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Abstract: Playing a significant role in electrochemical energy conversion and storage systems,
heteroatom-doped transition metal oxides are key materials for oxygen-involving reactions. Herein,
mesoporous surface-sulfurized Fe–Co3O4 nanosheets integrated with N/S co-doped graphene (Fe–
Co3O4–S/NSG) were designed as composite bifunctional electrocatalysts for the oxygen evolution
reaction (OER) and the oxygen reduction reaction (ORR). Compared with the Co3O4–S/NSG catalyst,
it exhibited superior activity in the alkaline electrolytes by delivering an OER overpotential of 289 mV
at 10 mA cm−2 and an ORR half-wave potential of 0.77 V vs. RHE. Additionally, Fe–Co3O4–S/NSG
kept stable at 4.2 mA cm−2 for 12 h without significant attenuation to render robust durability.
This work not only demonstrates the satisfactory effect of the transition-metal cationic modification
represented by iron doping on the electrocatalytic performance of Co3O4, but it also provides a new
insight on the design of OER/ORR bifunctional electrocatalysts for efficient energy conversion.

Keywords: iron-cobalt bimetallic oxides; surface vulcanisation; N/S co-doped graphene; oxygen
evolution reaction; oxygen reduction reaction; bifunctional electrocatalyst

1. Introduction

Driven by the urgent demand for renewable energies, developing electrochemi-
cal energy conversion and storage systems has become a worldwide priority recently,
e.g., metal-air batteries, water-splitting systems, and fuel cells, which possess superior en-
vironmental friendliness, and high energy efficiencies for the conversion between chemical
energies and electric energies [1–4]. Among them, the oxygen evolution reaction (OER)
and the oxygen reduction reaction (ORR) processes play a significant role, especially in
the charge/discharge of rechargeable zinc-air batteries. Nevertheless, due to the complex
multi-electron and proton transfer processes, OER/ORR is usually faced with sluggish
reaction kinetics which seriously hinders the operation of electrochemical energy conver-
sion and storage systems [5,6]. The precious metals Ru- and Ir-based materials are the
most active commercial electrocatalysts for OER, while Pt is the most active ORR electro-
catalyst [7,8]. Nonetheless, the scarce storage, high cost, and insufficient stability caused
by the aggregation trends greatly impede the large-scale applications of these precious
metal-based electrocatalysts. Therefore, it is necessary to develop cheaper alternatives to
achieve efficient and durable OER/ORR bifunctional electrocatalytic kinetics.
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Transition metal-based compounds with different crystal structures and variable
metal valence states (e.g., the spinel oxides [9–11] and the perovskite oxides [12,13]) have
intriguing versatility to accelerate the multi-electron transfer in OER/ORR processes.
Additionally, their low cost and abundant availability also make them promising as a
replacement for precious metal-based catalysts. Among them, the spinel oxides represented
by Co3O4 with a mixed valence of Co2+ and Co3+ have a series of advantages including
the ease of preparation, versatile morphology, and high stability, which are highly desired
for electrocatalyst designs, but their poor electrical conductivity and limited active sites
limit the full play of intrinsic activity [14,15]. Various strategies including hetero-anion
(N, P, S) doping [16], polymetallic complexation [17], oxygen vacancy fabrication [18],
and interfacial modulation [19] have been developed to improve the OER/ORR activity
of transition metal-based electrocatalysts. For example, Shi et al. designed an N-doped
CoS2 electrocatalyst, in which CoS2 could fast-electron-transfer and which was an excellent
OER electrocatalyst in an alkaline environment [20]. DFT studies have shown that N
doping can change the electron density of the Co atom and reduce the reaction barrier in
the OER process. At the same time, N has a high positive charge density, which can be
a catalytically active site for the OER. Thus, the OER overpotential containing N–CoS2
at 10 mA cm−2 is 240 mV, making it an excellent OER electrocatalyst [21]. Yuan et al.
doped S into CoFe phosphide nanoparticles dispersed on N, P, S triple-doped graphene
(NPSG), to realize charge redistribution in FeCo3P and change the electronic structure
around FeCoP [22]. An excellent bifunctional activity in alkaline electrolytes was achieved
with an OER overpotential at 10 mA cm−2 (E10) of 290 mV and an ORR half-wave potential
(E1/2) of 0.83 V vs. RHE, which verified the feasibility of anionic modification in improving
transition metal-based electrocatalysts. Meanwhile, heteroatom-doped graphene can not
only enhance conduction electronic conduction but can also provide a portion of the
ORR/OER active sites [23,24]. Besides the well-proved anionic modification, it is interesting
and necessary to investigate the influence of the transition-metal cationic modification on
electrocatalytic performance.

Herein, an efficient and stable electrocatalyst (Fe–Co3O4–S/NSG) composed of meso-
porous surface-sulfurized iron-cobalt bimetallic oxides nanosheets (Fe–Co3O4–S) integrated
with N/S co-doped graphene (NSG) was synthesized via a successive process including
a hydrothermal reaction, a calcination process, and heteroatom doping. When compared
with un-Fe-doped Co3O4–S fabricated under the same conditions, Fe–Co3O4–S possessed
a more uniform structure with superior catalytic activity and stability. Moreover, the
N/S co-doped graphene in this composite system contributed to the high dispersion of
the transition metal matrix, enlarged the specific surface area, increased the active sites,
and thus facilitated the charge transfer. As expected, Fe–Co3O4–S/NSG provided better
OER/ORR bifunctional electrocatalytic activity compared to Co3O4–S/NSG, with an E10
decreasing from 322 mV to 289 mV and an E1/2 increasing from 0.75 V to 0.77 V vs. RHE.
Additionally, it maintained its current density for at least 12 h to render considerable
stability. This demonstrates the effect of iron and sulfur doping into Co3O4 to achieve a
robust OER/ORR electrocatalyst.

2. Results and Discussion

The morphological changes of Fe–Co3O4–S/NSG during the experiment were recorded
by the SEM. The precursors presented a homogeneous striped nanosheet structure with
smooth and flat surfaces (Figure 1a). After calcination, abundant pores could be observed
from the SEM image of Fe–Co3O4 (Figure 1b). This structure was attributed to the high
temperature during the calcination process, which can increase the specific surface area of
the material, facilitate electron transfer, and thus enhance the catalyst performance. The
high-temperature calcination did not affect the underlying morphology of the material.
The final integration with NSG to form the hybrid catalyst revealed that NSG was adsorbed
onto the surface of Fe–Co3O4–S (Figure 1c).
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44.98°, 59.50°, and 65.4° matched with the planes of the Co3O4 (PDF#43–1003 [25,26]) and 
Fe3O4 (PDF#26–1136 [27,28]), indicating that the synthesized catalyst was a mixture 
of Co3O4 and Fe3O4, and the surface sulphuration did not alter its crystal structure. 

Figure 1. SEM images of (a) precursor, (b) Fe–Co3O4, and (c) Fe–Co3O4–S/NSG. HRTEM image of
(d) Co3O4–S/NSG and (e) Fe–Co3O4–S/NSG (inset: SAED patterns). (f) HAADF-STEM of Fe–Co3O4–
S/NSG image and (g) EDS elemental mapping on C, O, Fe, Co, S, and N.

Subsequently, the microstructures of Co3O4–S/NSG and Fe–Co3O4–S/NSG by the
TEM were investigated. The lattice fringe of Co3O4–S/NSG with a spacing of 0.249 nm was
attributed to the (222) planes of cubic Co3O4 (Figure 1d). After the incorporation of the Fe
element, the lattice fringe (0.251 nm) of Fe–Co3O4–S/NSG was consistent with the (222)
plane of Co3O4, which was higher than that of Co3O4–S/NSG (Figure 1e). This result proves
that the Fe element can modulate the configuration of Co3O4. The lattice edge of Fe–Co3O4–
S/NSG (0.263 nm) is assigned to the (311) plane of Fe3O4. In addition, porous structures
were also observed in the high-angle annular dark field-STEM (HAADF-STEM) image
(Figure 1f), which corresponded to the previous SEM results. Elemental mapping images
of selected areas of the Fe–Co3O4–S/NSG samples demonstrated a uniform distribution of
C, O, Fe, Co, S, and N, indicating that the S and NSG were successfully adsorbed on the
material surface (Figure 1g).

The XRD patterns demonstrated the crystal phase of Co3O4–S/NSG and Fe–Co3O4–
S/NSG (Figure 2a). The diffraction peaks of Fe–Co3O4–S/NSG at 19.18◦, 31.44◦, 36.98◦,
44.98◦, 59.50◦, and 65.4◦ matched with the planes of the Co3O4 (PDF#43–1003 [25,26]) and
Fe3O4 (PDF#26–1136 [27,28]), indicating that the synthesized catalyst was a mixture of
Co3O4 and Fe3O4, and the surface sulphuration did not alter its crystal structure. It is
noteworthy that the additional characteristic peaks of Fe3O4 were not observed, which
could be attributed to the small amount of iron doping. Additionally, the peak intensity
of Fe–Co3O4–S/NSG was lower than that of Co3O4–S/NSG due to the decrease in the
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proportion of the Co element. The magnified XRD data showed the (311) peaks of 37.02◦

and 36.98◦ for Co3O4–S/NSG and Fe–Co3O4–S/NSG, respectively, indicating that the
incorporation of iron shifted the lattice negatively, causing the lattice spacing to become
larger [29] (Figure 2b). These results were consistent with the results of the HRTEM
images. The Raman spectra of Fe–Co3O4–S/NSG and Co3O4–S/NSG demonstrated a
typical D band (sp3 hybridized carbon) at 1326.1 cm−1 and a G band (sp2 graphitic carbon)
at 1582.6 cm−1 (Figure 2c). The intensity ratios of the D band and the G band (ID/IG)
were calculated to obtain the degree of graphitization of the electrocatalysts [30]. The
ID/IG values of Co3O4–S/NSG and Fe–Co3O4–S/NSG were 3.82 and 7.35, respectively,
illustrating a high degree of graphitization of Fe–Co3O4–S/NSG due to the large structural
defects and disordered properties of the synthesized NSG. The Raman peaks of 470.7,
509.4, and 674.4 cm−1 could be ascribed to the stretching vibration of Co–O, indicating the
presence of the Co–O bond (Figure 2d).
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Figure 2. (a) XRD patterns of Co3O4–S/NSG and Fe–Co3O4–S/NSG along with the JCPDS card
of Fe3O4 and Co3O4 and (b) enlargement of the (311) peak region. (c,d) Raman spectra and
(e,f) N2 adsorption–desorption isotherms (inset: pore size distribution) of Fe–Co3O4–S/NSG and
Co3O4–S/NSG.

The BET specific surface area (SSA) analysis was performed by the nitrogen adsorp-
tion/desorption method. The isotherms and pore size distributions of Co3O4–S/NSG and
Fe–Co3O4–S/NSG are shown in Figure 2e,f. Both samples had typical IV isotherms with
the characteristic of weak adsorbent-adsorbent interactions [31,32]. Specifically, Co3O4–
S/NSG possessed an SSA of 41.82 m2 g−1 and a pore volume of 0.27 cm3 g−1. When the
material was doped with iron, the SSA was 40.81 m2 g−1, which was almost the same as the
Co3O4–S/NSG results, indicating little change in the SSA. Ho the pore volume increased to
0.39 cm3 g−1. The results prove that the incorporation of iron can increase the number of
porous structures in the material. Additionally, the inset reveals that the size of the pores
was mainly distributed in the range of 2–10 nm. The mesoporous structure can provide
abundant channels and highly electrochemically active surfaces, facilitating rapid mass
transfer in OER/ORR reactions [33].

XPS spectra were obtained to determine the elemental composition of the catalysts’
surface and the electronic state of these elements. The C 1s spectrum of Fe–Co3O4–S/NSG
showed four peaks at 284.15, 284.80, 285.44, and 286.81 eV, which are the characteristics of
the C–S bond, C–C bond, C–N/C–O bond, and C–N/C=O bond, respectively (Figure 3a).
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The data proves that the nitrogen/sulphur co-doped graphene (NSG) was successfully
synthesized. In the high-resolution N 1s spectrum of Fe–Co3O4–S/NSG, peaks at 398.28,
399.78, and 401.28 eV confirmed the existence of the pyridine N, pyrrole N, and graphite
N, respectively (Figure 3b). A previous study has shown that a high pyridine N content is
beneficial to the ORR process [34]. Therefore, compared with Fe–Co3O4–S/NSG, Co3O4–
S/NSG with a slightly higher pyrrole N content possesses a better ORR starting potential,
but the difference is not significant. The Fe 2p spectrum of Fe–Co3O4–S/NSG could be
subdivided into two peaks at 717.28 and 713.78 eV, confirming the existence of Fe3+ and
Fe2+, which aligned with the XRD patterns (Figure 3c). In the Co 2p spectra, the absorption
peaks of the materials at 781.58/797.58 eV and 779.18/794.18 eV proved the presence
of Co2+ and Co3+ (Figure 3d). Two satellite peaks could be discerned at 786.98 eV and
803.38 eV. Significantly, the peak intensity of Co2+ decreased while the peak intensity of
Co3+ increased after the incorporation of iron, showing that the oxidizing agent Fe3+ could
convert Co2+ into Co3+ partially. The increase in the content of Co3+ can raise the ratio of
Co3+ to Co2+ in the catalyst, which is conducive to the catalytic reaction [35].
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The spin-orbit transitions of S 2p1/2 and S 2p3/2 concentrated respectively at a binding
energy of 163.08 eV and 161.58 eV in Fe–Co3O4–S/NSG (Figure 3e). Moreover, the peaks
centred at 164.58 eV, 168.08 eV, and 169.28 eV were indexed to the characteristic peaks
of sulphur oxides, which are located by surface oxidation during vulcanization. The S
2p3/2 orbital area of Fe–Co3O4–S/NSG was significantly higher than that of Co3O4–S/NSG,
while the peak intensity of the sulphur oxides decreased after the doping of iron. This result
indicates that the incorporation of iron can make sulphur atoms combine with Fe ions into
the interior of the material, resulting in the decrease of the sulphur content on the surface
of the material. Since transition metal sulfides have greater catalytic activity than transition
metal oxides, Fe–Co3O4–S/NSG demonstrates superior OER/ORR performance. The O
1s spectra disclosed three absorption peaks, located at 532.48 eV for adsorbed oxygen,
531.38 eV for oxygen vacancies, and 529.18 eV for lattice oxygen, respectively (Figure 3f).
After the incorporation of iron, the peak area of the typical metal-oxygen bond (M–O) at
529.18 eV increased obviously, which further proves that the iron was successfully doped.
Meanwhile, the peak area of adsorbed oxygen also increased significantly because the
oxygen in the air filled the surface vacancy caused by sulphur entering the internal position
of the catalyst [36]. This result is consistent with that obtained from the high-resolution XPS
spectra of S. Additionally, ICP– MS is used to detect the concentration of the elements within
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the materials. The results display that the proportion of Co and Fe in Fe–Co3O4–S/NSG is
34.87% and 3.16%, respectively, approximating the synthetic phase.

To evaluate the electrochemical properties of the as-prepared samples, LSV and CV
tests were conducted in alkaline electrolytes using a three-electrode system. The mixture of
commercial electrocatalysts Pt/C and Ir/C (mass ratio = 1:1) was included for comparison.
The OER polarization curves of Fe–Co3O4–S/NSG, Co3O4–S/NSG, and Pt/C + Ir/C
showed that at low current density, the overpotential of Fe–Co3O4–S/NSG was just lower
than that of Co3O4–S/NSG. As the current density increased, the overpotential of Fe–
Co3O4–S/NSG was even lower than that of Pt/C + Ir/C catalyst (Figure 4a). When the
current density was 10 mA cm−2, Fe–Co3O4–S/NSG exhibited an overpotential of 289 mV,
which was lower than that of Co3O4–S/NSG (322 mV) (Figure 4b). When the current
density was 200 mA cm−2, Fe–Co3O4–S/NSG exhibited an overpotential of 594 mV, which
was lower than that of Co3O4–S/NSG (624 mV), and Pt/C + Ir/C (626 mV). The Tafel slope
curve of Fe–Co3O4–S/NSG showed a slope of 62.8 mV dec−1, which was better than that
of the commercial noble metal Pt/C + Ir/C catalyst (66.7 mV dec−1), while Co3O4–S/NSG
delivered the largest slope of 86.4 mV dec−1 (Figure 4c). The ORR LSV curve of Fe–Co3O4–
S/NSG gave an E1/2 of 0.77 V, which was higher than that of Co3O4–S/NSG (0.75 V) to
show superior ORR performance (Figure 4d). Intriguingly, Fe–Co3O4–S/NSG exhibited a
small Tafel slope of 89.7 mV dec−1, which outperformed Co3O4–S/NSG (90.7 mV dec−1)
and was close to Pt/C + Ir/C (88.9 mV dec−1), demonstrating the fast kinetics of ORR on
Fe–Co3O4–S/NSG (Figure 4e). The results confirm that Fe–Co3O4–S/NSG has excellent
ORR/OER activity compared to the un-Fe-doped sample. The robust performance could
be attributed to the synergistic effect between the alloy component and the defect-rich
carbon carrier, which helps to expose more active sites and accelerate electron transport
during the ORR/OER process [37–39]. The chronoamperometry (CA) measurement can be
employed to test the stability [40,41] of Fe–Co3O4–S/NSG and Co3O4–S/NSG at 1.524 V.
It was observed that the current densities of Fe–Co3O4–S/NSG and Co3O4–S/NSG were
stable at 4.2 mA cm−2 and 3.6 mA cm−2, respectively, without significant attenuation within
12 h. It was found that Fe–Co3O4–S/NSG and Co3O4–S/NSG have better electrochemical
stability than commercial Pt/C + Ir/C (Figure 4f).
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ometric responses of Fe–Co3O4–S/NSG, Co3O4–S/NSG and commercial Pt/C + Ir/C at 1.524 V.
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Because of the positive relationship, an electrocatalyst with a higher Cdl value pos-
sesses a larger ECSA, which usually displays better electrocatalytic activity [42,43]. Accord-
ing to the CV curves of Co3O4–S/NSG and Fe–Co3O4–S/NSG at different scanning rates
(20–100 mV s−1), the shapes of the CV curves remained stable while their area changed
with the increase in the scanning rate (Figure 5a,b). The Cdl values for Co3O4–S/NSG and
Fe–Co3O4–S/NSG were 18.07 and 19.88 mF cm−2, respectively (Figure 5c). Combined with
the BET results, Fe–Co3O4–S/NSG possessed a larger ECSA due to the incorporation of
iron. The EIS test was carried out at an overpotential of 298 mV, when the semicircular
diameter of Fe–Co3O4–S/NSG was smaller than that of Co3O4–S/NSG (Figure 5d). The
inset shows the corresponding equivalent circuit, where Rs indicates the solution resistance,
CPE is the constant phase element and Rct is the charge transfer resistance [44,45] After
Z-view fitting, the equivalent circuit fit resulted in a measured charge transfer resistance of
Fe–Co3O4–S/NSG measured to be 4.674 Ω, which was lower than that of Co3O4–S/NSG
(5.791 Ω), indicating the fastest reaction kinetics of Fe–Co3O4–S/NSG. This result should
be attributed to the incorporation of iron, which effectively improves charge transfer and
facilitates electrocatalytic activity.
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3. Experimental Section
3.1. Material Preparation

All chemicals and materials were analytical grades without further purification.
Ethanol (C2H5OH, AR 99.7%), silicon dioxide (SiO2, AR 99%, 12~15 nm), and sulfuric
acid (H2SO4, GR 99.5%) were purchased from Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China. Cobalt nitrate hexahydrate (Co(NO3)2·6H2O, AR 99%), iron nitrate non-
ahydrate (Fe(NO3)3·9H2O, AR 99%), urea (CH4N2O, AR 99%), ammonia (NH3·H2O, AR
25~28%), sodium sulfide nonahydrate (Na2S·9H2O, AR 98%), potassium hydroxide (KOH,
GR 95%), and isopropanol (C3H8O, AR, 99.5%) were obtained from MACKLIN Reagent,
Shanghai, China. Graphene powde r (C, AR 99.95%, 80~120 meshes), hydrogen peroxide
(H2O2, AR 30%), potassium permanganate (KMnO4, AR 99%), and barium chloride (BaCl2,
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AR 98%) were taken from RHAWN Reagent, Shanghai, China. Sodium nitrate (NaNO3, AR
99%), melamine (C3H6N6, AR 99%), dibenzyl disulfide (C14H14S2, AR 99%), and hydrogen
fluoride (HF, AR 40%) were purchased from Aladdin, Shanghai, China. The 5 wt. % Na fion
solution was obtained from Du-Pont. 20 wt. % Pt/C and 20 wt. % Ir/C were purchased
from Suzhou Yilongsheng Energy Technology Co., Ltd., Suzhou, China.

3.2. Material Synthesis

Fe–Co3O4–S/NSG was fabricated by a three-step process, including hydrothermal
synthesis of the precursor nanosheets, calcination to obtain Fe–Co3O4, and finally integra-
tion with NSG, along with surface vulcanisation to obtain the target product (Figure 6).
The specific synthesis process is as follows.
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3.2.1. Synthesis of Co3O4 and Fe–Co3O4

Fe–Co3O4 was synthesized by hydrothermal method and calcination methods. The
specific process was as follows: 4.5 mM Co(NO3)2·6H2O and 0.5 mM Fe(NO3)3·9H2O
were dissolved in 35 ml ultrapure water. Subsequently, 10 mM urea and 20 mM ammonia
solution were added as precipitants. The obtained solution was stirred using a magnetic
stirrer for 20 min and followed by sonication for 5 min. After that, the mixed solution
was placed in a PTFE-lined autoclave at 170 ◦C for 9.5 h. Once cooled down to room
temperature, the obtained solution was slowly washed with ethanol and ultrapure water,
respectively. After drying, the pink powder was obtained. The synthesis of Co3O4 was
carried out by dissolving 5 mM Co(NO3)2·6H2O in 35 mL of ultrapure water. The remainder
of the steps were the same as for the synthesis of Fe–Co3O4.

3.2.2. Synthesis of NSG

Graphene oxide (GO) was synthesized by using modified Hummer methods. An
amount of 0.1 g GO and 0.5 g hydrophilic SiO2 nanoparticles (12–15 nm) were uniformly
dispersed in 500 mL ethanol by ultrasonication. The ethanol was then evaporated using a
rotary evaporator at 80 ◦C to obtain a flake of GO/SiO2 solid. Subsequently, 0.5 g melamine
and 0.5 g dibenzyl disulfide (BDS) were added to the solids and ground into fine powder.
The mixture was heated at 900 ◦C for 1 h in a nitrogen-filled atmosphere with a heating rate
of 5 ◦C min−1. After that, nitrogen/sulfur co-doped graphene (NSG/SiO2) loaded with
silica was synthesized. Next, the obtained NSG/SiO2 was placed in hydrofluoric acid (HF)
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solution for 12 h to remove the silica. The product was then cleaned several times with
ultrapure water and ethanol, followed by drying at 70 ◦C under the condition of oxygen
isolation. After drying, NSG was synthesized.

3.2.3. Synthesis of Co3O4–S/NSG and Fe–Co3O4–S/NSG

Fe–Co3O4–S/NSG or Co3O4–S/NSG was prepared by ultrasonic mixing. NSG and
Fe–Co3O4 or Co3O4 were mixed in a mass ratio of 1:4 and sonicated in a 0.4 mol L−1

solution of sodium sulfide solution for 2 h and then left to stand for 24 h. Subsequently,
the solids were washed and dried at 60 ◦C for 8 h using a filtration technique to obtain the
target product Fe–Co3O4–S/NSG or Co3O4–S/NSG electrocatalyst.

3.3. Physicochemical Characterizations

The structural and morphological characteristics of the synthetic material were determined
with a scanning electron microscope (SEM) (TESCAN MIRA LMS, Brno, Czech Republic) and
a scanning transmission electron microscopy (STEM) (FEI Tecnai G2 F20, Hillsboro, OR,
USA). The crystal phase analysis of the synthetic catalysts was elucidated by X-ray powder
diffraction (XRD) (Rigaku Smartlab 9 kW, using an X-ray diffractometer over the range
of 10◦ to 90◦ 2θ, Tokyo, Japan). The specific surface areas of the materials were calculated
by a Brunauer-Emmett-Teller (BET) (Micromeritics APSP 2460, 77k, Norcross, GA, USA).
Adopting the Barrett-Joyner-Halenda (BJH) method, pore size distribution was calculated
from the desorption branch of the N2 desorption isotherm. The chemical states and
composition of materials were tested by X-ray photoelectron spectroscopy (XPS) (Thermo
Scientific K–Alpha+ spectrometer, Shanghai, China). All spectra were calibrated using
the C 1s peak energy of 284.8 eV binding energy standard peak. The elemental content
of materials can be precisely detected by inductively coupled plasma mass spectroscopy
(ICP-MS) (Agilent 7700s, Beijing, China). The synthesized samples were qualitatively
analysed by using Raman spectra (LabRam HR Evolution, using an Ar-ion laser beam
λ = 514 nm Shanghai, China).

3.4. Electrochemical Measurements

Utilizing a three-electrode system, electrochemical measurements were conducted
in CHI 760E electrochemical workstation. The instrument was subjected to 95% iR com-
pensation before the test. Taking 1 mol L−1 potassium hydroxide solution in an oxygen
atmosphere as the electrolyte in the OER tests, a rotating disc-shaped glassy carbon elec-
trode (RDE) with a diameter of 5 mm and an area of 0.19625 cm2 was employed as the
working electrode, a carbon rod was utilized as the counter electrode, and a Hg/HgO
electrode was used as the reference electrode. During the test, the RDE was coated with
different catalyst slurries. A high-speed rotator (Pine Instruments) was used in the ORR
tests, the RDE coated with catalyst ink was utilized as the working electrode, a platinum
wire was used as the counter electrode, and a Hg/HgO electrode was employed as the
reference electrode. The electrolyte was 0.1 mol L−1 KOH solution in an oxygen sufficient
atmosphere. The obtained potentials (EHg/HgO) were converted to an RHE scale utilizing
the following Nernst equation: ERHE = EHg/HgO + 0.098 + 0.059 × pH (1 M KOH, pH~14;
0.1 M KOH, PH~13), where ERHE represents the reversible potential and EHg/HgO is the
potential measured against the reference electrode.

To prepare the catalyst ink, 5 mg of Co3O4–S/NSG and 5 mg of Fe–Co3O4–S/NSG
were dispersed in a solution containing 570 µL of isopropanol, 570 µL of anhydrous ethanol,
285 µL of ultrapure water, and 75 µL of 5 wt% Nafion, respectively. The suspension was
then sonicated until it became a homogeneous ink-like consistency. An amount of 20 µL
of the prepared catalyst was taken and added dropwise to the working electrode and
2.5 mg Pt/C and 2.5 mg Ir/C were dispersed in a solution containing 1425 µL of anhydrous
ethanol and 75 µL of 5 wt% Nafion, which was then sonicated until it became homogeneous
and ink-like. Subsequently, an amount of 5 µL of the prepared noble metal catalyst was
taken and added dropwise to the working electrode. The Tafel plots were derived from the
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analysis of the linear sweep voltammetry (LSV) test with a scanning rate of 5 mV s−1. The
Tafel slopes were calculated by the formula η = a ± b log |j|, where η is the overpotential,
j represents the current density, a is the overpotential at a current density of 1 mA cm−2,
and b represents the Tafel slope. Additionally, electrochemical impedance spectroscopy
(EIS) tests were used to investigate the properties of materials and electrode reactions in
the frequency range of 0.1 Hz to 100 kHz. Since the electrical double-layer capacitor (Cdl)
is proportional to the electrochemically active surface area (ECSA), cyclic voltammetry
(CV) measurements were conducted to study the reaction mechanisms within the static
non-faradaic region. The CV tests were carried out between −0.9 and −0.8 V (vs. SCE)
at the different scan rates of 20, 40, 60, 80, and 100 mV s−1, respectively. The Cdl was
calculated by selecting the current density difference at a potential of –0.85 V at different
rates and fitting the current density difference value to the sweep speed linearly. Half of the
slope of the fitted straight line was the Cdl. The chrono-current measurement was adopted
to access the stability of the materials at 1.524 V for 12 h.

4. Conclusions

An efficient and durable OER/ORR bifunctional electrocatalyst (Fe–Co3O4–S/NSG)
was developed by integrating sulfur/iron co-doped Co3O4 (Fe–Co3O4–S) and nitrogen/sulfur
co-doped graphene (NSG). The resulting material, Fe–Co3O4–S/NSG, had a homogeneous
porous nanosheet structure, which could increase the number of active sites and accelerate
electron transfer. Furthermore, the addition of NSG further increased the specific surface
area of the material and improved the conductivity of the catalyst. In terms of performance,
the Fe–Co3O4–S/NSG electrocatalyst demonstrated excellent bifunctional activity with an
OER E10 of 289 mV and an ORR E1/2 of 0.77 V vs. RHE. Additionally, it could be stabilized at
4.2 mA cm−2 for 12 h, which is superior to the commercial Pt/C + Ir/C electrocatalyst. This
work demonstrates that sulphated Iron-cobalt bimetallic oxides combined with nitrogen
and sulfuric doped graphene can improve the overall OER and ORR performance of the
catalyst. This provides a new approach to the design of low-cost and high-performance
electrocatalysts for use in energy conversion and storage.
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