Green Chemometric Determination of Cefotaxime Sodium in the Presence of Its Degradation Impurities Using Different Multivariate Data Processing Tools; GAPI and AGREE Greenness Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instrumentation
2.3. Preparation of Standard Solutions
2.4. Acidic and Alkaline Degradation
2.5. Procedure
2.5.1. Construction of the Chemometric Models
2.5.2. Pharmaceutical Dosage Form Analysis
3. Results
3.1. Spectral Zone Selection and Construction of a Calibration Matrix
3.2. Validation of Chemometric Models
3.3. Pharmaceutical Formulation Application and Statistical Analysis
3.4. Greenness Assessment of Analytical Methods
3.5. Evaluation of the Proposed Methods against the Reported Ones
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- El Deeb, S.; Ibrahim, A.E.; Al-Harrasi, A.; Wolber, G.; Gust, R. Validated Capillary Zone Electrophoresis Method for Impurity Profiling and Determination of NiII(3-OMe-Salophene). Separations 2022, 9, 25. [Google Scholar] [CrossRef]
- Behin, S.; Punitha, I.; Krishnan, S. Physical and chemical stability studies on cefotaxime and its dosage forms by stability indicating HPTLC method. Int. J. Pharm. Chem. Biol. Sci. 2012, 2, 517–523. [Google Scholar]
- Zhang, X.; Cui, Y.; Liu, C.; Zuo, K.; Tang, Y. Antibiotic Sales in Primary Care in Hubei Province, China: An Analysis of 2012–2017 Procurement Records. Int. J. Environ. Res. Public Health 2019, 16, 3376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafez, H.M.; El Deeb, S.; Naji, E.A.A.; Aziz, Z.A.; Mahmood, A.S.; Khalil, N.I.; Ibrahim, A.E. Design of an Experimental Study for the Simultaneous Determination of Cefepime, Piperacillin and Tazobactam Using Micellar Organic Solvent-Free HPLC. Separations 2022, 9, 215. [Google Scholar] [CrossRef]
- Hafez, H.M.; El Deeb, S.; Mahmoud Swaif, M.; Ismail Ibrahim, R.; Ali Kamil, R.; Salman Abdelwahed, A.; Ehab Ibrahim, A. Micellar Organic-Solvent Free HPLC Design of Experiment for the Determination of Ertapenem and Meropenem; Assessment Using GAPI, AGREE and Analytical Eco-Scale Models. Microchem. J. 2023, 185, 108262. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Kim, Y.B.; Lim, S.-K.; Lee, Y.J.; Seo, K.W. Characteristics of cephalosporin-resistant Salmonella isolates from poultry in Korea, 2010–2017. Poult. Sci. 2019, 98, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Xu, X.; Liu, C.; Zhao, S. Simultaneous determination of cefotaxime and nimesulide using poly(L-cysteine) and graphene composite modified glassy carbon electrode. Microchem. J. 2022, 174, 107058. [Google Scholar] [CrossRef]
- Honda, H.; Murakami, S.; Tokuda, Y.; Tagashira, Y.; Takamatsu, A. Critical national shortage of cefazolin in Japan: Management strategies. Clin. Infect. Dis. 2020, 71, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- Osman, K.; Orabi, A.; Elbehiry, A.; Hanafy, M.H.; Ali, A.M. Pseudomonas species isolated from camel meat: Quorum sensing-dependent virulence, biofilm formation and antibiotic resistance. Future Microbiol. 2019, 14, 609–622. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.E. Applications of Spectrometric Full Spectrum Quantitation (FSQ) Software for Multicomponent Analysis and Stability Studies of Pharmaceuticals. Anal. Lett. 2000, 33, 2719–2735. [Google Scholar] [CrossRef]
- Ni, Y.; Ge, C. Simultaneous spectrophotometric determination of certain beta-lactam antibiotics in rabbit serum using multivariate calibration methods. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2007, 27, 355–359. [Google Scholar]
- Li, C.; Lin, W.; Shao, Y.; Feng, Y. Simultaneous determination of ternary cephalosporin solutions by Raman spectroscopy. Chin. Opt. Lett. 2013, 11, 123001. [Google Scholar]
- D’Huart, E.; Vigneron, J.; Blaise, F.; Charmillon, A.; Demoré, B. Physicochemical stability of cefotaxime sodium in polypropylene syringes at high concentrations for intensive care units. Pharm. Technol. Hosp. Pharm. 2019, 4, 59–67. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.E. FSQ spectrophotometric and HPLC analysis of some cephalosporins in the presence of their alkali-induced degradation products. II Farm. 1998, 53, 132–138. [Google Scholar] [CrossRef]
- Jain, P.; Patel, M.; Chaudhari, A.; Surana, S. Application of Stability-Indicating High Performance Thin Layer Chromatographic Method for Quantitation of Cefotaxime Sodium in Pharmaceutical Dosage form. Indian J. Pharm. Educ. Res. 2012, 46, 360–365. [Google Scholar]
- Fabre, H.; Hussam-Eddine, N. A stability-indicating assay for cefotaxime utilizing thin-layer chromatography with fluorescence detection. J. Pharm. Pharmacol. 1982, 34, 425–428. [Google Scholar] [CrossRef]
- Tippo, D.M.R.; Singh, N. Development and validation of stability indicating HPLC-method for estimation of cefotaxime sodium in injection. Int. J. Pharm. Ind. Res. 2011, 1, 160–166. [Google Scholar]
- Al-Hakkani, M.F. HPLC analytical method validation for determination of cefotaxime in the bulk and finished pharmaceutical dosage form. Sustain. Chem. Eng. 2020, 1, 33–42. [Google Scholar] [CrossRef]
- Commission British Pharmacopoeia. British Pharmacopoeia 2020; Stationery Office: London, UK, 2020. [Google Scholar]
- Kelani, K.; Bebawy, L.I.; Abdel-Fattah, L. Stability-indicating spectrophotometric and densitometric methods for determination of some cephalosporins. J. AOAC Int. 1998, 81, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Korany, M.A.; Elsayed, M.A.-H.; Galal, S.M. Use of second derivative spectrophotometry for the determination of certain cephalosporins and their acid-induced degradation products in combination. Anal. Lett. 1989, 22, 159–175. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Mostafa, A.; Shaaban, H. Quantitative analysis and resolution of pharmaceuticals in the environment using multivariate curve resolution-alternating least squares (MCR-ALS). Acta Pharm. 2019, 69, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.E.; Sharaf, Y.A.; El Deeb, S.; Sayed, R.A. Analytical Performance and Greenness Evaluation of Five Multi-Level Design Models Utilized for Impurity Profiling of Favipiravir, a Promising COVID-19 Antiviral Drug. Molecules 2022, 27, 3658. [Google Scholar] [CrossRef] [PubMed]
- Fedick, P.W.; Schrader, R.L.; Ayrton, S.T.; Pulliam, C.J.; Cooks, R.G. Process Analytical Technology for Online Monitoring of Organic Reactions by Mass Spectrometry and UV–Vis Spectroscopy. J. Chem. Educ. 2019, 96, 124–131. [Google Scholar] [CrossRef]
- Mostafa, A. Spectrophotometric and Multivariate Calibration Techniques for Simultaneous Determination of Different Drugs in Pharmaceutical Formulations and Human Urine: Evaluation of Greenness Profile. J. Anal. Methods Chem. 2020, 2020, 8873003. [Google Scholar] [CrossRef]
- Elhassan, M.M.; Mahmoud, A.M.; Hegazy, M.A.; Mowaka, S. Univariate and Multivariate Determination of Dapagliflozin and Saxagliptin in Bulk and Dosage Form. J. AOAC Int. 2022. [Google Scholar] [CrossRef]
- Sayed, R.A.; Ibrahim, A.E.; Sharaf, Y.A. Chemometry-assisted UV-spectrophotmetric methods for the simultaneous determination of paritaprevir, ritonavir, and ombitasvir in their combined tablet dosage forms: A comparative study. J. Chemom. 2021, 35, e3339. [Google Scholar] [CrossRef]
- El-Maraghy, C.M.; Salem, H.; Amer, S.M.; Nebsen, M. Stability Indicating Spectrophotometric and Chemometric Methods for Determination of Aripiprazole in Presence of its Degradation Products, A Comparative Study. Anal. Chem. Lett. 2019, 9, 258–272. [Google Scholar] [CrossRef]
- Sayed, R.A.; El-Masri, M.M.; Hassan, W.S.; El-Mammli, M.Y.; Shalaby, A. Validated Stability-Indicating Methods for Determination of Mometasone Furoate in Presence of its Alkaline Degradation Product. J. Chromatogr. Sci. 2018, 56, 254–261. [Google Scholar] [CrossRef]
- Hegazy, M.A.; Hassanain, W.A.; Abdel-Fattah, L.E. Stability Indicating Spectrophotometric and Chemometric Methods for Determination of Nifuroxazide in Presence of Its Alkaline Degradation Products. Pharm. Anal. Acta 2011, 2, 127. [Google Scholar] [CrossRef] [Green Version]
- Nadler, B.; Coifman, R.R. The prediction error in CLS and PLS: The importance of feature selection prior to multivariate calibration. J. Chemom. A J. Chemom. Soc. 2005, 19, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Gemperline, P. Practical Guide to Chemometrics; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Ghasemi, J.; Niazi, A.; Leardi, R. Genetic-algorithm-based wavelength selection in multicomponent spectrophotometric determination by PLS: Application on copper and zinc mixture. Talanta 2003, 59, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Brereton, R.G. Multilevel multifactor designs for multivariatecalibration. Analyst 1997, 122, 1521–1529. [Google Scholar] [CrossRef]
- Kramer, R. Chemometric Techniques for Quantitative Analysis; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Sayed, R.A.; Hassan, W.S.; El-Mammli, M.Y.; Shalaby, A. Use of silver–gelatin complex for the determination of cefoperazone sodium, ceftazidime pentahydrate and cefotaxime sodium in pure and pharmaceutical dosage forms. Chem. Sci. Rev. Lett 2013, 1, 10–17. [Google Scholar]
- Ibrahim, A.E.; Abd Elmonem, H.M.; Al-Harrasi, A.; El Deeb, S. Comparative Evaluation of Reversed Stationary Phase Geometries and Greener Systems on HPLC and UHPLC Using Five Recent Hepatitis-C Antivirals. J. AOAC Int. 2023. [Google Scholar] [CrossRef]
- Yabré, M.; Ferey, L.; Somé, I.T.; Gaudin, K. Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules 2018, 23, 1065. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Hearne, Z.; Li, C.-J. Water—The greenest solvent overall. Curr. Opin. Green Sustain. Chem. 2019, 18, 118–123. [Google Scholar] [CrossRef]
- Aly, A.A.; Górecki, T. Green Chromatography and Related Techniques. In Green Analytical Chemistry: Past, Present and Perspectives; Płotka-Wasylka, J., Namieśnik, J., Eds.; Springer: Singapore, 2019; pp. 241–298. [Google Scholar]
- Ali, M.F.B.; Saraya, R.E.; El Deeb, S.; Ibrahim, A.E.; Salman, B.I. An Innovative Polymer-Based Electrochemical Sensor Encrusted with Tb Nanoparticles for the Detection of Favipiravir: A Potential Antiviral Drug for the Treatment of COVID-19. Biosensors 2023, 13, 243. [Google Scholar] [CrossRef]
- Saleem, Z.; Hassali, M.A.; Hashmi, F.K.; Qaisar, S.; Ahmad, M.; Ali, S.S.; Ahmad, F. Evaluating consumption and expenditure patterns of antibiotics in tablet and capsule dosage forms: Pakistan Antibiotic Consumption Surveillance (PACS). J. Pharm. Pract. Res. 2020, 50, 36–41. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Abdel Hameed, E.A.; Abd El-Naby, Z.A.; El Gindy, A.; Saraya, R.E.; Al Balawi, A.N.; Zaitone, S.A.; Khairy, G.M. Two Eco-Friendly Chromatographic Methods Evaluated by GAPI for Simultaneous Determination of the Fluoroquinolones Moxifloxacin, Levofloxacin, and Gemifloxacin in Their Pharmaceutical Products. Separations 2022, 9, 330. [Google Scholar] [CrossRef]
- Fawzy, M.G.; Hafez, H.M.; Hassan, W.E.; Mostafa, A.A.; Sayed, R.A. Application of molecular docking approach in a novel eco-friendly impurity profiling HPLC-UV method for the simultaneous estimation of ternary hypoglycemic pharmaceutical mixture. Microchem. J. 2022, 182, 107856. [Google Scholar] [CrossRef]
- Abdel-Lateef, M.A.; Almahri, A.; Alzahrani, E.; Pashameah, R.A.; Abu-Hassan, A.A.; El Hamd, M.A. Sustainable PVP-Capped Silver Nanoparticles as a Free-Standing Nanozyme Sensor for Visual and Spectrophotometric Detection of Hg2+ in Water Samples: A Green Analytical Method. Chemosensors 2022, 10, 358. [Google Scholar] [CrossRef]
- Saraya, R.E.; Deeb, S.E.; Salman, B.I.; Ibrahim, A.E. Highly sensitive high-performance thin-layer chromatography method for the simultaneous determination of molnupiravir, favipiravir, and ritonavir in pure forms and pharmaceutical formulations. J. Sep. Sci. 2022, 45, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
CFX/Acidic Degradants Mixture | CFX/Alkaline Degradants Mixture | ||||
---|---|---|---|---|---|
Sample No. | CFX (μg mL−1) | Acidic Degradant (μg mL−1) | Sample No. | CFX (μg mL−1) | Alkaline Degradant (μg mL−1) |
1 | 16 | 25 | 1 * | 16 | 15 |
2 * | 16 | 15 | 2 | 16 | 5 |
3 | 12 | 15 | 3 | 12 | 5 |
4 * | 12 | 35 | 4 | 12 | 25 |
5 | 20 | 20 | 5 | 20 | 10 |
6 | 14 | 35 | 6 | 14 | 25 |
7 | 20 | 25 | 7 | 20 | 15 |
8 | 16 | 20 | 8 | 16 | 10 |
9 | 14 | 20 | 9 | 14 | 10 |
10 | 14 | 30 | 10 | 14 | 20 |
11 * | 18 | 35 | 11 | 18 | 25 |
12 | 20 | 30 | 12 | 20 | 20 |
13 * | 18 | 25 | 13 * | 18 | 15 |
14 * | 16 | 35 | 14 | 16 | 25 |
15 * | 20 | 35 | 15 | 20 | 25 |
16 * | 20 | 15 | 16 | 20 | 5 |
17 | 12 | 30 | 17 | 12 | 20 |
18 | 18 | 15 | 18 * | 18 | 5 |
19 * | 12 | 25 | 19 * | 12 | 15 |
20 | 16 | 30 | 20 * | 16 | 20 |
21 | 18 | 30 | 21 * | 18 | 20 |
22 | 18 | 20 | 22 | 18 | 10 |
23 | 14 | 15 | 23 * | 14 | 5 |
24 | 12 | 20 | 24 * | 12 | 10 |
25 | 14 | 25 | 25 | 14 | 15 |
Parameter | (CFX/Acidic Degradants) GA-PLS Model | (CFX/Alkaline Degradants) GA-PLS Model |
---|---|---|
Population size | 36 | 36 |
Maximum generations | 34 | 34 |
Mutation rate | 0.005 | 0.005 |
The number of variables in a window (window width) | 2 | 2 |
Percent of population the same at convergence | 80 | 80 |
Percent wavelengths used at initiation | 50 | 50 |
Crossover type | Double | Double |
Maximum number of latent variables | 3 | 2 |
Cross validation | Random | Random |
Number of subsets to divide data into for cross validation | 4 | 4 |
Mix. No. | CFX Actual Conc. (μg mL−1) | CFX/Acidic Degradants Mixture | Mix. No. | CFX Actual Conc. (μg mL−1) | CFX/Alkaline Degradants Mixture | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CLS | PCR | PLS | GA-PLS | CLS | PCR | PLS | GA-PLS | ||||
2 | 16 | 99.15 | 98.46 | 98.95 | 99.03 | 1 | 16 | 98.31 | 98.31 | 98.31 | 98.16 |
4 | 12 | 101.39 | 101.60 | 101.62 | 102.23 | 13 | 18 | 102.14 | 102.12 | 102.12 | 101.77 |
11 | 18 | 101.29 | 99.52 | 96.44 | 98.97 | 18 | 18 | 100.87 | 100.80 | 100.80 | 101.16 |
13 | 18 | 100.86 | 98.47 | 97.86 | 99.21 | 19 | 12 | 97.78 | 97.80 | 97.80 | 97.99 |
14 | 16 | 100.30 | 99.66 | 97.37 | 101.94 | 20 | 16 | 99.40 | 99.44 | 99.43 | 99.07 |
15 | 20 | 101.90 | 98.95 | 95.95 | 99.32 | 21 | 18 | 99.33 | 99.37 | 99.36 | 98.59 |
16 | 20 | 100.76 | 98.10 | 98.58 | 98.79 | 23 | 14 | 100.41 | 100.37 | 100.37 | 100.99 |
18 | 18 | 99.53 | 96.96 | 97.53 | 99.57 | 24 | 12 | 99.00 | 98.98 | 98.98 | 99.52 |
Mean | 100.65 | 98.97 | 98.04 | 99.88 | 99.65 | 99.65 | 99.65 | 99.66 | |||
SD | 0.94 | 1.36 | 1.76 | 1.38 | 1.42 | 1.40 | 1.40 | 1.46 | |||
RSD | 0.93 | 1.38 | 1.79 | 1.38 | 1.43 | 1.40 | 1.41 | 1.45 | |||
RMSEP | 0.19 | 0.29 | 0.47 | 0.20 | 0.21 | 0.21 | 0.21 | 0.22 |
Parameter | CLS | PCR | PLS | GA-PLS |
---|---|---|---|---|
Wavelength range (nm) * | 220–320 | |||
Linear range (μg.ml–1) | 12–20 | |||
RMSECV | 0.146 | 0.146 | 0.146 | 0.162 |
LV number | - | - | 2 | 2 |
Mean (%) | 99.65 | 99.64 | 99.64 | 99.62 |
RSD (%) | 1.42 | 1.39 | 1.41 | 1.47 |
R ** | 0.9951 | 0.9953 | 0.9952 | 0.9929 |
Slope ** | 1.046 | 1.046 | 1.046 | 1.028 |
Intercept ** | −0.754 | 0.751 | 0.750 | −0.479 |
CFX/Acidic Degradation Method | CFX/Alkaline Degradation Method | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Reported Method [37] | CLS | PCR | PLS | GA-PLS | CLS | PCR | PLS | GA-PLS |
Mean | 99.92 | 99.77 | 99.83 | 100.11 | 100.21 | 99.74 | 99.58 | 99.88 | 99.84 |
V | 0.13 | 0.15 | 0.16 | 0.07 | 0.14 | 0.24 | 0.25 | 0.34 | 0.26 |
N | 8 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Student’s t-test (2.201) a | -- | 0.71 | 0.42 | 1.01 | 1.39 | 0.77 | 1.43 | 0.15 | 0.33 |
F-test (7.85) a | -- | 1.15 | 1.23 | 1.86 | 2.64 | 1.85 | 1.92 | 2.62 | 2.00 |
Technique Applied | Analysis Time | Solvents Used | Linearity Range | Degradation Product | Application | GAPI Assessment | |
---|---|---|---|---|---|---|---|
Proposed method | Multivariate spectrophotometry | Seconds | Water | 12–20 µg mL−1 | Acidic or alkaline | Pharmaceutical dosage forms | |
Reported [21] | Second derivative spectroscopy | Seconds | Sulfuric acid | 4–24 µg mL−1 | Acidic only | Pharmaceutical dosage forms | |
Reported method [20] | Derivative spectroscopy | Seconds | Water | 5–40 µg mL−1 | Acidic only | Pharmaceutical dosage forms | |
Densitometric | About 10 min | Methanol:acetic acid | 2–12 µg/spot | Acidic only | Pharmaceutical dosage forms | ||
Reorted method [14] | FSQ spectrophotometric | Seconds | Acetonitrile:water (10:90) | 10–22 µg mL−1 | Alkaline only | Pharmaceutical dosage forms | |
HPLC | 5 min | Ammonium acetate:acetonitrile | 5–20 µg mL−1 | Alkaline only | Pharmaceutical dosage forms | ||
Reported method [18] | HPLC | 15 min | Methanol:phosphate buffer | 0.5–1.5 µg mL−1 | Acidic, alkaline, or oxidative | Pharmaceutical dosage forms | |
Reported method [17] | HPLC | 10 min | Methanol:acetonitrile:buffer | 51–360 µg mL−1 | Acidic, alkaline, or oxidative | Pharmaceutical dosage forms | |
Reported method [15] | TLC | More than 10 min | Benzene and Methanol:acetic acid | 100–600 ng/spot | Acidic, alkaline, or oxidative | Pharmaceutical dosage forms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharaf, Y.A.; Ibrahim, A.E.; El Deeb, S.; Sayed, R.A. Green Chemometric Determination of Cefotaxime Sodium in the Presence of Its Degradation Impurities Using Different Multivariate Data Processing Tools; GAPI and AGREE Greenness Evaluation. Molecules 2023, 28, 2187. https://doi.org/10.3390/molecules28052187
Sharaf YA, Ibrahim AE, El Deeb S, Sayed RA. Green Chemometric Determination of Cefotaxime Sodium in the Presence of Its Degradation Impurities Using Different Multivariate Data Processing Tools; GAPI and AGREE Greenness Evaluation. Molecules. 2023; 28(5):2187. https://doi.org/10.3390/molecules28052187
Chicago/Turabian StyleSharaf, Yasmine Ahmed, Adel Ehab Ibrahim, Sami El Deeb, and Rania Adel Sayed. 2023. "Green Chemometric Determination of Cefotaxime Sodium in the Presence of Its Degradation Impurities Using Different Multivariate Data Processing Tools; GAPI and AGREE Greenness Evaluation" Molecules 28, no. 5: 2187. https://doi.org/10.3390/molecules28052187
APA StyleSharaf, Y. A., Ibrahim, A. E., El Deeb, S., & Sayed, R. A. (2023). Green Chemometric Determination of Cefotaxime Sodium in the Presence of Its Degradation Impurities Using Different Multivariate Data Processing Tools; GAPI and AGREE Greenness Evaluation. Molecules, 28(5), 2187. https://doi.org/10.3390/molecules28052187