Thin Films. Polym. Compos. 2014, 35, 2043–2049. [Google Scholar] [CrossRef]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible Films/Coating with Tailored Properties for Active Packaging of Meat, Fish and Derived Products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Suppakul, P. Active and Intelligent Packaging: The Indication of Quality and Safety. Crit. Rev. Food Sci. Nutr. 2017, 58, 808–831. [Google Scholar] [CrossRef]
- Kim, K.M.; Lee, B.-Y.; Kim, Y.T.; Choi, S.-G.; Lee, J.; Cho, S.Y. Development of Antimicrobial Edible Film Incorporated with Green Tea. Food Sci. Biotechnol. 2006, 15, 478–481. [Google Scholar]
- Biji, K.B.; Ravishankar, C.N.; Mohan, C.O.; Srinivasa Gopal, T.K. Smart Packaging Systems for Food Applications: A Review. J. Food Sci. Technol. 2015, 52, 6125–6135. [Google Scholar] [CrossRef]
- Zadeh, E.M.; O’Keefe, S.F.; Kim, Y.-T. Utilization of Lignin in Biopolymeric Packaging Films. ACS Omega 2018, 3, 7388–7398. [Google Scholar] [CrossRef] [Green Version]
- Dopico-García, M.S.; López-Vilariñó, J.M.; González-Rodríguez, M.V. Antioxidant Content of and Migration from Commercial Polyethylene, Polypropylene, and Polyvinyl Chloride Packages. J. Agric. Food Chem. 2007, 55, 3225–3231. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, H.-J.; Kim, J.-H.; Jo, C.; Kim, M.-J.; Byun, M.-W. Comparison of Irradiated Phytic Acid and Other Antioxidants for Antioxidant Activity. Food Chem. 2004, 88, 173–178. [Google Scholar] [CrossRef]
- Candan, T.; Bağdatlı, A. Use of Natural Antioxidants in Poultry Meat. Celal Bayar Üniv. J. Sci. 2017, 13, 279–291. [Google Scholar] [CrossRef]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Edible Films and Coatings to Prevent the Detrimental Effect of Oxygen on Food Quality: Possibilities and Limitations. J. Food Eng. 2012, 110, 208–213. [Google Scholar] [CrossRef]
- Pereira, E.P.R.; Cavalcanti, R.N.; Esmerino, E.A.; Silva, R.; Guerreiro, L.R.M.; Cunha, R.L.; Bolini, H.M.A.; Meireles, M.A.; Faria, J.A.F.; Cruz, A.G. Effect of Incorporation of Antioxidants on the Chemical, Rheological, and Sensory Properties of Probiotic Petit Suisse Cheese. J. Dairy Sci. 2016, 99, 1762–1772. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- García-García, R.; Searle, S.S. Preservatives: Food Use. Encycl. Food Health 2016, 505–509. [Google Scholar] [CrossRef]
- Martucci, J.F.; Gende, L.B.; Neira, L.M.; Ruseckaite, R.A. Oregano and Lavender Essential Oils as Antioxidant and Antimicrobial Additives of Biogenic Gelatin Films. Ind. Crops Prod. 2015, 71, 205–213. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Methods to measure the antioxidant activity of phytochemicals and plant extracts. J. Agric. Food Chem. 2018, 66, 3324–3329. [Google Scholar] [CrossRef]
- Kowalczyk, D. Biopolymer/Candelilla Wax Emulsion Films as Carriers of Ascorbic Acid—A Comparative Study. Food Hydrocoll. 2016, 52, 543–553. [Google Scholar] [CrossRef]
- Maté, J.I.; Krochta, J.M. Oxygen Uptake Model for Uncoated and Coated Peanuts. J. Food Eng. 1998, 35, 299–312. [Google Scholar] [CrossRef]
- Cheng, S.-Y.; Wang, B.-J.; Weng, Y.-M. Antioxidant and Antimicrobial Edible Zein/Chitosan Composite Films Fabricated by Incorporation of Phenolic Compounds and Dicarboxylic Acids. LWT—Food Sci. Technol. 2015, 63, 115–121. [Google Scholar] [CrossRef]
- Sepe, H.; Faustman, C.; Lee, S.; Tang, J.; Suman, S.; Venkitanarayanan, K. Effects of Reducing Agents on Premature Browning in Ground Beef. Food Chem. 2005, 93, 571–576. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- He, Y.; Ingudam, S.; Reed, S.; Gehring, A.; Strobaugh, T.P.; Irwin, P. Study on the Mechanism of Antibacterial Action of Magnesium Oxide Nanoparticles against Foodborne Pathogens. J. Nanobiotechnol. 2016, 14, 54. [Google Scholar] [CrossRef] [Green Version]
- Ou, S.; Wang, Y.; Tang, S.; Huang, C.; Jackson, M.G. Role of Ferulic Acid in Preparing Edible Films from Soy Protein Isolate. J. Food Eng. 2005, 70, 205–210. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Pires, C.; Ramos, C.; Batista, I.; Saraiva, J.A.; Nunes, M.L. Characterization of Fish Protein Films Incorporated with Essential Oils of Clove, Garlic and Origanum: Physical, Antioxidant and Antibacterial Properties. LWT—Food Sci. Technol. 2014, 59, 533–539. [Google Scholar] [CrossRef]
- Amadori, S.; Torricelli, P.; Rubini, K.; Fini, M.; Panzavolta, S.; Bigi, A. Effect of Sterilization and Crosslinking on Gelatin Films. J. Mater. Sci. Mater. Med. 2015, 26, 69. [Google Scholar] [CrossRef]
- Jamróz, E.; Kulawik, P.; Kopel, P. The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers 2019, 11, 675. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R.N.; Belton, P.S.; Beta, T.; Duodu, K.G. Increasing the Utilisation of Sorghum, Millets and Pseudocereals: Developments in the Science of Their Phenolic Phytochemicals, Biofortification and Protein Functionality. J. Cereal Sci. 2014, 59, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Andreuccetti, C.; Galicia-García, T.; González-Nuñez, R.; Martínez-Bustos, F.; Grosso, C.R.F. Native and Modified Gelatin Films Produced by Casting, Extrusion, and Blowing Extrusion Processes. Polym. Renew. Resour. 2017, 8, 11–26. [Google Scholar] [CrossRef]
- ASTM International. Annual Book of ASTM Standards; ASTM 2002a; ASTM International: Philadelphia, PA, USA, 2002; pp. 472–477. [Google Scholar] [CrossRef]
- Perez, C. Antibiotic assay by agar-well diffusion method. Acta Biol. Med. Exp. 1990, 15, 113–115. [Google Scholar]
- Mohammad Zadeh, E.; O'Keefe, S.F.; Kim, Y.-T.; Cho, J.-H. Evaluation of Enzymatically Modified Soy Protein Isolate Film Forming Solution and Film at Different Manufacturing Conditions. J. Food Sci. 2018, 83, 946–955. [Google Scholar] [CrossRef]
- Cazón, P.; Vázquez, M. Applications of Chitosan as Food Packaging Materials. Sustain. Agric. Rev. 2019, 36, 81–123. [Google Scholar] [CrossRef]
- Wibowo, S.; Grauwet, T.; Santiago, J.S.; Tomic, J.; Vervoort, L.; Hendrickx, M.; Van Loey, A. Quality Changes of Pasteurised Orange Juice during Storage: A Kinetic Study of Specific Parameters and Their Relation to Colour Instability. Food Chem. 2015, 187, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of Freezing and Thawing on the Quality of Meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef]
- Toldrá Fidel, L.; Nollet, L.M.L.; Ahn, D.U.; Lee, E.J.; Mendonca, A. Advanced Technologies for Meat Processing, 2nd ed.; Ahn, D.U., Lee, E.J., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 197–226. [Google Scholar]
- Cava, R.; Tárrega, R.; Ramírez, R.; Carrasco, J.A. Decolouration and Lipid Oxidation Changes of Vacuum-Packed Iberian Dry-Cured Loin Treated with e-Beam Irradiation (5 KGY and 10 Kgy) during Refrigerated Storage. Innov. Food Sci. Emerg. Technol. 2009, 10, 495–499. [Google Scholar] [CrossRef] [Green Version]
- O'Flynn, C.C.; Cruz-Romero, M.C.; Troy, D.; Mullen, A.M.; Kerry, J.P. The Application of High-Pressure Treatment in the Reduction of Salt Levels in Reduced-Phosphate Breakfast Sausages. Meat Sci. 2014, 96, 1266–1274. [Google Scholar] [CrossRef]
- Decker, E.A.; Elias, R.J.; McClements, D.J.; Faustman, C.; Yin, S.; Tatiyaborworntham, N. Oxidation in Foods and Beverages and Antioxidant Applications; Woodhead Publ.: Cambridge, UK, 2010; pp. 3–49. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Tensile Properties of Thin Plastic Sheeting; ASTM D0822-01; ASTM International: Philadelphia, PA, USA, 1997; pp. 162–170. [Google Scholar] [CrossRef]
- ASTM International. Annual Book of ASTM Standards; ASTM 2002c; ASTM International: Philadelphia, PA, USA, 2002; pp. 1048–1053. [Google Scholar] [CrossRef]
- McHugh, T.H.; Avena-Bustillos, R.; Krochta, J.M. Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. J. Food Sci. 1993, 58, 899–903. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, G.-C.; Hsieh, P.-P. Antioxidative Activity and Scavenging Effects on Active Oxygen of Xylose-Lysine Maillard Reaction Products. J. Sci. Food Agric. 1995, 67, 415–420. [Google Scholar] [CrossRef]
Antioxidant | Conc.(%) | Tensile | Elongation | Energy to Break | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(MPa) | (%) | (in-lbf/in3) | ||||||||
Ascorbic acid | 0.2 | 27.4 b | ± | 1.3 | 22.8 b | ± | 0.9 | 50.3 b | ± | 3.0 |
0.6 | 29.1 ab | ± | 0.6 | 28.7 a | ± | 1.2 | 62.9 b | ± | 3.9 | |
1.0 | 26.5 b | ± | 1.0 | 28.7 a | ± | 1.8 | 54.7 b | ± | 4.8 | |
BHA | 0.2 | 33.1 ab | ± | 4.2 | 19.4 b | ± | 3.9 | 59.1 b | ± | 5.5 |
0.6 | 29.2 ab | ± | 3.1 | 21.8 b | ± | 3.6 | 54.7 b | ± | 2.0 | |
1.0 | 31.7 ab | ± | 2.6 | 20.0 b | ± | 2.1 | 54.6 b | ± | 4.6 | |
phytic acid | 0.2 | 35.7 a | ± | 1.0 | 27.5 a | ± | 1.6 | 79.0 a | ± | 5.7 |
0.6 | 37.7 a | ± | 1.7 | 24.0 a | ± | 1.7 | 75.1 a | ± | 5.2 | |
1.0 | 36.2 a | ± | 0.7 | 27.6 a | ± | 0.8 | 78.4 a | ± | 3.8 | |
Control | n/a | 28.4 b | ± | 0.5 | 26.2 a | ± | 2.4 | 56.5 b | ± | 9.1 |
Conc. | WVP by Correction method * (ng m/m2 s Pa) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Ascorbic Acid | Phytic Acid | BHA | |||||||||
0.2 | 1.48 ab | ± | 0.02 | 1.48 ab | ± | 0.03 | 1.50 ab | ± | 0.02 | 1.39 b | ± | 0.05 |
0.4 | 1.40 b | ± | 0.02 | 1.40 b | ± | 0.01 | 1.39 b | ± | 0.01 | |||
0.6 | 1.42 b | ± | 0.05 | 1.29 c | ± | 0.01 | 1.39 b | ± | 0.05 | |||
0.8 | 1.58 a | ± | 0.07 | 1.47 ab | ± | 0.05 | 1.48 ab | ± | 0.02 | |||
1.0 | 1.58 a | ± | 0.04 | 1.59 a | ± | 0.06 | 1.56 a | ± |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-T.; Kimmel, R.; Wang, X. A New Method to Determine Antioxidant Activities of Biofilms Using a pH Indicator (Resazurin) Model System. Molecules 2023, 28, 2092. https://doi.org/10.3390/molecules28052092
Kim Y-T, Kimmel R, Wang X. A New Method to Determine Antioxidant Activities of Biofilms Using a pH Indicator (Resazurin) Model System. Molecules. 2023; 28(5):2092. https://doi.org/10.3390/molecules28052092
Chicago/Turabian StyleKim, Young-Teck, Robert Kimmel, and Xiyu Wang. 2023. "A New Method to Determine Antioxidant Activities of Biofilms Using a pH Indicator (Resazurin) Model System" Molecules 28, no. 5: 2092. https://doi.org/10.3390/molecules28052092
APA StyleKim, Y. -T., Kimmel, R., & Wang, X. (2023). A New Method to Determine Antioxidant Activities of Biofilms Using a pH Indicator (Resazurin) Model System. Molecules, 28(5), 2092. https://doi.org/10.3390/molecules28052092