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Abstract: In this work, we achieved a C3-selenylation of pyrido[1,2-a]pyrimidin-4-ones using an elec-
trochemically driven external oxidant-free strategy. Various structurally diverse seleno-substituted
N-heterocycles were obtained in moderate to excellent yields. Through radical trapping experiments,
GC-MS analysis and cyclic voltammetry study, a plausible mechanism for this selenylation was proposed.
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1. Introduction

N-heterocycles hold a privileged position in the preparation of drugs, agrochemicals,
polymers, and other functional materials [1,2]. According to statistics, nitrogen species are pre-
sented in more than 80% of the top 200 pharmaceuticals, and two thirds of these N-containing
medicines contain N-heterocyclic skeletons [3]. Among these, N-fused pyrido[1,2-a]pyrimidin-
4-ones are one of the most prominent classes of structural motifs due to their ubiquity and
bioactivity as the backbones of many natural and pharmacologic products [4–6]. A variety
of derivatives based on this backbone show versatile bioactivities, including antioxidants,
antipsychotics, and antiulcer drugs, etc. (Figure 1A) [7–10]. During the past decades, many
efforts have been devoted to the construction and derivatization of such N-fused heterocycles,
mainly including multicomponent cyclization, metal catalyzed direct C−H functionalization
and metal-free chalcogenation with extra stoichiometric oxidants [11–16]. However, inevitable
metal residue, extra stoichiometric oxidants, harmful halogenated solvents and inert gas
conditions seriously restrict use for pharmaceutical chemistry applications. Thus, the de-
velopment of modular approaches that provide facile and practical access to functionalized
pyrido[1,2-a]pyrimidin-4-ones continues to be in high demand.
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Selenium-containing compounds play important roles in organic synthesis, medicinal
chemistry, and biochemistry [17–21]. In particular, researchers have demonstrated that
N-heterocycles modified with organylselanyl groups exhibit unique pharmacological activ-
ities and physicochemical properties and thereby have higher applied value (Figure 1B). In
the long history of selenium chemistry, diselenides as readily available substrates [22–28]
or precatalysts [29–34] have garnered considerable attention for use in various reactions.
Especially in the last five years, electrochemistry-induced C-H bond selenylation for the
synthesis seleno-heterocycles has been booming [35–44]. Although selenium can bring
positive physiochemical properties of bioactive molecules and drugs, the methods for direct
selenylation of pyrido[1,2-a]pyrimidin-4-ones are still limited. Until 2021, the only two ex-
amples for C-3 selenylation of pyrido[1,2-a]pyrimidin-4-ones by Das group was established
(Scheme 1A) [45,46]. These achievements may be important; however, practical applications
of the above-mentioned synthetic strategies are limited to the stoichiometric or excessive
oxidants, diselenides, harmful halogenated solvents and the difficult collection of the tar-
get products from large amounts of unexpected byproducts and unconsumed reagents.
Electrochemical technology employe traceless electrons as redox reagents, avoiding extra
chemical oxidants, reductants, and transition-metal catalysts, and more importantly, it
bears the unique advantage of controlling reactivity by “dialing-in” the specific potential
on demand [47–54]. We envisioned whether a more easy-going radical selenylation of the
pyrido[1,2-a]pyrimidones via electrochemical technology may be realized, which would
afford a sustainable and universal selenylation method (Scheme 1B).
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2. Results and Discussion

In order to optimize the reaction conditions for the anticipated selenylation of
pyrido[1,2-a]pyrimidin-4-ones, we commenced our study by employing 2-phenyl-4H-
pyrido[1,2-a]pyrimidin-4-one 1a and diphenyl diselenide 2a as model substrates in this re-
action. As shown in Table 1, Pt(+)/Pt(−) were chosen as both the anode and cathode,
nBu4NBF4 as the supporting electrolyte, reactions were performed in MeCN at 60 ◦C un-
der 5V constant voltage in an undivided three-necked bottle, for 3 h, and the target 3a
could be isolated in 42% isolated yield (entry 1). Other electrolytes commonly used for
electrochemical conditions such as nBu4NI, nBu4NPF6 and nBu4NClO4 were then tested.
The results showed that nBu4NPF6 exhibited a positive effect, leading to the isolated 3a
with a satisfactory 66% yield, while nBu4NI and nBu4NClO4 did not proceed efficiently
(entries 2−4). Further solvent screening revealed that DMF, DMSO, MeOH and HFIP
are not ideal options for this transformation (entries 5−8). Moreover, the effects of the
electrode materials were explored. However, lower reaction yields were obtained when
the Pt(+)/Pt(−) was replaced by C(+)/C(−) and C(+)/Pt(−) (entries 9 and 10). When the
reaction temperature was adjusted from 60 to 40 ◦C or to room temperature, the yields
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dramatically decreased (entries 11 and 12). When the reaction time is extended to 5 h, the
yield of 3a can be increased sharply to 94% (entry 13). The control experiment also showed
that no desired product 3a was generated without electricity (entry 14).

Table 1. Optimization of reaction conditions a.
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With the optimized conditions in hand, we further evaluated the scope of the substrates
by examining various functionalized pyrido[1,2-a]pyrimidin-4-ones 1, and the results are
illustrated in Table 2. As can be seen, for substrates bearing 2-Me, 3-Me, 3-Cl and 4-OMe
on the pyridine ring, this transformation could be proceeded smoothly to provide the cor-
responding 3b−3e in 67−96% yields. Furthermore, 7-phenyl-5H-thiazolo[3,2-a]pyrimidin-
5-one 1f was compatible with this conversion, giving the corresponding product 3f in 82%
yield. Substituents at the 7-position can also vary from aryl to methyl, with the desired
products 3g−3j isolated in 67−96% yields. In further demonstration of the utility and
applicability of this method, a gram-scale selenylation reaction with 1a was performed.
The gram-scale reaction proceeded well to form the corresponding product 3a in 91% yield,
demonstrating the capacity to apply the protocol.

We next focused our attention toward evaluating the scope of various diselenides
(Table 3). Regardless of electron-donating (2-OMe, 3-Me, 4-Me, 4-OMe,) or electron-
withdrawing groups (2-CF3, 3-Br, 4-Cl, 4-Br) on the phenyl ring of the selenide moiety,
this electro-oxidative C3-selenylation could proceed smoothly, giving the corresponding
products 3k−3r in moderate to excellent yields (60–97%). Multi-substituted diselenides,
1,2-di(naphthalen-2-yl)diselane, 1,2-di(pyridin-2-yl)diselane and 1,2-dimethyldiselane were
also compatible with this transformation, producing the corresponding products 3s−3y
in moderate to excellent yields (40–97%). Possibly due to the strong oxidation environ-
ment, the selenylation yields with the electron-rich diaryl diselenides were significantly
lower (3t and 3u). The electronic and steric effects with diselenides have no obvious ef-
fects on the reaction. When substituents at the 7-position varied from aryl to methyl, the
electro-oxidative C3-selenylation with 3-Br, 3-Me, 4-Me and 4-Cl substituted diselenides
and 1,2-dimethyldiselane proceeded smoothly, delivering the desired products 3aa−3ad in
73−95% yields. Meanwhile, 7-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one was also a good
partner in this transformation, and selenylated 3ae could be isolated in 85% yield.



Molecules 2023, 28, 2206 4 of 17

Table 2. Substrate scope of pyrido[1,2-a]pyrimidin-4-ones a,b.
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode,
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 ◦C, 5 h. b Isolated yield. c 5 mmol
1a was added, 3a with 91% isolated yield.

Mechanistic information was collected to elucidate the detailed reaction pathways.
First, radical trapping experiments were performed. When 2 equiv of TEMPO (2,2,6,6-
tetramethyl-1-piperidinyloxy) or BHT (2,4-di-tert-butyl-4-methylphenol) was added into
the reaction system, the desired product 3a was totally suppressed. Furthermore, adduct
4 was observed through GC-MS analysis (Scheme 2a,b). When 2 equiv of stilbene was
added, adducts 5 and 6 were observed through GC-MS analysis (Scheme 2c). These results
indicated that this reaction mostly proceeds via a radical pathway.
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 
1 (0.2 mmol), 2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 °C, 5 h. b Isolated yield. c The 
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a Reaction conditions: In an undivided two-necked bottle, with Pt(+)/Pt(−) as the anode and cathode, 1 (0.2 mmol),
2a (0.2 mmol), nBu4NPF6 (0.2 mmol), MeCN (5 mL), 60 ◦C, 5 h. b Isolated yield. c The substrate 1 of entry 1-13 is 1a.
d The substrate 1 of entry 16-19 is 1i. e The substrate 2 of entry 14-15 and entry 20-21 is 2n.

Molecules 2023, 28, x FOR PEER REVIEW 8 of 20 
 

 

substrate 1 of entry 1-13 is 1a. d The substrate 1 of entry 16-19 is 1i. e The substrate 2 of entry 14-15 
and entry 20-21 is 2n. 

Mechanistic information was collected to elucidate the detailed reaction pathways. 
First, radical trapping experiments were performed. When 2 equiv of TEMPO (2,2,6,6-
tetramethyl-1-piperidinyloxy) or BHT (2,4-di-tert-butyl-4-methylphenol) was added into 
the reaction system, the desired product 3a was totally suppressed. Furthermore, adduct 
4 was observed through GC-MS analysis (Scheme 2a,b). When 2 equiv of stilbene was 
added, adducts 5 and 6 were observed through GC-MS analysis (Scheme 2c). These results 
indicated that this reaction mostly proceeds via a radical pathway. 

N

N

O

Ph

+ PhSeSePh

nBu4NPF6
 
(20 mol%)

TEMPO (2.0 equiv)
Pt(+)/Pt(-), 5.0V

MeCN, 60 oC

N

N

O

Ph

SePh

1a 
                              

2a 
                                                                

3a, 0%

N

N

O

Ph

+ PhSeSePh

nBu4NPF6
 
(20 mol%)

BHT (2.0 equiv)

Pt(+)/Pt(-), 5.0V
MeCN, 60 oC

1a 
                            

2a 
                                                                    

4

N

N

O

Ph

O

3a, 0%

N

N

O

Ph

+ PhSeSePh

nBu4NPF6
 
(20 mol%)

stilbene (2.0 equiv)

Pt(+)/Pt(-), 5.0V
MeCN, 60 oC

1a 
                            

2a 
                                                           

5 
                   

63a, 23%

Ph Ph

SePh

(a)

(b)

(c)

detected 
 
by HRMS analysis

detected 
 
by HRMS analysis

N

N

O

Ph
Ph

Ph

 
Scheme 2. Radical trapping experiments. (2a: The control experiment in the presence of TEMPO; 2b: 
The control experiment in the presence of BHT. 2c: The control experiment in the presence of stil-
bene.) 

Second, the cyclic voltammetry (CV) experiments on both reactants were carried out. 
The measured oxidation peak of 1a presented at 1.98 V (Figure 2, blue line), and an obvi-
ous oxidation peak of diphenyl diselenide 2a could be observed at 1.88 V (Figure 2, red 
line). Since the reactions were performed under 5V constant voltage, both 1a and 2a may 
undergo single-electron oxidation, and the radical trapping experiments also demon-
strated this result (Scheme 2b,c). 

Scheme 2. Radical trapping experiments. (a: The control experiment in the presence of TEMPO;
b: The control experiment in the presence of BHT. c: The control experiment in the presence of stilbene.)

Second, the cyclic voltammetry (CV) experiments on both reactants were carried out.
The measured oxidation peak of 1a presented at 1.98 V (Figure 2, blue line), and an obvious
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oxidation peak of diphenyl diselenide 2a could be observed at 1.88 V (Figure 2, red line).
Since the reactions were performed under 5V constant voltage, both 1a and 2a may undergo
single-electron oxidation, and the radical trapping experiments also demonstrated this
result (Scheme 2b,c).
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Figure 2. Cyclic voltammograms of substrates.

On the basis of mechanistic studies and previous literature reports [45,46,55–57], the
proposed mechanism of electro-oxidative C3-selenylation of pyrido[1,2-a]pyrimidin-4-ones
is depicted in Scheme 3. Firstly, the anodic oxidation of diselenide 2a could deliver PhSe.

and PhSe+. Secondly, the addition of RSe. on the C-3 position of 2-phenyl-4H-pyrido[1,2-a]
pyrimidin-4-one 1a generates the radical intermediate A. Anodic oxidation of A and the
subsequent deprotonation results in the final products 3a. At the cathode, protons and
PhSe+ are reduced to H2 and PhSe. at the surface of the cathode to complete this conversion.
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However, according to radical trapping experiments, the other pathway involved
the anodic oxidation of both 1a and 2a, which cannot be ruled out. The cross-coupling of
the corresponding PhSe. and carbon-centered radicals could also quickly deliver the final
products 3a.

3. Materials and Methods
3.1. Materials and Instruments

All reagents were purchased from commercial sources and used without further
purification. 1H NMR, 13C NMR spectra were recorded on a Bruker Ascend™ 400 or
Bruker Ascend™ 500 spectrometer (Billerica, MA, USA) in deuterated solvents containing
TMS as an internal reference standard. All high-resolution mass spectra (HRMS) were
measured on a mass spectrometer by using electrospray ionization orthogonal acceleration
time-of-flight (ESI-OA-TOF), and the purity of all samples used for HRMS (>95%) was
confirmed by 1H NMR and 13C NMR spectroscopic analysis. Melting points were measured
on a melting point apparatus equipped with a thermometer and were uncorrected. All
the reactions were monitored by thin-layer chromatography (TLC) using GF254 silica gel-
coated TLC plates. Purification by flash column chromatography was performed over SiO2
(silica gel 200−300 mesh).

3.2. General Procedure for the Synthesis of 1

A mixture of 2-aminopyridines (3.00 mmol) and the appropriate β-keto esters
(4.50 mmol) in PPA (6.00 g) was heated at 100 ◦C for 1 h while stirring with a glass
stick. The thick syrup thus obtained was slowly poured into crushed ice, and the resulting
suspension was neutralized with 10% aqueous sodium hydroxide. The solid precipitate
was collected by filtration, washed with water, and recrystallized to give 1 (Scheme 4).
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Scheme 4. Synthesis of substrate 1.

3.3. The General Procedure for the Synthesis of 3

Various 2-(aryl/alkyl) substituted 4H-Pyrido-[1,2-a]-Pyrimidin-4-ones 1 (0.20 mmol),
diselenide 2 (0.20 mmol), nBu4NPF6 (0.20 mmol) and MeCN (5.0 mL) were placed in a 10 mL
two-necked round-bottomed flask. The flask was equipped with a stir bar, a platinum plate
(1 cm × 1 cm) anode and a platinum plate (1 cm × 1 cm) cathode. The electrolysis was
carried out under air atmosphere at 60 ◦C using a constant potential of 5 V until complete
consumption of the substrate 1 (monitored by TLC, about 5 h). After the completion of
the reaction, the mixture was quenched by NaHCO3 (sat. aq. 150 mL) and extracted with
CH2Cl2 (50 mL × 3). Then, the organic solvent was concentrated in vacuo. The residue
was purified by flash column chromatography with ethyl acetate and petroleum ether as
eluent to give 3.

2-Phenyl-3-(phenylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3a). 2-Phenyl-8,9-dihydro-
4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted with PhSeSePh (0.20 mmol,
62.43 mg) according to General Procedure. The crude product was purified by column chro-
matography (petroleum ether: ethyl acetate = 5:1) to afford the title compound as a yellow solid
(m. p. 129–130 ◦C) in 94% yield (71.11 mg). Rf (petroleum ether/ethyl acetate = 5:2): 0.24; 1H
NMR (500 MHz, CDCl3) δ 9.08 (d, J = 7.1 Hz, 1H), 7.80–7.76 (m, 1H), 7.73 (d, J = 8.8 Hz, 1H),
7.60 (dd, J = 6.5, 3.1 Hz, 2H), 7.43–7.39 (m, 3H), 7.32–7.28 (m, 2H), 7.18 (td, J = 7.1, 1.4 Hz, 1H),
7.15 (dd, J = 6.3, 2.7 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 168.10, 157.78, 150.25, 140.24, 136.87,



Molecules 2023, 28, 2206 9 of 17

131.83, 131.08, 129.33, 128.99, 128.89, 128.00, 127.89, 126.68, 126.64, 116.08, 105.70; HRMS (ESI)
calcd for C20H15N2OSe [M+H]+: 379.0344, found: 379.0338.

6-Methyl-2-phenyl-3-(phenylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3b).
6-Methyl-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 47.25 mg) was reacted
with PhSeSePh (0.20 mmol, 62.43 mg) according to General Procedure. The crude product
was purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the
title compound as a yellow solid (m. p. 171–172 ◦C) in 96% yield (74.90 mg). Rf (petroleum
ether/ethyl acetate = 5:2): 0.45; 1H NMR (500 MHz, CDCl3) δ 7.59 (dd, J = 6.5, 2.9 Hz,
2H), 7.51–7.46 (m, 2H), 7.41–7.35 (m, 3H), 7.28 (dd, J = 6.5, 2.9 Hz, 2H), 7.16–7.09 (m, 3H),
6.76–6.70 (m, 1H), 2.99 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 166.91, 161.42, 152.72, 144.17,
139.86, 135.92, 132.26, 130.49, 129.28, 128.97, 128.90, 127.82, 126.39, 125.35, 118.85, 107.00,
24.54; HRMS (ESI) calcd for C21H17N2OSe [M+H]+: 393.0501, found: 393.0494.

7-Chloro-2-phenyl-3-(phenylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3c).
7-Chloro-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 51.26 mg) was reacted
with PhSeSePh (0.20 mmol, 62.43 mg) according to General Procedure. The crude product
was purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the
title compound as a yellow solid (m. p. 169–170 ◦C) in 70% yield (59.32 mg). Rf (petroleum
ether/ethyl acetate = 5:2): 0.56; 1H NMR (500 MHz, CDCl3) δ 9.07 (d, J = 1.0 Hz, 1H),
7.70–7.65 (m, 2H), 7.59 (dd, J = 6.7, 2.6 Hz, 2H), 7.42 (dd, J = 5.1,
1.5 Hz, 3H), 7.31 (dd, J = 6.5, 2.9 Hz, 2H), 7.17–7.13 (m, 3H); 13C NMR (125 MHz, CDCl3) δ
167.52, 156.78, 148.46, 139.86, 137.89, 131.52, 131.34, 129.55, 129.01, 128.94, 127.96, 127.61,
126.97, 125.64, 124.64, 107.00; HRMS (ESI) calcd for C20H14ClN2OSe [M+H]+: 412.9954,
found: 412.9948.

7-Methyl-2-phenyl-3-(phenylselanyl)-4H-pyrido [1,2-a]pyrimidin-4-one (3d).
7-Methyl-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 47.25 mg) was reacted
with PhSeSePh (0.20 mmol, 62.43 mg) according to General Procedure. The crude product
was purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the
title compound as a yellow solid (m. p. 190–191 ◦C) in 95% yield (74.49 mg). Rf (petroleum
ether/ethyl acetate = 5:1): 0.14; 1H NMR (500 MHz, CDCl3) δ 8.90 (s, 1H), 7.66 (s, 2H), 7.58
(dd, J = 6.5, 2.8 Hz, 2H), 7.43–7.39 (m, 3H), 7.30 (dd, J = 6.4, 2.8 Hz, 2H), 7.16–7.12 (m, 3H),
2.44 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 167.74, 157.65, 149.19, 140.34, 139.81, 131.98,
131.00, 129.23, 128.95, 128.87, 127.87, 126.60, 126.49, 126.08, 125.46, 105.30, 18.43; HRMS
(ESI) calcd for C21H17N2OSe [M+H]+: 393.0501, found: 393.0495.

8-Methoxy-2-phenyl-3-(phenylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3e).
8-Methoxy-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 50.45 mg) was reacted
with PhSeSePh (0.20 mmol, 62.43 mg) according to General Procedure. The crude product
was purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the
title compound as a yellow solid (m. p. 179–180 ◦C) in 67% yield (54.82 mg). Rf (petroleum
ether/ethyl acetate = 5:2): 0.31; 1H NMR (500 MHz, CDCl3) δ 8.58 (d, J = 2.6 Hz, 1H),
7.68 (d, J = 9.6 Hz, 1H), 7.61–7.54 (m, 3H), 7.43–7.39 (m, 3H), 7.31 (dd, J = 6.4, 3.0 Hz, 2H),
7.17–7.13 (m, 3H), 3.93 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 166.72, 157.57, 151.26, 147.29,
140.26, 132.12, 131.94, 131.02, 129.21, 128.98, 128.90, 127.89, 127.34, 126.63, 107.49, 105.10,
56.57; HRMS (ESI) calcd for C21H17N2O2Se [M+H]+:409.0450, found: 409.0444.

7-Phenyl-6-(phenylselanyl)-5H-thiazolo[3,2-a]pyrimidin-5-one (3f).
7-Phenyl-5H-thiazolo[3,2-a]pyrimidin-5-one (0.20 mmol, 45.65 mg) was reacted with Ph-
SeSePh (0.20 mmol, 62.43 mg) according to General Procedure. The crude product was
purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the title
compound as a yellow solid (m. p. 161–162 ◦C) in 82% yield (62.71 mg). Rf (petroleum
ether/ethyl acetate = 5:2): 0.24; 1H NMR (400 MHz, CDCl3) δ 7.99 (d, J = 4.9 Hz, 1H),
7.59–7.54 (m, 2H), 7.43–7.39 (m, 3H), 7.32 (dd, J = 6.5, 3.0 Hz, 2H), 7.18–7.14 (m, 3H), 7.01
(d, J = 4.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 1166.97, 162.25, 158.15, 139.56, 131.54,
131.25, 129.51, 129.04, 128.97, 127.87, 126.86, 122.68, 112.29, 107.05; HRMS (ESI) calcd for
C18H13N2OSSe [M+H]+: 384.9908, found: 384.9902.



Molecules 2023, 28, 2206 10 of 17

2-(4-Methoxyphenyl)-3-(phenylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3g). 2-(4-
Methoxyphenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 50.45 mg) was reacted with
PhSeSePh (0.20 mmol, 62.43 mg) according to General Procedure. The crude product was
purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the title
compound as a yellow solid (m. p. 161–162 ◦C) in 67% yield (54.75 mg). Rf (petroleum
ether/ethyl acetate = 5:2): 0.18; 1H NMR (500 MHz, CDCl3) δ 9.05 (d, J = 7.1 Hz, 1H),
7.79–7.74 (m, 1H), 7.71 (d, J = 8.7 Hz, 1H), 7.64 (d, J = 8.6 Hz, 2H), 7.31 (dd, J = 6.6, 2.7 Hz,
2H), 7.15 (dd, J = 6.7, 3.9 Hz, 4H), 6.93 (d, J = 8.6 Hz, 2H), 3.85 (s, 3H); 13C NMR (126 MHz,
CDCl3) δ 167.48, 160.70, 157.86, 150.13, 136.74, 132.59, 132.05, 130.86, 130.75, 129.00, 127.99,
126.58, 126.55, 115.81, 113.25, 104.92, 55.39; HRMS (ESI) calcd for C21H17N2O2Se [M+H]+:
409.0450, found: 409.0444.

2-(3-Fluorophenyl)-3-(phenylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3h). 2-(3-
Fluorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 48.05 mg) was reacted with
PhSeSePh (0.20 mmol, 62.43 mg) according to General Procedure. The crude product was
purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the title
compound as a yellow solid (m. p. 133–134 ◦C) in 96% yield (54.75 mg). Rf (petroleum
ether/ethyl acetate = 5:1): 0.11; 1H NMR (500 MHz, CDCl3) δ 9.08 (d, J = 7.1 Hz, 1H),
7.83–7.76 (m, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.35 (t, J = 5.4 Hz, 2H), 7.30 (dd, J = 8.6, 5.5 Hz,
3H), 7.19 (t, J = 6.9 Hz, 1H), 7.16–7.06 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 166.44
(d, J = 2.4 Hz), 163.46, 161.01, 157.76, 150.27, 142.23, 142.15, 137.12, 131.53, 131.33, 129.49
(d, J = 8.3 Hz), 129.06, 128.00, 126.75 (d, J = 26.9 Hz), 124.77 (d, J = 3.0 Hz), 116.30
(d, J = 9.8 Hz), 116.08 (d, J = 7.2 Hz), 115.89, 105.97; 19F NMR (471 MHz, CDCl3) δ −113.07;
HRMS (ESI) calcd for C20H14FN2OSe [M+H]+: 397.0250, found: 397.0244.

2-Methyl-3-(phenylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3i). 2-Methyl-4H
-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 32.04 mg) was reacted with PhSeSePh (0.20 mmol,
74.91 mg) according to General Procedure. The crude product was purified by column
chromatography (petroleum ether: ethyl acetate = 5:1) to afford the title compound as
a yellow solid (m. p. 136–137 ◦C) in 78% yield (49.24 mg). Rf (petroleum ether/ethyl
acetate = 5:2): 0.24; 1H NMR (400 MHz, CDCl3) δ 9.04 (d, J = 7.1 Hz, 1H), 7.79–7.75
(m, 1H), 7.61 (d, J = 8.9 Hz, 1H), 7.41–7.35 (m, 2H), 7.22–7.12 (m, 4H), 2.73 (s, 3H); 13C NMR
(126 MHz, CDCl3) δ 169.50, 157.25, 150.25, 136.98, 131.48, 130.58, 129.20, 128.21, 126.62,
125.86, 115.74, 105.71, 26.82; HRMS (ESI) calcd for C15H13N2OSe [M+H]+: 317.0188, found:
317.0182.

7-Methyl-6-(phenylselanyl)-5H-thiazolo[3,2-a]pyrimidin-5-one (3j). 7-Methyl-
5H-thiazolo[3,2-a]pyrimidin-5-one (0.20 mmol, 33.24 mg) was reacted with PhSeSePh
(0.20 mmol, 62.43 mg) according to General Procedure. The crude product was purified by
column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the title compound
as a yellow solid (m. p. 187–188 ◦C) in 77% yield (49.67 mg). Rf (petroleum ether/ethyl
acetate = 5:2): 0.21; 1H NMR (400 MHz, CDCl3) δ 7.99 (d, J = 4.9 Hz, 1H), 7.59–7.54
(m, 2H), 7.43–7.39 (m, 3H), 7.32 (dd, J = 6.5, 3.0 Hz, 2H), 7.18–7.14 (m, 3H), 7.01 (d, J = 4.9 Hz,
1H); 13C NMR (100 MHz, CDCl3) δ 168.54, 162.33, 157.74, 131.11, 130.84, 129.21, 126.79,
122.88, 111.52, 107.06, 26.41; HRMS (ESI) calcd for C13H11N2OSSe [M+H]+: 322.9752,
found: 322.9745.

3-((2-Methoxyphenyl)selanyl)-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (3k).
2-Phenyl-8,9-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted
with 1,2-bis(2-methoxyphenyl)diselane (0.20 mmol, 74.44 mg) according to General Proce-
dure. The crude product was purified by column chromatography (petroleum ether: ethyl
acetate = 5:1) to afford the title compound as a yellow solid (m. p. 156–157 ◦C) in 87% yield
(70.96 mg). Rf (petroleum ether/ethyl acetate = 5:2): 0.16; 1H NMR (500 MHz, CDCl3) δ
9.08 (d, J = 7.1 Hz, 1H), 7.81–7.73 (m, 2H), 7.63 (dd, J = 6.5, 3.0 Hz, 2H), 7.37 (dd, J = 7.0,
3.7 Hz, 3H), 7.20–7.08 (m, 2H), 6.95 (dd, J = 7.8, 1.3 Hz, 1H), 6.78–6.73 (m, 2H), 3.79 (s, 3H);
13C NMR (125 MHz, CDCl3) δ 169.01, 157.79, 156.62, 150.46, 140.22, 137.01, 129.35, 128.84,
128.73, 128.03, 127.84, 127.07, 126.64, 121.50, 121.24, 116.08, 110.45, 103.08, 55.73; HRMS
(ESI) calcd for C21H17N2O2Se [M+H]+: 409.0450, found: 409.0443.



Molecules 2023, 28, 2206 11 of 17

2-Phenyl-3-((2-(trifluoromethyl)phenyl)selanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3l).
2-Phenyl-8,9-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted
with 1,2-bis(2-(trifluoromethyl)phenyl)diselane (0.20 mmol, 89.6 mg) according to General
Procedure. The crude product was purified by column chromatography (petroleum ether:
ethyl acetate = 5:1) to afford the title compound as a yellow solid (m. p. 151–152 ◦C) in
65% yield (57.71 mg). Rf (petroleum ether/ethyl acetate = 5:2): 0.14; 1H NMR (500 MHz,
CDCl3) δ 9.07 (dd, J = 7.1, 0.6 Hz, 1H), 7.86–7.81 (m, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.62–7.57
(m, 3H), 7.42–7.37 (m, 3H), 7.26–7.19 (m, 4H); 13C NMR (125 MHz, CDCl3) δ 168.78, 157.69,
150.60, 139.74, 137.39, 131.93 (d, J = 6.9 Hz), 131.02, 129.62, 129.28, 129.03, 128.80, 127.98
(d, J = 6.8 Hz), 126.89 (q, J = 5.4 Hz), 126.74, 125.96, 125.15, 122.97, 116.39, 104.13 (d,
J = 2.8 Hz); 19F NMR (471 MHz, CDCl3) δ −61.18; HRMS (ESI) calcd for C21H14F3N2OSe
[M+H]+: 447.0218, found: 447.0212.

2-Phenyl-3-(m-tolylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3m). 2-Phenyl-8,9-
dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted with 1,2-
di-m-tolyldiselane (0.20 mmol, 68.04 mg) according to General Procedure. The crude
product was purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to
afford the title compound as a yellow solid (m. p. 126–127 ◦C) in 60% yield (49.21 mg). Rf

(petroleum ether/ethyl acetate = 5:1): 0.11; 1H NMR (500 MHz, CDCl3) δ 9.08 (d, J = 7.1 Hz,
1H), 7.80–7.72 (m, 2H), 7.60 (dd, J = 6.4, 2.9 Hz, 2H), 7.44–7.38 (m, 3H), 7.20–7.15 (m, 1H),
7.13–7.07 (m, 2H), 7.03 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 7.4 Hz, 1H), 2.23 (s, 3H); 13C NMR
(125 MHz, CDCl3) δ 167.96, 157.80, 150.21, 140.24, 138.67, 136.79, 131.78, 131.52, 129.26,
128.89, 128.78, 128.13, 128.01, 127.86, 127.63, 126.63, 116.03, 105.88, 21.33; HRMS (ESI) calcd
for C21H17N2OSe [M+H]+: 393.0501, found: 393.0496.

3-((3-Bromophenyl)selanyl)-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (3n).
2-Phenyl-8,9-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted
with 1,2-bis(3-bromophenyl)diselane (0.20 mmol, 93.99 mg) according to General Proce-
dure. The crude product was purified by column chromatography (petroleum ether: ethyl
acetate = 5:1) to afford the title compound as a yellow solid (m. p. 96–97 ◦C) in 90% yield
(81.84 mg). Rf (petroleum ether/ethyl acetate = 5:1): 0.11; 1H NMR (500 MHz, CDCl3)
δ 9.08 (d, J = 6.9 Hz, 1H), 7.84–7.79 (m, 1H), 7.75 (d, J = 8.9 Hz, 1H), 7.61–7.54 (m, 2H),
7.46–7.35 (m, 4H), 7.25–7.19 (m, 3H), 7.00 (t, J = 7.9 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ
168.16, 157.64, 150.37, 139.97, 137.16, 133.80, 133.32, 130.27, 129.72, 129.48, 129.06, 128.79,
128.02, 127.97, 126.71, 122.83, 116.31, 105.02; HRMS (ESI) calcd for C20H14BrN2OSe [M+H]+:
456.9449, found: 456.9439.

2-Phenyl-3-(p-tolylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3o). 2-Phenyl-8,9
-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted with 1,2-di-p-
tolyldiselane (0.20 mmol, 68.04 mg) according to General Procedure. The crude product
was purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the
title compound as a yellow solid (m. p. 157–158 ◦C) in 94% yield (73.34 mg). Rf (petroleum
ether/ethyl acetate = 5:2): 0.27; 1H NMR (500 MHz, CDCl3) δ 9.06 (d, J = 7.1 Hz, 1H),
7.78–7.70 (m, 2H), 7.60 (dd, J = 6.4, 2.8 Hz, 2H), 7.45–7.40 (m, 3H), 7.23 (d, J = 8.0 Hz, 2H),
7.15 (s, 1H), 6.97 (d, J = 7.9 Hz, 2H), 2.25 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 167.82,
157.74, 150.13, 140.32, 136.74, 136.71, 131.64, 129.80, 129.30, 128.95, 127.94, 127.91, 127.88,
126.60, 115.99, 106.20, 21.12; HRMS (ESI) calcd for C21H17N2OSe [M+H]+: 393.0501, found:
393.0494.

3-((4-Methoxyphenyl)selanyl)-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (3p).
2-Phenyl-8,9-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted
with 1,2-bis(4-methoxyphenyl)diselane (0.20 mmol, 74.44 mg) according to General Pro-
cedure. The crude product was purified by column chromatography (petroleum ether:
ethyl acetate = 5:1) to afford the title compound as a yellow solid (m. p. 191–192 ◦C) in
68% yield (55.56 mg). Rf (petroleum ether/ethyl acetate = 5:2): 0.17; 1H NMR (500 MHz,
CDCl3) δ 9.06 (d, J = 6.8 Hz, 1H), 7.77–7.74 (m, 1H), 7.70 (d, J = 8.6 Hz, 1H), 7.60–7.56 (m,
2H), 7.45–7.42 (m, 3H), 7.30 (d, J = 8.8 Hz, 2H), 7.17–7.13 (m, 1H), 6.69 (d, J = 8.8 Hz, 2H),
3.73 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 167.39, 159.11, 157.77, 149.99, 140.35, 136.55,
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134.44, 129.24, 128.94, 127.90, 126.59, 121.51, 115.90, 114.60, 107.17, 55.22; HRMS (ESI) calcd
for C21H17N2O2Se [M+H]+: 409.0450, found: 409.0446.

3-((4-Chlorophenyl)selanyl)-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (3q).
2-Phenyl-8,9-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted
with 1,2-bis(4-chlorophenyl)diselane (0.20 mmol, 76.21 mg) according to General Proce-
dure. The crude product was purified by column chromatography (petroleum ether: ethyl
acetate = 5:1) to afford the title compound as a yellow solid (m. p. 187–188 ◦C) in 97% yield
(79.88 mg). Rf (petroleum ether/ethyl acetate = 5:2): 0.32; 1H NMR (500 MHz, CDCl3) δ 9.07
(d, J = 7.1 Hz, 1H), 7.83–7.79 (m, 1H), 7.74 (d, J = 8.8 Hz, 1H), 7.60–7.55 (m, 2H), 7.45–7.40
(m, 3H), 7.25–7.18 (m, 3H), 7.11 (d, J = 8.5 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 168.05,
157.64, 150.28, 140.08, 137.02, 132.85, 132.60, 129.92, 129.46, 129.10, 128.83, 127.96, 126.69,
116.22, 105.47; HRMS (ESI) calcd for C20H14ClN2OSe [M+H]+: 412.9954, found: 412.9949.

3-((4-Bromophenyl)selanyl)-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (3r).
2-Phenyl-8,9-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted
with 1,2-bis(4-bromophenyl)diselane (0.20 mmol, 93.99 mg) according to General Pro-
cedure. The crude product was purified by column chromatography (petroleum ether:
ethyl acetate = 5:1) to afford the title compound as a yellow solid (m. p. 198–199 ◦C) in
77% yield (70.53 mg). Rf (petroleum ether/ethyl acetate = 5:2): 0.21; 1H NMR (500 MHz,
CDCl3) δ 9.07 (d, J = 6.7 Hz, 1H), 7.83–7.80 (m, 1H), 7.74 (d, J = 8.7 Hz, 1H), 7.59–7.55 (m,
2H), 7.44–7.40 (m, 3H), 7.26–7.23 (m, 2H), 7.22–7.19 (m, 1H), 7.18–7.14 (m, 2H); 13C NMR
(126 MHz, CDCl3) δ 168.11, 157.63, 150.30, 140.06, 137.08, 132.76, 132.01, 130.68, 129.49,
128.83, 127.97, 126.69, 120.86, 116.26, 105.28. 19F NMR (471 MHz, CDCl3) δ −40.57; HRMS
(ESI) calcd for C20H14BrN2OSe [M+H]+: 456.9449, found: 456.9440.

3-((3,5-Dimethylphenyl)selanyl)-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (3s). 2-
Phenyl-8,9-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted
with 1,2-bis(3,5-dimethylphenyl)diselane (0.20 mmol, 73.65 mg) according to General
Procedure. The crude product was purified by column chromatography (petroleum ether:
ethyl acetate = 5:1) to afford the title compound as a yellow solid (m. p. 105–106 ◦C) in
95% yield (76.78 mg). Rf (petroleum ether/ethyl acetate = 5:2): 0.32; 1H NMR (500 MHz,
CDCl3) δ 9.08 (d, J = 7.2 Hz, 1H), 7.79–7.75 (m, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.60 (dd, J = 6.5,
2.9 Hz, 2H), 7.43–7.38 (m, 3H), 7.19–7.15 (m, 1H), 6.90 (s, 2H), 6.76 (s, 1H), 2.18 (s, 6H);
13C NMR (125 MHz, CDCl3) δ 167.83, 157.82, 150.17, 140.26, 138.43, 136.72, 131.24, 129.20,
128.92, 128.87, 128.74, 128.01, 127.83, 126.62, 115.99, 106.03, 21.21; HRMS (ESI) calcd for
C22H19N2OSe [M+H]+: 407.0657, found: 407.0652.

3-(Mesitylselanyl)-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (3t). 2-Phenyl-8,9-dihydro-
4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted with 1,2-dimesityldiselane
(0.20 mmol, 82.60 mg) according to General Procedure. The crude product was purified by
column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the title compound as a
yellow solid (m. p. 251–252 ◦C) in 40% yield (35.23 mg). Rf (petroleum ether/ethyl acetate = 5:2):
0.45; 1H NMR (500 MHz, CDCl3) δ 8.97 (d, J = 7.2 Hz, 1H), 7.70–7.64 (m, 2H), 7.55–7.51 (m, 2H),
7.44–7.40 (m, 3H), 7.10–7.06 (m, 1H), 6.76 (s, 2H), 2.29 (s, 6H), 2.18 (s, 3H); 13C NMR (125 MHz,
CDCl3) δ 165.71, 156.74, 149.12, 142.29, 140.14, 137.78, 135.70, 129.23, 128.54, 128.45, 128.13,
127.81, 127.56, 126.44, 115.49, 108.00, 24.10, 20.92; HRMS (ESI) calcd for C23H21N2OSe [M+H]+:
421.0814, found: 421.0808.

3-(Naphthalen-1-ylselanyl)-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (3u). 2-Phenyl-
8,9-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted with 1,2-
di(naphthalen-2-yl)diselane (0.20 mmol, 82.46 mg) according to General Procedure. The crude
product was purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to
afford the title compound as a yellow solid (m. p. 161–162 ◦C) in 48% yield (41.28 mg). Rf

(petroleum ether/ethyl acetate = 5:2): 0.24; 1H NMR (500 MHz, CDCl3) δ 9.05 (d, J = 7.1 Hz,
1H), 8.04 (d, J = 7.6 Hz, 1H), 7.77–7.73 (m, 2H), 7.68 (dd, J = 13.1, 8.5 Hz, 2H), 7.57 (dd,
J = 7.5, 1.8 Hz, 2H), 7.53 (d, J = 6.5 Hz, 1H), 7.43–7.39 (m, 2H), 7.36 (q, J = 5.3 Hz, 3H), 7.22
(t, J = 7.7 Hz, 1H), 7.17–7.13 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 168.00, 157.75, 150.13,
140.10, 136.74, 133.97, 133.49, 131.12, 130.40, 129.28, 128.87, 128.41, 127.99, 127.93, 127.85,
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127.27, 126.60, 126.29, 125.94, 125.74, 116.00, 105.86; HRMS (ESI) calcd for C24H17N2OSe
[M+H]+: 429.0501, found: 429.0494.

2-Phenyl-3-(pyridin-2-ylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3v). 2-Phenyl-8,9
-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted with 1,2-di(pyridin-
2-yl)diselane (0.20 mmol, 62.83 mg) according to General Procedure. The crude product was
purified by column chromatography (petroleum ether: ethyl acetate = 5:3) to afford the title com-
pound as a yellow solid (m. p. 178–179 ◦C) in 97% yield (73.24 mg). Rf (petroleum ether/ethyl
acetate = 5:3): 0.1; 1H NMR (400 MHz, CDCl3) δ 9.07 (d, J = 7.1 Hz, 1H), 8.32 (dd, J = 4.7, 0.9 Hz,
1H), 7.84–7.79 (m, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.64 (dd, J = 6.5, 3.0 Hz, 2H), 7.40–7.35 (m, 4H),
7.20 (td, J = 7.1, 1.3 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.00–6.95 (m, 1H); 13C NMR (100 MHz,
CDCl3) δ 168.36, 157.74, 156.65, 150.51, 150.02, 140.18, 137.20, 136.36, 129.43, 128.89, 128.02, 127.88,
126.70, 124.32, 120.59, 116.27, 104.21; HRMS (ESI) calcd for C19H14N3OSe [M+H]+: 380.0297,
found: 380.0290.

3-(Methylselanyl)-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (3w). 2-Phenyl-8,9
-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 44.42 mg) was reacted with 1,2-
dimethyldiselane (0.24 mmol, 37.60 mg) according to General Procedure. The crude product
was purified by column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the
title compound as a yellow solid (m. p. 117–118 ◦C) in 95% yield (59.96 mg). Rf (petroleum
ether/ethyl acetate = 5:2): 0.28; 1H NMR (500 MHz, CDCl3) δ 9.10–9.05 (m, 1H), 7.75–7.68
(m, 2H), 7.67–7.61 (m, 2H), 7.50–7.45 (m, 3H), 7.17 (s, 1H), 2.21 (s, 3H); 13C NMR (126 MHz,
CDCl3) δ 165.88, 157.36, 149.36, 140.26, 135.93, 129.47, 128.93, 128.03, 127.23, 126.59, 115.85,
106.24, 7.97; HRMS (ESI) calcd for C15H13N2OSe [M+H]+: 317.0188, found: 317.0182.

6-Methyl-3-(methylselanyl)-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (3x).
6-Methyl-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 47.25 mg) was reacted
with 1,2-dimethyldiselane (0.20 mmol, 37.60 mg) according to General Procedure. The crude
product was purified by column chromatography (petroleum ether: ethyl acetate = 5:1)
to afford the title compound as yellow liquid in 94% yield (61.77 mg). Rf (petroleum
ether/ethyl acetate = 5:2): 0.26; 1H NMR (500 MHz, CDCl3) δ 7.66 (dd, J = 7.5, 1.8 Hz, 2H),
7.44 (dd, J = 11.8, 5.3 Hz, 5H), 6.70 (t, J = 4.0 Hz, 1H), 3.06 (s, 3H), 2.12 (s, 3H); 13C NMR
(125 MHz, CDCl3) δ 164.41, 161.15, 151.80, 143.42, 139.93, 135.00, 129.34, 128.93, 127.97,
125.37, 118.59, 108.02, 24.65, 7.93; HRMS (ESI) calcd for C16H15N2OSe [M+H]+: 331.0344,
found: 331.0337.

6-(Methylselanyl)-7-phenyl-5H-thiazolo[3,2-a]pyrimidin-5-one (3y). 7-Phenyl-5H-
thiazolo[3,2-a]pyrimidin-5-one (0.20 mmol, 45.65 mg) was reacted with 1,2-dimethyldiselane
(0.20 mmol, 37.60 mg) according to General Procedure. The crude product was purified by
column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the title compound
as an orange solid (m. p. 147–148 ◦C) in 87% yield (56.03 mg). Rf (petroleum ether/ethyl
acetate = 5:2): 0.26; 1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 4.9 Hz, 1H), 7.60 (dd, J = 6.5,
2.9 Hz, 2H), 7.48–7.43 (m, 3H), 7.02 (d, J = 4.9 Hz, 1H), 2.19 (s, 3H).; 13C NMR (100 MHz,
CDCl3) δ 164.71, 160.91, 158.00, 139.57, 129.59, 129.01, 127.96, 122.13, 112.15, 107.18, 8.00;
HRMS (ESI) calcd for C13H11N2OSSe [M+H]+: 322.9752, found: 322.9746.

3-((3-Bromophenyl)selanyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one (3z).
2-Methyl-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 32.04 mg) was reacted with 1,2-
bis(3-bromophenyl)diselane (0.20 mmol, 93.99 mg) according to General Procedure. The
crude product was purified by column chromatography (petroleum ether: ethyl acetate = 20:1)
to afford the title compound as a yellow solid (m. p. 97–98 ◦C) in 77% yield (60.93 mg).
Rf (petroleum ether/ethyl acetate = 10:1): 0.42; 1H NMR (500 MHz, CDCl3) δ 9.07–9.01
(m, 1H), 7.81–7.78 (m, 1H), 7.63 (d, J = 8.9 Hz, 1H), 7.46 (t, J = 1.7 Hz, 1H), 7.31–7.26 (m,
2H), 7.17 (td, J = 7.0, 1.2 Hz, 1H), 7.05 (t, J = 7.9 Hz, 1H), 2.73 (s, 3H).; 13C NMR (126 MHz,
CDCl3) δ 169.73, 157.11, 150.44, 137.31, 133.62, 132.52, 130.47, 129.63, 128.78, 128.25, 125.94,
123.13, 115.97, 104.80, 26.81; HRMS (ESI) calcd for C15H12BrN2OSe [M+H]+:394.9293,
found: 394.9284.

3-((3-Methoxyphenyl)selanyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one (3aa).
2-Methyl-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 32.04 mg) was reacted with 1,2-
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bis(3-methoxyphenyl)diselane (0.20 mmol, 74.44 mg) according to General Procedure.
The crude product was purified by column chromatography (petroleum ether: ethyl
acetate = 5:2) to afford the title compound as yellow liquid in 84% yield (58.14 mg). Rf

(petroleum ether/ethyl acetate = 5:2): 0.11; 1H NMR (500 MHz, CDCl3) δ 9.05 (dd, J = 7.1,
0.6 Hz, 1H), 7.80–7.77 (m, 1H), 7.63 (d, J = 8.9 Hz, 1H), 7.16 (td, J = 7.0, 1.2 Hz, 1H), 7.11
(t, J = 7.9 Hz, 1H), 6.96–6.90 (m, 2H), 6.73–6.68 (m, 1H), 3.73 (s, 3H), 2.73 (s, 3H); 13C NMR
(125 MHz, CDCl3) δ 169.52, 159.96, 157.19, 150.23, 137.17, 132.57, 129.93, 128.27, 125.77,
122.58, 116.03, 115.87, 112.02, 105.44, 55.27, 26.75; HRMS (ESI) calcd for C16H15N2O2Se
[M+H]+: 347.0293, found: 347.0287.

2-Methyl-3-(p-tolylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3ab). 2-Methyl-4H-
pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 32.04 mg) was reacted with 1,2-di-p-tolyldiselane
(0.20 mmol, 68.04 mg) according to General Procedure. The crude product was purified by
column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the title compound
as a yellow solid (m. p. 128–129 ◦C) in 73% yield (48.21 mg). Rf (petroleum ether/ethyl
acetate = 5:2): 0.15; 1H NMR (500 MHz, CDCl3) δ 9.08–9.03 (m, 1H), 7.8.-7.76 (m, 1H), 7.62
(d, J = 8.8 Hz, 1H), 7.32 (d, J = 8.1 Hz, 2H), 7.16 (td, J = 7.1, 1.2 Hz, 1H), 7.02 (d, J = 7.9 Hz,
2H), 2.74 (s, 3H), 2.27 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 168.83, 157.14, 149.98, 137.11,
136.78, 131.26, 130.03, 128.24, 127.43, 125.63, 115.87, 106.30, 26.70, 21.07; HRMS (ESI) calcd
for C16H15N2OSe [M+H]+: 331.0344, found: 331.0337.

3-((4-Chlorophenyl)selanyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one (3ac).
2-Methyl-4H-pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 32.04 mg) was reacted with 1,2-
bis(4-chlorophenyl)diselane (0.20 mmol, 76.21 mg) according to General Procedure. The
crude product was purified by column chromatography (petroleum ether: ethyl acetate = 20:1)
to afford the title compound as a white solid (m. p. 121–122 ◦C) in 67% yield (47.07 mg).
Rf (petroleum ether/ethyl acetate = 10:1): 0.51; 1H NMR (500 MHz, CDCl3) δ 9.04 (d,
J = 7.1 Hz, 1H), 7.81–7.78 (m, 1H), 7.62 (d, J = 8.9 Hz, 1H), 7.35–7.30 (m, 2H), 7.17 (dd,
J = 9.1, 4.8 Hz, 3H), 2.74 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 169.42, 157.10, 150.31, 137.17,
132.73, 131.98, 129.66, 129.29, 128.15, 125.90, 115.90, 105.36, 26.79; HRMS (ESI) calcd for
C15H12ClN2OSe [M+H]+: 350.9798, found: 350.9790.

2-Methyl-3-(methylselanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3ad). 2-Methyl-4H-
pyrido[1,2-a]pyrimidin-4-one (0.20 mmol, 32.04 mg) was reacted with 1,2-dimethyldiselane
(0.20 mmol, 37.60 mg) according to General Procedure. The crude product was purified by
column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the title compound
as a white solid (m. p. 73–74 ◦C) in 73% yield (37.12 mg). Rf (petroleum ether/ethyl
acetate = 5:2): 0.17; 1H NMR (500 MHz, CDCl3) δ 8.99 (d, J = 7.1 Hz, 1H), 7.72–7.68 (m, 1H),
7.55 (d, J = 8.9 Hz, 1H), 7.11 (t, J = 6.9 Hz, 1H), 2.73 (s, 3H), 2.32 (s, 3H); 13C NMR (125 MHz,
CDCl3) δ 167.24, 156.77, 149.48, 136.09, 127.41, 125.79, 115.47, 106.25, 26.62, 7.16; HRMS
(ESI) calcd for C10H11N2OSe [M+H]+: 255.0031, found: 255.0027.

7-Methyl-6-(methylselanyl)-5H-thiazolo[3,2-a]pyrimidin-5-one (3ae). 7-Methyl-5H-
thiazolo[3,2-a]pyrimidin-5-one (0.20 mmol, 33.24 mg) was reacted with 1,2-dimethyldiselane
(0.20 mmol, 37.60 mg) according to General Procedure. The crude product was purified
by column chromatography (petroleum ether: ethyl acetate = 5:1) to afford the title com-
pound as a yellow solid (m. p. 131–132 ◦C) in 85% yield (43.86 mg). Rf (petroleum
ether/ethyl acetate = 5:2): 0.24; 1H NMR (400 MHz, CDCl3) δ 7.92 (d, J = 4.9 Hz, 1H), 6.96
(d, J = 4.9 Hz, 1H), 2.65 (s, 3H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 166.21, 161.15,
157.52, 122.30, 111.38, 107.08, 77.40, 7.17; HRMS (ESI) calcd for C8H9N2OSSe [M+H]+:
260.9595, found: 260.9593.

4. Conclusions

We have presented a practical and sustainable C3 selenylation of pyrido[1,2-a]pyrimidin-
4-ones under electrochemically driven external oxidant-free conditions. Various structurally
diverse seleno-substituted products were obtained with broad substrate scope and with
good functional group compatibility in 31 examples. A preliminary mechanism study
revealed a radical pathway maybe involved under this catalytic system. Further mecha-
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nistic studies and applications of this strategy to more complicated drug candidates are
underway in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052206/s1, Copies of 1H NMR, 13C NMR, and 19F
NMR spectra of the products are included in the Supporting Information.
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