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Abstract: Forensic science is a field that requires precise and reliable methods for the detection and
analysis of evidence. One such method is Fourier Transform Infrared (FTIR) spectroscopy, which
provides high sensitivity and selectivity in the detection of samples. In this study, the use of FTIR
spectroscopy and statistical multivariate analysis to identify high explosive (HE) materials (C-4,
TNT, and PETN) in the residues after high- and low-order explosions is demonstrated. Additionally,
a detailed description of the data pre-treatment process and the use of various machine learning
classification techniques to achieve successful identification is also provided. The best results were
obtained with the hybrid LDA-PCA technique, which was implemented using the R environment, a
code-driven open-source platform that promotes reproducibility and transparency.

Keywords: high and low order explosions; machine learning techniques; Fourier Transform Infrared
(FTIR) spectroscopy; spectral analysis; explosive residues

1. Introduction

The forensic identification of explosives is a topic of considerable interest to all
branches of homeland security due to the constant threat of increasing criminal activi-
ties. Trace residues of explosives have a high evidentiary value as they represent the
chemical composition of the material used in the explosion and could provide information
on whether it was a homemade or commercial product. In some cases, this information
can also lead to the identification of the criminal organization [1]. There are many papers
that describe the analysis of high-order explosive materials using different approaches,
but the analysis of materials left after explosions is still a topic that is not often discussed
by scientists, even though it could potentially help in the identification of the explosives
that caused the blast [2]. The reason for this is clear: the post-explosion scenario usually
portrays a place of chaotic destruction, with limited amounts of substances that could
potentially be treated as evidence of high explosive use. Moreover, the optimal location
for collecting traces of unreacted explosives has not been scientifically determined. There
are some guidelines for crime scene investigation [3], but not many scientific papers. The
amount of evidence increases when the explosion occurs in confined spaces, such as mines,
buildings, or large vehicles. However, it is not always the case, as an enclosed area in
which the bomb is placed can contribute to an increase in the detonation pressure. Pa-
rameters such as high pressure and high temperature can speed up the mixing process of
reaction products and lead to their wider dispersion in the air [4]. The efficiency and type
of the explosion are also important parameters used by trained personnel to describe the
explosive event. A low-order explosion occurs when the blast pressure front moves at a
slow pace and displaces or distorts objects in its path. From the perspective of terrorist
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attacks, low-order detonations usually occur as unintended incidents, or malfunctions
of ordnance that result in a significantly lower yield than designed [5]. Very often, the
main reason for an incomplete explosion may be the usage of old or deteriorated explo-
sives, a failure in the booster or detonator [6] or some inhomogeneity in the primary
charge [7,8]. In a low-order explosion, a quite high quantity of non-reacted particles from
explosives is left on the surface of the remnants, as the consumption of the explosive is
less than 100%. With high-order explosion, only scarce amounts of post-blast residues are
detected, as detonation is characterized by the rapid combustion of explosive materials,
a rapid expansion of the resultant gases, and a build-up of high heat and pressure. The
blast pressure front moves rapidly, shattering the objects in its path [9]. According to the
literature, undetonated residues are found not only after low- but also after high-order
explosions [10,11]. Factors such as the velocity of detonation, charge mass, charge diameter,
and the number of interfaces are responsible for that fact. Correct forensic identification
of the post-blast residues depends on the use of proper analytical methods, as well as
the analyst’s expertise. Fourier Transform Infra-Red (FTIR) Spectroscopy [12–14], Raman
Spectroscopy [15,16], X-ray Diffraction (XRD), Gas Chromatography combined with Mass
Spectrometry (GC-MS) [17], Gas Chromatography combined with Thermal Energy Ana-
lyzer (GC-TEA or EGIS) Spot Test, Liquid Chromatography-Mass Spectrometry (LC-MS)
and Energy Dispersive X-ray Analyzer (EDX) are adopted as the primary techniques pro-
ducing meaningful chemical information from tested samples [18,19]. FTIR spectroscopy is
one of these techniques that require for a tiny amount of sample for an analysis and allow
for its fast identification. Upon shining infrared light, a portion of the incident radiation at
a specific energy is absorbed by the specimen. Because various chemical functional groups
absorb infrared light at exact wavelengths, the resulting FTIR spectrum can be consid-
ered the molecular fingerprint of the sample. FTIR spectroscopy is a powerful analytical
technique that is widely used in many laboratories worldwide to analyze various types
of samples. In this work, post-blast residues refer to the unreacted microscopic particles
of explosives that remain intact after the explosion. The analysis of post-blast residues
by FTIR spectroscopy was the subject of our previous papers [20,21]. In this work, we
focus on implementing machine learning classification techniques that should allow us to
successfully identify explosive materials even in the remnants after high-order explosions.
It is clear that visual inspection of collected FTIR spectra is not adequate for the assessment
process and does not support the recognition of the relationship between various chemicals
and their IR fingerprints. Therefore, alternative approaches are needed. To achieve this
systematically and reproducibly, we need a tool that allows for the processing and analysis
of results with concurrent control of applied procedures and selected parameters. The R
environment [22] for statistical analysis is an extremely versatile platform for scientific
data evaluation. The best graphic user interface (GUI) for this environment at present is
RStudio [23]. The power and flexibility of R lies in its modular structure, which allows the
mounting of required packages (libraries) and code-driven data analysis approaches at any
time. The research gap in the area of forensic identification of explosives lies in the lack
of scientific investigation on the analysis of post-explosion residues. Further research is
needed to systematically and reproducibly analyze these residues in order to aid in the
identification of explosive materials.

The main objective in our work is to develop a reliable and efficient method for
identifying and classifying the residues produced by high- and low-order explosions. This
will be achieved through the use of FTIR spectroscopy combined with machine learning
techniques to analyze the spectral data collected from the residues. We would like to
emphasize that, to the best of our knowledge based on the available literature, the results
presented in this paper are the first of their kind in this field. This makes our work
particularly valuable and relevant to the research community dealing with the analysis of
post-blast residues.
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2. Materials and Methods

Post-blast remnants were obtained after controlled explosions performed by the spe-
cially trained staff at the Advanced Materials Engineering Pte Ltd (AME) facility in Singa-
pore. Three high-explosive materials (C-4, PETN, and TNT) were selected to undergo the
exercises. Additionally, two types of explosions were carried out: low- and high-order to
evaluate the impact of the explosion strength on the number of remnants and to assess our
ability to identify the high-explosive materials. Various everyday objects, including glass,
steel, plastic bag, plywood, chipboard, cardboard, hose pipe, towel, and fabric, were used
during the explosions. These objects were attached to a perforated steel cage designed to fit
inside a small steel container (18 by 18 by 18 cm3). Some materials were also placed at the
bottom of the container to increase the number of samples for analysis. After the explosion,
the proximity of the container was initially searched for, as it is known that explosive
residues decrease in concentration with increasing distance. All potentially useful objects
for analysis were labeled and stored in separate foil bags. Most of the small sample catchers
were found inside the container even after a high-order explosion. Generally, the place after
the high-order explosion appeared messier compared to the situation after the low-order
explosion. With the low-order blast, macroscopic particles of the used explosive materials
were still visible on the surfaces of objects. During the sample preparation process, they
were gently removed and mixed with potassium bromide (KBr) in a weight ratio of around
1:100. The homogenous powder was pelletized with the usage of a hydraulic press with
a clamping force of 80 kN. Thin, 13 mm in diameter pellets were placed in the sample
holder, inserted into the sample chamber of FTIR spectrometer IFS66v/S, and analyzed in
the transmission mode. Before the experiments, the sample chamber was evacuated down
to 3 mbar to eliminate the content of the water absorption lines in the final spectrum. The
spectra were collected within the 4000–400 cm−1 range using a nominal spectral resolution
∆ν = 4 cm−1 (data spacing of 2.04 cm−1), and 67 scans (1 min of experiment time) were
averaged to obtain good signal-to-noise ratio spectra. Each pellet was analyzed at several
points to determine the reproducibility of the results. During all measurements, a Mercury
Cadmium Telluride (MCT) detector cooled to liquid nitrogen temperature (77 K) was used.
A background was collected in an empty (also evacuated to 3 mbar) sample chamber as a
reference to the single beam intensity and the effect of atmospheric changes. For samples
that survived high-order blasts and showed visual signs of damage, such as cratering or
pitting, a cotton swab soaked in acetone was used to clean the surface or the samples were
thoroughly rinsed with acetone. The same approach was taken with samples that showed
no detectable signs of an explosion, as in such cases unseen traces of explosive residues
can still be present on their surfaces. The solvent was transferred to an agate mortar, and
after acetone evaporation, the remaining products were mixed with KBr. The KBr pellet
was analyzed using the procedure described earlier. Over 200 samples containing residue
materials gathered from various surfaces of objects found in the steel container or in close
proximity to the center of the explosion were prepared. Intact high-explosive materials (C-4,
PETN, and TNT) have also been analyzed and included in our reference spectral database.
Spectral data were collected using the native Bruker Opus software and exported to ASCII
files through a macro procedure. All files were then imported into R software version
4.2.2 [22]. R Studio version 2022.07.2 [23] was used as the graphical user interface for the
R language. In this data evaluation protocol, the following libraries (packages written for
the R Environment) were used: hyperSpec [24] for hyperspectral datasets manipulations,
ggplot2 [25] for high-quality visualizations, caret [26] for the evaluation of the classifica-
tion (confusion matrices), MASS [27] for function LDA, klaR [28] for 2D partition plots,
FactoMineR [29] and factoextra [30] for PCA-related calculations and visualizations, and
finally tidyverse [31] for the data manipulation.

3. Results

Prior to any further analysis, careful data pre-treatment was applied to reduce and
eliminate possible sources of errors, to reduce noise and enhance essential signals, to correct
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the sloped or oscillatory baselines due to scattering effects, and to remove the signals
derived from atmospheric water vapor, carbon dioxide or other interfering compounds [32].
The baseline was calculated as the least squares polynomial of order 6; the appropriate
support points for the baseline were found iteratively. It is known that pre-processing steps
are essential for data analysis; however, there is no clear rule on which algorithm should be
followed. Special attention must be paid to selecting the proper scheme. Several normaliza-
tion methods (including min–max, vector normalization, 1-norm and area normalization)
have been tested to lessen the spectral variability and overcome the confounding effect of
varying sample thicknesses on the band intensity [32]. In our work, area normalization
(division by the mean value for each spectrum) was selected based on the value of the
χ2 metric [33]. Preliminary analysis based on a comparison of the collected FTIR spectra
for intact high-explosive materials (C-4, PETN and TNT) with spectra found in the com-
mercially available database confirmed that all lines characteristic for the selected HEs
were detected by our spectrometer. The FTIR spectra collected for post-blast residues are
very multifaceted, as they contain not only traces of explosive materials, but sometimes
also information about the chemical composition of samples that were used as post-blast
residue catchers. To obtain meaningful information allowing for proper classification of
high explosive materials found in those spectra, multivariate statistical methods are needed.
As was mentioned earlier, all transmission spectra were collected within the spectral range
of 4000 to 400 cm−1, which means that the number of variables for the set of available
spectra was very high (1765 wavenumbers = variables). That is why we have decided to
initially reduce this number by selecting only the fingerprint region for further analysis.
Before that, the influence of IR regions on HEs identification was examined. PCA (principal
component analysis) as an unsupervised pattern recognition method was applied to FTIR
spectra collected for intact HE materials in three regions (1900–400 cm−1, 4000–400 cm−1

and 3000–2800 cm−1). It was carried out to visualize in a simple way how similar or
different the spectra within these regions are. Prior to PCA, all regions were separately
subjected to normalization for better enhancing even lower intensity bands. All PCAs in
this work were completed employing a non-linear iterative partial least squares (NIPALS)
algorithm, cross-validation with an uncertainty test, and 1/SDev as weighing. As was
expected, the fingerprint region (1900–400 cm−1) containing the most characteristic absorp-
tion lines was sufficient in unequivocal spectra separation. It is due to the fact that the
same molecules contribute to stretching and bending modes, so not only the “silent region”
(2700–1900 cm−1), but also a higher wavenumber region, i.e., 4000–2700 cm−1, having only
a few characteristic lines, can be eliminated from further analysis [34]. To conclude, all
further analyses presented in this paper have been performed on normalized, baseline
subtracted spectra within the spectral region 1900–400 cm−1.

3.1. The Lollipop Chart

To summarize a large amount of data (746 spectra) in a visually interpretable form,
the lollipop chart [35] has been employed. The lollipop chart functions identically to a
normal bar plot, visually consisting of a line anchored at the x- or y-axis and a dot at the
end to indicate the value. It illustrates the relationship between a numeric and a categorical
variable. Lollipop charts are preferred when there is a lot of data to present, which can cause
clutter when displayed as bars. The length of the bar represents (in our case) the magnitude
of the distances between FTIR spectra collected for reference materials (C-4, PETN, or
TNT) and the sample of residue after a controlled explosion using selected HEs. Distance
functions are fundamental in essential data analysis as they measure the difference between
two observations, in our case FTIR spectra. In this work, the Euclidean distance of the
cumulative spectrum (ECS), typically used in spectrum search procedures and hierarchical
cluster analysis, was found to be the most suitable distance measure based on the criteria
presented in [36].

Figure 1 depicts an example of a lollipop chart calculated for FTIR spectra collected
for samples that underwent controlled explosions using PETN. For clarity of presentation,
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two charts are shown: one containing all spectra, color-coded by the type of explosion
(low- and high-order), and another with spectra collected only for high-order post-blast
residues (this time, color-coding was used to differentiate the type of sample from which
the residues were collected). As seen, this presentation can be considered as a summary of a
database search, where a single unknown spectrum is searched against a reference database
containing thousands of reference spectra. In our case, the database contains only one
spectrum—collected for PETN; spectra for C-4 and TNT were also included in this analysis
as the experimental spectra and the distances between them and PETN spectrum were
calculated. This summary presents the data trend of spectra in a simple way. As expected,
the spectral distances calculated for the low-order explosion spectra are significantly smaller,
indicating that the chemical signature of PETN was fully preserved after the explosion.
However, in some cases, the length of the bars for the high-order explosion spectra is
shorter than that for the low-order. This can serve as additional evidence, as noted in [37]
that undetonated residues can still be found even after a high-order explosion. As seen in
Figure 1b, various values for distances have been recorded for high-order blast residues.
The fact that each material used in controlled explosions has its own unique spectral
signature, corresponding to its composition, may explain these differences. This signature
may overlap with the characteristic bands of HE materials. Given that the suitability of
materials in retaining explosive residues has been poorly investigated [38], our work also
focuses on this topic. As seen in Figure 1, metal, glass, and even wood appear to be suitable
materials for preserving explosive residues, as their distances to PETN are shorter than
those to C-4 and TNT.
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Figure 1. The lollipop charts for FTIR spectra taken for post-blast residue after the controlled
explosion with the usage of PETN. (a) dots (spectra) are color-coded by the type of explosion (low-
and high-order); (b) color denotes the type of material from which the samples were taken after the
high-order explosion.
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3.2. LDA-PCA

Our ultimate objective was to develop a model for identifying HE traces in analyzed
FTIR spectra. For the initial study, linear discriminant analysis (LDA) was chosen as LDA
aims to maximize the between-class variance while minimizing the within-class variance
through the application of linear discriminant functions [39]. As a first step, the spectra
were divided into two subsets: a training set to build the model and a testing set to evaluate
the predictive model using a cross-validation procedure. In our work, we decided to
use spectra collected after high-order explosions as a training set (193 spectra), and the
spectra collected from the remnants after low-order explosions as a test set (553 spectra).
Overall, 100% of the variabilities in the system were explained by only two first LDs, but
additionally, the procedure was ended with the warning that all variables are collinearly
dependent. It is very typical for the spectroscopic experiment results that the number
of input variables (features) greater than the number of training samples leads to over-
fitting. Our data have this characteristic, with 1501 variables versus 193 spectra. In order to
remove the over-fitting and collinearity of highly correlated spectral data, further reduction
of a number of variables was required. The PCA algorithm was implemented for data
dimensionality reduction. The PCA model was built by applying the normalized and scaled
FTIR spectra within the region 1900–400 cm−1. PCA runs an orthogonal transformation
to convert data (of possibly correlated variables) into a batch of unique variables called
principal components (PCs) that successively augment variance. It is confirmed to be a basic
and efficient dimensionality reduction method for spectroscopic data. New, uncorrelated
variables PCs are, by design, orthogonal and are ordered in such a way that the first carries
the most variance of the system, the second most of the remaining variance, and so on.
Before implementing the PCA algorithm, the dataset features were centered by excluding
the mean and scaled. The first principal component (PC1) explained 28.9% of the variance,
the second 21.6%, and the third 18.9%. The cumulative variance explained by PC4 to PC7
was relatively high, around 18.1%. The total variance explained by the first three principal
components was 69.4% for our datasets. The validation of the minimum number of PCs
that explain the majority of the system variability is one of the major challenges when
applying PCA to a dataset and it depends on the particular problem [40]. There is no
standard approach for selecting the appropriate number of PCs. One approach is to study
a scree plot and search for “elbow” to establish the correct amount of PCs. Unfortunately,
very often the plot has no clear “elbow” feature. Kaiser’s rule [41] suggests leaving the PCs
with eigenvalues above 1, but in this case the number of factors extracted is usually about
one third the number of variables in the original dataset regardless of whether many of
the additional factors are noise. Cangelosi and Goriely [42] summarized the standard rules
of thumb to detect the number of components in a study of component retention in PCA
with application to cDNA microarray data. In this study, we decided to retain those PCs
that cumulatively explain at least the 99% of the overall variance. Figure 2 shows that this
condition is achieved when we choose to keep the first 21 PCs. Then, our new projected
data consist of 746 spectra (observations), each with 21 features (variables).
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Figure 2. Cumulative proportion of variance explained.

3.2.1. COS2

To emphasize the highly correlated nature of the system analyzed in this work, the
plot of the quality of representation for the original variables in the PC1-PC2 space is shown
in Figure 3.

Figure 3. Plot of the quality of representation for variables on the factor map.

This plot, also known as the variable correlation plot, presents the relationship be-
tween all original variables (wavenumbers in this case). Positively correlated variables are
gathered closely, while negatively correlated variables are located on opposite sectors of
the plot’s origin. The parameter cos2 (squared cosine or squared coordinates) was used
in Figure 3 for color-coding the arrows representing the variables. A high value of cos2

suggests a satisfactory representation of the variable in the principal component space. If
the variable is completely expressed by solely the first two principal components (PC1 and
PC2), the sum of the cos2 for these two PCs is equal to 1 and the variables are positioned
on the circle of correlations. For some variables, more than two components are needed to
accurately describe the data, and in these cases the variables are positioned inside the circle
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of correlations. In Figure 3, variables with low cos2 values are colored white, variables with
medium values of cos2 are colored blue, and eventually, variables with high cos2 values
are colored red. This type of plot is not usually very useful for spectroscopic data, since
many of the original variables (wavenumbers) are highly correlated (being part of the same
absorption band). However, it shows that the analyzed system is very complex and more
than two PCs are required to fully explain its variability.

If, instead of the variables, the individual observations are plotted in the first two PCs’
space, the presentation becomes more intuitive. In this case, observations (spectra) similar
to each other are grouped in the plot. Additionally, the individuals are color-coded by their
contribution, calculated by dividing the respective principal component value of the first
observation by the sum of the square roots of all observations. This shows how much each
observation contributes to each principal component. As seen in Figure 4, three dominant
groups can be identified. To check if these groups are connected to the explosive materials
used during the blasts, another color-coding was applied. Each point was labeled according
to the type of HE material used (C-4, PETN, or TNT) and the order of the explosion (low-
or high-). For spectra collected from low-order explosions, a distinct separation is observed
for all HEs. For high-order explosions with C-4, some of the spectra are mixed with spectra
collected after high-order explosions with TNT, while TNT spectra are mixed with PETN
spectra (Figure 4).

Figure 4. Principal component analysis (PCA). The scatter plot in PC1/PC2 space; each point
corresponds to one spectrum and the points are colored by: the contribution of each observation to
PC (a) and explosive material and order of explosions (b).

3.2.2. Partition Plot LDA

The discussed example illustrates that the first two PCs do not fully explain the
variability of the system. To determine if other combinations of two PCs might provide
better discrimination, partition plots of 2D principal component space were calculated
using LDA algorithms. LDA manipulates data to break down prognosticator variables
into categorical regions with linear boundaries. LDA orders dimensions based on how
much segregation each group gains, enlarging the difference and diminishing the overlap
of clusters. LDA can be regarded as the supervised method of figuring out the directions
(linear discriminants) that describe the axes in order to maximize separation between
different classes. Figure 5 presents the partition plots with pairs from PC1 to PC4. The
colored areas represent the limits of each classification region, with yellow for PETN, orange
for TNT, and blue for C-4. The observations are marked with the corresponding letters (P
for PETN, T for TNT, and C for C-4) and located in the appropriate colored region, which
indicates their predicted membership by LDA. Black letters indicate that the sample was
correctly allocated, while red letters show that the sample was misclassified by the model.
The yellow dots on the plots represent the mean value for each group. As can be seen, most
of the observations were correctly classified for the region corresponding to the PETN, TNT
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and C-4 category only in PC1 vs. PC2 space; indeed, the apparent error rate calculated for
these dimensions has the lowest value in the comparison to errors obtained for the other
combinations of dimensions PC1 to PC4.

3.2.3. Final LDA-PCA Model

As previously demonstrated, the first 21 PCs can explain at least 99% of the overall
variance. To improve the discrimination rate, linear discriminant analysis (LDA) was per-
formed on these 21 PCs. The model was built using the training set of 193 spectra collected
after high-order explosions and was evaluated using leave-one-out cross-validation. This
validation process works by leaving out one observation and verifying the classification
function using the remaining observations. This process is repeated for each observation,
allowing the function of the other observations to allocate each observation. In our case, this
procedure resulted in a cross-validation accuracy of 100%. The LDA model, built on spectra
from high-order explosions, correctly classified all 553 spectra from low-order explosions,
resulting in 100% testing accuracy.

Figure 5. Partition plots resulting from the linear discriminant analysis in the PCs space (taking into
linear discriminant analysis only pairs for PC1 to PC4). The color regions represent the limits of each
classification area defined by the LDA model (blue = C-4, yellow = PETN, orange = TNT).

As seen in Figure 6, a scatter plot of all observations in the training dataset for the
first two values of linear discriminant functions shows that the training set (built on
high-order explosion spectra) nicely overlaps with the points belonging to the test set (low-
order spectra). Both sets are clustered in the first two linear discriminant functions space
according to the type of explosive used for low- or high-order blasts. The percentage of
separation achieved by LD1 is 80.3%, and 19.7% in the case of LD2. Additionally, probability
density functions (PDF) have been calculated to check their distributions over the range of
values that a variable can take. PDF (presented in Figure 6 as the margin plots separately
for each HE material) for LD1 shows a clear separation between TNT and C-4, and some
overlapping between PETN and C-4. This overlapping is well-resolved when PDF for LD2
is considered.
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Figure 6. Discrimination plot of all observations obtained from the results of LDA model developed
using training set (193 spectra (observations): C-4-, PETN-, TNT-high order) on first 21 PCs (a). Addi-
tionally, probability density functions (PDF) for each explosive are presented as the margin plots (b).

4. Conclusions

Numerous studies have shown that FTIR spectroscopy is a powerful method for classi-
fying various samples based on differences in their chemical content. It is a straightforward
analysis in terms of pure chemicals, but challenging if the analyzed samples are mixtures.
In the present study, different types of materials, such as aluminum, glass, fabric, wood,
steel, cardboard, plastic, and cotton, that were subjected to containment explosions were
analyzed using FTIR spectroscopy. The aim was to detect traces of residues on their surfaces
after high- and low-order explosions with three common HE materials. It is evident that
a high amount of non-reacted HE material could contribute to the direct analysis. FTIR
spectra collected for residues after low-order blasts were almost identical to the reference
spectra. In the case of low-order explosions, practically all types of materials acted as
convincing objects for evidence recovery. For high-order explosions, metal, glass, and even
wood were found to be suitable materials for preserving explosive residues. Studying
post-blast residues is a challenging task, as the samples typically contain only a small
amount of unreacted explosive material mixed with reaction products and some inert
material. These small amounts of HE materials present in FTIR spectra manifest themselves
in the form of tiny peaks, sitting on the humps of wide absorption bands belonging to the
characteristic spectral signatures of samples used as catchers; very often, overlapping the
characteristic absorbance bands for explosives makes their identification almost impossible.
Therefore, special methods must be used to ensure the reliability of the conclusions drawn
from the measurements. Careful pre-processing of spectral data (baseline correction and
normalization) was required to maximize positive identification. During the analysis, all
possible external influences were eliminated. Various multivariate dimension reduction
and clustering techniques were tested on a dataset of FTIR spectra collected from the debris
after low- and high-order blasts. The most successful approach for identifying the high-
energy material used in the blast was a combination of PCA for dimension reduction and
LDA for building the discrimination model. PCA reduces the dimensionality by focusing
on features with the most variation, while LDA is focused on maximizing the separability
among known categories, in this case, groups of spectra collected after blasts with three
common HEs: PETN, C-4, and TNT. The spectra collected for residues after high-order
blasts were more challenging to analyze, so we deliberately used them as the training set
in LDA. The LDA-PCA model revealed a sensitivity and specificity of 100% for the three
HE groups. The percentage of between-class variance described by the first and second
linear discriminant functions was 80.3% and 19.7%, respectively. LDA was executed on the
first 21 PCs, and the cross-validation accuracy for our model was 100%. We can conclude
that LDA-PCA is an adequate statistical method for classifying FTIR spectra measured
from post-blast residues. This technique can be used to construct discriminant functions
that allow for classifying new observations. All data manipulation and visualization of
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results were performed in R, an open-source environment for statistical computing. Based
on our experiments, we confirmed that explosive materials can be found even in post-blast
residues following high-order detonations. According to the literature [4], this is not un-
common, but little is known about the mechanism of their survival. We believe that by
using proper classification techniques, the analysis of FTIR spectra of post-blast residues
becomes more effective and significantly improves the successful identification of explosive
materials in analyzed samples. In summary, this study demonstrates the potential of FTIR
spectroscopy in identifying explosive residues on various types of materials following
high- and low-order explosions. The findings of this study highlight the challenges of
post-blast residue analysis (complex spectra, sample preparation) and the need for careful
data pre-processing and advanced statistical methods for the successful identification of
explosive materials.

Future research work for the classification of residues after high and low-order ex-
plosions using machine learning techniques on Fourier Transform Infrared (FTIR) spectra
could include:

• Integration of additional analytical techniques: combining FTIR spectroscopy with
other analytical techniques such as Raman spectroscopy or mass spectrometry could
provide a more comprehensive understanding of the chemical composition of the
residues and lead to improved classification results.

• Data augmentation and expansion: increasing the size and diversity of the FTIR
spectral data used for training machine learning algorithms could lead to improved
classification results, especially in cases where the number of samples is limited.

• Residue characterization: further research into the chemical and physical proper-
ties of residues produced by different types of explosions could provide additional
information to improve the accuracy of classification results.

• Real-world applications: research could focus on the practical applications of FTIR
spectroscopy and machine learning techniques for residue classification in real-world
scenarios. This could include evaluating the effectiveness of the methods in different
environments and under different conditions.

Overall, there is great potential for future research to improve the classification of
residues after high- and low-order explosions using machine learning techniques on Fourier
Transform Infrared (FTIR) spectra.
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