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Abstract: Tris(2,3‑dibromopropyl) isocyanurate (TBC) belongs to the class of novel brominated flame
retardants (NFBRs) that are widely used in industry. It has commonly been found in the environ‑
ment, and its presence has been discovered in living organisms as well. TBC is also described as an
endocrine disruptor that is able to affect male reproductive processes through the estrogen receptors
(ERs) engaged in the male reproductive processes. With the worsening problem of male infertility
in humans, a mechanism is being sought to explain such reproductive difficulties. However, so far,
little is known about the mechanism of action of TBC in male reproductive models in vitro. There‑
fore, the aim of the study was to evaluate the effect of TBC alone and in cotreatment with BHPI
(estrogen receptor antagonist), 17β‑estradiol (E2), and letrozole on the basic metabolic parameters
in mouse spermatogenic cells (GC‑1 spg) in vitro, as well as the effect of TBC on mRNA expression
(Ki67, p53, Pparγ, Ahr, and Esr1). The presented results show the cytotoxic and apoptotic effects of
high micromolar concentrations of TBC on mouse spermatogenic cells. Moreover, an increase in
Pparγ mRNA levels and a decrease in Ahr and Esr1 gene expression were observed in GS‑1spg cells
cotreated with E2. These results suggest the significant involvement of TBC in the dysregulation of
the steroid‑based pathway in the male reproductive cell models in vitro and may be the cause of the
currently observed deterioration of male fertility. However, more research is needed to reveal the
full mechanism of TBC engagement in this phenomenon.
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1. Introduction
Male infertility is a major global problem that is getting worse every year [1–3]. There

are many determinants of this phenomenon, inter alia infections, tumors, and environ‑
mental pollution. As reported by Bernhard et al. [4], the recently encountered group of
important factors includes brominated flame retardants (BFRs), which bioaccumulate and
can have a negative effect on living organisms [4–8]. BFRs are very widely used in in‑
dustry as additives to reduce the level of fire risk in electronic devices, furniture, and tex‑
tiles [9]. Importantly, BFRs exert an endocrine impact on animals and humans in non‑
toxic doses [10–12]. In the search for safer substances, novel brominated flame retardants
(NBFRs) started to be used, butas has been reported many times, their impact is still dan‑
gerous to living organisms [9,13–16]. One of the widely used and little‑studied NBFRs is
tris(2,3‑dibromopropyl) isocyanurate (TBC, also known as TDBP‑TAZTO) [17]. This com‑
pound was supposed to be an alternative for classic BFRs, e.g., for tetrabromobisphenol A
(TBBPA), which exhibits endocrine‑disrupting properties, hepatoxicity, immunotoxicity,
and neurotoxicity [18–21]. Unfortunately, current studies have suggested that TBC has
similar properties to those of classic BFRs [5,22].

It is well known that estrogens are of great importance for the maintenance of normal
physiological functions in the male reproductive system, as they determine steroidogene‑
sis and spermatogenesis in the testes [23]. As shown by Hess, male estrogens are usually
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produced in the testes or come from local extragonadal production [24]. Based on the avail‑
able reports, the synthesis of such steroids proceeds with the engagement of the aromatase
enzyme (P450arom) through conversion from androgens [25]. On the other hand, a lack or
deficiency of estrogens can lead to infertility [26]. Estrogens can act via three receptor sub‑
types: estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), andG protein‑coupled
estrogen receptor 1 (GPER1; GPR30) [27]. ERα is a key receptor for male fertility [28–30].
To date, molecular docking has shown that TBC has a high affinity for ERα, which may
affect the estrogenic pathway [22]. This indicates that TBC has the potential to act as an
endocrine disruptor.

The peroxisome proliferator‑activated receptor (PPAR) family is represented by tree
subtypes: PPARα, PPARβ, and PPARγ, which are encoded by different genes [31]. All
PPARs are important for the regulation of the hypothalamic‑pituitary‑gonadal axis, and it
has been shown that the above‑mentioned receptors take part in the gametogenesis pro‑
cess [32]. Interestingly, Liu et al. proved that the inactivation of PPARγ may lead to
male fertility disorders [33]. Nevertheless, the PPARγ plays an important role in xeno‑
biotic detoxication, together with the aryl hydrocarbon receptor (AhR), which acts as a
multifunctional intracellular sensor [34]. AhR is the transcription factor involved in the
metabolism of xenobiotics but is also responsible for many physiological processes, includ‑
ing crosstalk with multiple receptors, including the mentioned PPARγ as well as ERα and
RRβ [35]. Conformational changes of the AhR receptor, after ligand binding, lead to the
transfer of AhR to the nucleus, and this triggers the expression of AhR target genes, such
as cytochrome 1A1 and 1A2, involved in the metabolism of many xenobiotics [36]. Fur‑
thermore, AhR is expressed in the testes and can protect the cells of the male reproductive
system from external toxins [37]. TheAHR/aryl hydrocarbon receptor/nuclear translocator
(ARNT) receptor complex facilitates the modification of hormonal signals by influencing
the DNA target sites [38].

The molecular mechanism of the TBC impact on the male reproductive tract has not
been exactly investigated so far. Although there are studies on TBC toxicity in zebrafish
(Danio rerio) concerning the variety of reproductive and endocrine toxic effects [39], the
metabolism of fish is not equal to that of mammals.

Therefore, the aim of the study was to evaluate the effect of TBC alone and in cotreat‑
ment with an ER agonist and antagonist and aromatase on the basic metabolic and apop‑
totic parameters in mouse spermatogenic cells (GC‑1 spg) as a mammalian model in vitro.
Moreover, the expression of such key genes as Ki67, p53, Pparγ, Ahr, and Esr1 was
measured.

2. Results
2.1. Metabolic Activity and Caspase‑3 Activity of TBC

The first step of the experimentwas to investigate the effect of different concentrations
of TBC on metabolic activity using the resazurin reduction assay. After 24 h, we did not
observe significant changes in the metabolic activity after the treatment of the GC‑1 spg
cells with TBC (Figure 1A). In turn, after 48 h, we observed a significant 22.75%, 24.48%,
and 24.16% decrease in the metabolic activity in the tested cell line after the treatment of
the cells with 10, 50, and 100 µM, respectively, compared to the control group (Figure 1A).

Secondly, after 24 h, we noticed an increase in this caspase‑3 activity by 41.96%, com‑
pared to the control, in the cells treated with 100 µM of TBC (Figure 1B). In turn, after 48 h,
we observed a 39.39% increase in the capase‑3 activity, compared to the control, after the
treatment with 100 µM of TBC (Figure 1B).
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Figure 1. Effect of 1, 10, 50, and 100 nM and 1, 10, 50, and 100 µM of TBC on the level of resazurin 
reduction (A) and caspase-3 activity (B) in GC-1 spg cell line after 24 (white bars) and 48 (black bars) 
h exposure. Data are expressed as means ± SD of three independent experiments, each conducted 
in six replicates per treatment group. *** p < 0.001 vs. the vehicle control. 

2.2. Cotreatment of the Cells with BHPI, E2, and Letrozole 
The cotreatment of the cells with the antagonist and the agonist of ER as well as the 

antagonist of aromatase was performed to determine the engagement of this pathway in 
the TBC action. After the 48 h exposure of the cells to BHPI (estrogen receptor antagonist), 
TBC/BHPI, and letrozole, we did not observe any changes in the resazurin reduction test. 
The groups exposed to TBC, E2, TBC/E2, and TBC/letrozole exhibited a 14.67, 24.01, 25.19, 
and 25.55% decrease in the metabolic activity, respectively, compared to the control (Fig-
ure 2A).  

In the case of caspase-3 activity, no changes were observed after the 48 h treatment 
with TBC, BHPI, TBC/BHPI, letrozole, and TBC/letrozole (Figure 2B). In groups exposed 
to E2 and TBC/E2, we observed an 18.26 and 19.62% decrease in caspase-3 activity, respec-
tively, compared to the control (Figure 2B). 

 
Figure 2. Effect of 10 µM of TBC and TBC in the cotreatment (BHPI—10 µM, E2—100 nM, letrozole—
1 µM) on the level of resazurin reduction (A) and caspase-3 activity (B) in the GC-1 spg cell line after 
48 h exposure. Data are expressed as means ± SD of three independent experiments, each conducted 
in six replicates per treatment group. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the vehicle control 

  

Figure 1. Effect of 1, 10, 50, and 100 nM and 1, 10, 50, and 100 µM of TBC on the level of resazurin
reduction (A) and caspase‑3 activity (B) in GC‑1 spg cell line after 24 (white bars) and 48 (black bars)
h exposure. Data are expressed as means ± SD of three independent experiments, each conducted
in six replicates per treatment group. *** p < 0.001 vs. the vehicle control.

2.2. Cotreatment of the Cells with BHPI, E2, and Letrozole
The cotreatment of the cells with the antagonist and the agonist of ER as well as the

antagonist of aromatase was performed to determine the engagement of this pathway in
the TBC action. After the 48 h exposure of the cells to BHPI (estrogen receptor antago‑
nist), TBC/BHPI, and letrozole, we did not observe any changes in the resazurin reduction
test. The groups exposed to TBC, E2, TBC/E2, and TBC/letrozole exhibited a 14.67, 24.01,
25.19, and 25.55% decrease in the metabolic activity, respectively, compared to the control
(Figure 2A).
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Figure 2. Effect of 10 µMof TBC and TBC in the cotreatment (BHPI—10 µM, E2—100 nM, letrozole—
1 µM) on the level of resazurin reduction (A) and caspase‑3 activity (B) in the GC‑1 spg cell line after
48 h exposure. Data are expressed asmeans± SD of three independent experiments, each conducted
in six replicates per treatment group. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the vehicle control.

In the case of caspase‑3 activity, no changes were observed after the 48 h treatment
with TBC, BHPI, TBC/BHPI, letrozole, and TBC/letrozole (Figure 2B). In groups exposed
to E2 and TBC/E2, we observed an 18.26 and 19.62% decrease in caspase‑3 activity, respec‑
tively, compared to the control (Figure 2B).

2.3. Level of mRNA Expression of Ki67, p53, Pparγ, Ahr, Esr1, and Esr2
After the exposure of theGC‑1 spg cells to 10µMofTBC for 24 h, we observed a 21.46%

increase in the mRNA expression of Ki67 compared to the control group (Figure 3A). Sim‑
ilarly, the mRNA expression of Ki67 significantly increased by 12.51% in the BHPI‑treated
cells, compared to the control, but decreased by 19.55% in the E2‑treated cells relative to
the control (Figure 3A). Moreover, the effect on the TBC‑treated cells was statistically dif‑
ferent than in the cells cotreated with TBC and BHPI (19.73% decrease, compared to the
TBC alone group) (Figure 3A).
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letrozole—1 µM) on the Ki67 (A), p53 (B), Pparγ (C), Ahr (D), Esr1 (E), and GapdhmRNA expression
in the GC‑1 spg cells after 48 h exposure. The mRNA expression was normalized to Gapdh. Data
are expressed as means± SD of three independent experiments, each conducted in six replicates per
treatment group. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the vehicle control; # p < 0.05 vs. cells treated
by TBC alone.

The p53mRNA expression level was increased by 22.6% in the TBC‑treated cells, com‑
pared to the control, and by 42.37% in the cells cotreated with TBC and E2, compared to
the control (Figure 3B). We also observed a significantly different effect in the cells treated
with TBC and those cotreated with TBC and E2 (19.75% increase, compared to the TBC
alone group) (Figure 3B).

Pparγ gene expression significantly increased in all groups exposed to TBC: TBC alone
(42.99%, compared to the control), TBC with BHPI (33.09%, compared to the control), TBC
with E2 (96.16%, compared to the control), and TBC with letrozole (33.00%, compared to
the control) (Figure 3C). In turn, a decrease in the expression of this genewas observed after
the use of the other compounds alone, i.e., in the BHPI‑(11.44%, compared to the control),
E2‑(24.73%, compared to the control), and letrozole‑treated cells (26.72%, compared to the
control) (Figure 3C). Moreover, the cells treated with TBC alone and cotreated with E2
(53.17% increase, compared to TBC alone) or letrozole (9.99% decrease compared to TBC
alone) were characterized by a different effect on the Pparγ gene expression, depending
on the treatment used (Figure 3C).

Ahr mRNA expression increased by 13.55% after the treatment of the GC‑1 spg cells
with BHPI and by 15.15% after the cotreatment with TBC and E2, compared to the control
(Figure 3D). We also observed a 32.94%, 32.90%, and 18.79% decrease in the expression of
this gene in the cells treated with TBC alone, cotreated with TBC and BHPI, and cotreated
with TBC and letrozole, respectively, compared to the control (Figure 3D). The TBC‑treated
cells were characterized by statistically different Ahr mRNA expression compared to the
TBC‑ and E2‑ treated cells (38.09% increase, compared to TBC alone) (Figure 3D).

Esr1 mRNA expression increased after the treatment of the GC‑1 spg cells with TBC
(14.77%, compared to the control), BHPI (15.27%, compared to the control), and E2 (19.47%,
compared to the control) (Figure 3E). In turn, a 24.59% and 17.71% decrease in the level
of Esr1 gene expression was observed in the cells treated with letrozole alone and in the
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cells cotreated with TBC and letrozole, respectively, relative to the control (Figure 3E). A
significant decrease in the Esr1 mRNA level was also observed after the exposure to TBC
with BHPI (20.25%) and TBC with letrozole (32.48%), compared to the TBC‑treated cells
(Figure 3E).

No Esr2mRNA expression was detected despite the use of two types of primers.

2.4. Caspase‑3 Protein Expression
After 48 h of the GC‑1 spg cells being exposed to TBC, we observed an upregulated

level of caspsase‑3 protein by 112.44% compared to the control. A similar effect was ob‑
served in the cells treated with BHPI (197.05% increase) and cotreated with TBC and BHPI
(209.68% increase) compared to the control cells (Figure 4). The decrease in the caspase‑3
protein expression was noticed in the cells cotreated with TBC and letrozole compared to
the control cells (65.95% decrease) (Figure 4).
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Figure 4. Effect of 10 µM TBC and TBC in the cotreatment (BHPI—10 µM, E2—100 nM,
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replicates per treatment group. *** p < 0.001 vs. the vehicle control; # p < 0.05 vs. cells treated by TBC
alone.

An upregulated level of caspase‑3 protein expression (by 97.23%) was also noticed in
the TBC and BHPI cotreated cells compared to the TBC variant (Figure 4). In contrast, a de‑
crease in the caspase‑3 protein expression was demonstrated in the cells after the exposure
to E2 (104.76% decrease), TBC with E2 (134.16% decrease), letrozole (111.10% decrease),
and TBC with letrozole (178.38% decrease), relative to the TBC‑treated cells (Figure 4).

3. Discussion
The problem of infertility seems to be one of the greatest evolutionary dangers in the

modern world [40]. Although the research on female infertility is extensive, the problem
of male infertility is relatively poorly understood. The reproductive dysfunction may be
caused by toxic substances such as drugs or xenobiotics [41,42]. Our research confirms
the reprotoxic effect of TBC on spermatogenic cells (GC‑1 spg) in vitro and indicates the
possible mechanism of action of this substance in the male reproductive system. In our
experiments, after the 48 h exposure, 10, 50, and 100 µM of TBC decreased cell metabolic
activity, while the 100 µM concentration increased caspase‑3 activity. It is important that
the cells used in the present experiments were sensitive to potentially estrogenic active
substances. In turn, higher concentrations of TBC have been found to induce apoptosis.
To date, a number of papers have shown the toxicity of TBC in a similar concentration
range (10 to 100 µM) in different cell types, e.g., the human neuroblastoma (SH‑SY5Y) cell
line or mouse neurons developing from cerebellar granule cells [43,44]. Interestingly, TBC
was nontoxic to mature mouse cerebellar granule neurons and in human hepatocarcinoma
(HepG2) cells [43,45]. The proapoptotic properties of TBC have also been described in
the SH‑SY5Y cell line in the range of 10–100 µM and in the hippocampus of adult mice
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exposed to 5 or 50 mg/kg of the compound [44,46]. On the other hand, Zhang et al. proved
that TBC did not significantly affect the survival and growth properties of zebrafish (Danio
rerio), which is probably caused by the different metabolism in this model compared to
the tested mammalian cells (GC‑1spg) [39]. Therefore, our dose‑response experiments are
consistent with the current state of knowledge.

In the next stage of our study, we decided to determine the molecular mechanism of
the action of TBC; to this end, we used an agonist and antagonist of ERs and an aromatase
inhibitor. Our experiment showed slight but not statistically significantly intensification
of the cytotoxic effect measured by the resazurin reduction test after the treatment of the
cells with TBC and E2. This suggests that TBC can act in a similar way to E2. Moreover,
this effect may be the result of the interaction of both substances with ERs. In turn, a de‑
crease in caspase‑3 activity was observed in the E2, but in the group with cotreatments of
E2 with TBC, the effect was not enhanced. A similar effect was observed after the appli‑
cation of the ERα receptor antagonist BHPI. However, the decrease in caspase‑3 activity
intensified in the cells cotreated with BHPI and TBC. In our opinion, this is due to the ef‑
fect of the tested compounds binding to the ERα active sites and the competition between
BHPI, TBC, and E2. It was previously found that TBC has an affinity for ERα [22]; there‑
fore, we believe that when Erα active sites are blocked, TBC cannot affect cells, which, in
turn, leads to a decrease in apoptosis in GC‑1 spg cells. Interestingly, our Western blot
analysis of caspase‑3 showed an increase in protein expression after TBC or BHPI treat‑
ment. Moreover, the level of caspase‑3 significantly increased in the TBC/BHPI cotreated
group. In turn, E2 alone and in the cotreatment with TBC did not change caspase‑3 protein
expression. Interestingly, letrozole (aromatase inhibitor) in cotreatment with TBC signif‑
icantly decreased toxicity. The discrepancy in caspase‑3 activity and protein expression
can be explained by two phenomena. Firstly, the lack of changes in caspase‑3 activity and
the increase in caspase‑3 protein expression in the BHPI‑treated groups may have been a
result of the activation of autophagic processes in the cells. Moreover, cells can increase the
level of native protein, but it may not necessarily be activated. In the case of the E2‑treated
groups, the decrease in caspase‑3 activity with the lack of changes in caspase‑3 protein ex‑
pression may have been a result of the decrease in the number of cells measured by the
resazurin reduction test. To date, Cao et al. [22] showed that TBC inhibited the prolifera‑
tion of estrogen‑dependent human breast cancer cells (MCF‑7/BUS) following E2 induction.
Given the lack of influence of TBC and E2 on the inhibition of the proliferation of the ERα‑
negative human breast cancer line MDA‑MB‑231, it was concluded that the mechanism of
the antiestrogenic action of TBC involves the ERα pathway [22]. The aforementioned stud‑
ies also compared the structure of other traditional ERα agonists and antagonists, i.e., E2
or 4‑hydroxytamoxifen (4OHT, inhibitor of ERs), which proves the possibility of TBC bind‑
ing to ERα. Moreover, molecular docking and molecular dynamics analysis showed that
TBC exhibited a high affinity to the ligand binding domain complex (AF2‑ERα LBD) [22].
Therefore, our data suggest the involvement of ERα in the TBC mechanism of action and
another undetermined molecular pathway.

In the last part of our study, we tried to elucidate the molecular mechanism of the
TBC action. We observed a significant increase in the p53 gene expression after exposure
to TBC. Moreover, after the application of TBC with E2, an increase in p53 expression was
observed. Since the p53 protein is involved in the control of the cell cycle, we can assume
that TBC inhibits cell division.

This confirms the observed decrease in the cell metabolism/cell number measured by
the resazurin reduction test. The expression of the Ki67 gene, and likewise the p53 gene,
is dependent on the cell growth and cell cycle [47,48] and is responsible for the mainte‑
nance of the appropriate DNA structure during mitosis [49,50]. Positive Ki67 expression
is involved in the proliferation and differentiation of spermatogonia in the testes and is
strictly related to the regulatory function of this protein in this tissue [51–53]. Therefore,
we used Ki67 gene expression to evaluate the state of the spermatogenic cell proliferation
marker [54]. We observed that the expression of the Ki67 gene increased both after TBC
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exposure and after BHPI treatment, which may indicate a cytoprotective cellular response.
In contrast, we showed significant downregulation after E2 exposure, which confirms the
antiproliferative effect of E2 on the cells of the male reproductive system [23,55].

There are data suggesting the involvement of both ERα and AhR receptors in the TBC
mechanism of action [44]. However, only a few studies show the endocrine‑disrupting
properties of TBC. Therefore, wedecided to investigate the influence of TBConEsr1mRNA
expression in the GC‑1 spg cells. We observed that the mRNA expression of the Esr1 gene
significantly increased after exposure to TBC, BHPI, and E2 alone, which may indicate in‑
creased ERα requirement in the cells. On the other hand, when TBC with BHPI was used,
the expression of Esr1 decreased compared to the group exposed to TBC alone. Similarly,
letrozole and TBC with letrozole suppressed Esr1mRNA expression in the GC‑1 spg cells.
This may indicate the involvement of other genes in the regulation of the cellular home‑
ostasis mechanism. Esr2 mRNA expression was also analyzed, but it was not detectable.
It is known that letrozole is an inhibitor of cytochrome P450 aromatase (P450arom), which
determines the course of the steroidogenesis process [56]. P450arom is an enzyme in‑
volved in the proper course of many physiological processes in various tissues, including
gonads [57]. It is mainly responsible for the irreversible bioconversion of androgens to
estrogens and for the androgen/estrogen balance in the body [58].

It is well known that flame retardants may act via multiple steroid and nuclear re‑
ceptors [59]. Therefore, we examined the mRNA expression of the Pparγ and Ahr genes.
PPARγ regulates the level of expression of lipidmetabolism‑related genes in Sertoli cells af‑
ter incubationwith a PPARγ activator [60]. The activation of PPARγ in Sertoli cells ensures
the proper course of energy metabolism in both Sertoli and germ cells and is responsible
for the production of lactate, which is necessary as a metabolic substrate for the function‑
ing of germ cells [61,62]. Studies on mouse Leydig cells have shown that the regulation of
the steroidogenesis pathway is mediated by PPARγ‑G‑protein coupled estrogen receptor
(GPER) interaction [63]. Moreover, the activation of PPARγ regulates Leydig cell morphol‑
ogy, which is of the greatest importance for steroid biosynthesis [63]. Therefore, PPARγ
is a factor that controls the normal course of male reproductive functions, as it has been
shown that the activation of PPARγ nuclear receptors participates in the suppression of
steroidogenesis by phthalates [64].

It is worth adding that the research conducted by Hamers [65] showed the relation‑
ship between the dose of BFR used and the interaction with the androgen, estrogen, or
progesterone pathways [65]. Other studies have found that brominated TBBPA and chlori‑
nated tetrachlorobisphenol A (TCBPA) activate PPARγ [66]. It has also been observed that
the greater the level of bromination of bisphenol A (BPA) analogs, the greater their ability
to activate PPARγ and the lower their estrogenic potential. It has, therefore, been sug‑
gested that these compounds may act as agonists and, through their influence on PPARγ,
they determine many of the body’s functions that are regulated by this enzyme [67]. In
addition, other studies have shown that the activation of PPARγ induces the expression
of antioxidant enzymes, e.g., catalase and superoxide dismutase (SOD), i.e., two enzymes
capable of alleviating oxidative stress and inhibiting NADPH oxidase [68–70].

Our results showed an increase in the expression of Pparγ mRNA in all TBC expo‑
sure groups, with the highest level noted after the cotreatment of the cells with TBC and
E2. Hence, we suppose that Pparγ may have cytoprotective properties in the tested cells
representing the male reproductive system in vitro. El‑Sayed et al. [71] confirmed the an‑
tioxidant activity of Pparγ in rat testes tissue [71]. However, cell protection may limit the
normal functions performed in the testes and lead to reduced or complete infertility as a
consequence of the response to TBC.We also observed that the mRNA expression of Pparγ
increased after exposure to letrozole with TBC, although AhR and Esr1mRNA expression
decreased. Zhang et al. showed that the decrease in theEsr1 gene expression level is strictly
related to letrozole sensitivity in human breast cancer cells [72]. Moreover, the crosstalk
between Pparγ, AhR, ERα, and ERβ receptors has been described [73,74]. Therefore, we be‑
lieve that an increase in Pparγ gene expression causes a decrease inAhRmRNA expression,
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which is similar to previously published data concerning other types of xenobiotics [74].
On the other hand, Nilsson et al. [50] proved that the knockout of PPARγ by respective
siRNA causes an increase in ERα gene expression and activity [75]. As shown by Rezvan‑
far et al., in mice with letrozole‑induced hyperandrogenization, an increase in Pparγ gene
expression may occur, resulting in the protective effect of this protein [76]. Therefore, we
cannot exclude that TBC can affect all the aforementioned receptors, i.e., Pparγ, AhR, and
ERs, in our experimental model.

As reviewed by Bar et al. [17], many studies postulate some correlation between ERα
and intracellular receptors, such as AhR, in the context of TBC [17,74]. Nonetheless, there
are no empirical studies that prove the aforementioned phenomenon in the context of the
TBC. However, our data show a significant increase in AhrmRNA expression in the sper‑
matogenic cells after exposure to TBCwith E2. Such activationmay represent the fragmen‑
tary defense/protective mechanism of cells against toxins, but it may also be conducive to
male reproduction problems. Studies conducted on rat and human testes confirm the neg‑
ative effect of environmental dioxins on the cells of the male reproductive system [77]. The
effect of 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD) on the testes has indicated that this
organ is extremely sensitive to toxins [38]. In addition, it directly affects the control of cell
death during the spermatogenesis process by activating AhR and inducing apoptosis in
target cells [78]. Even short‑term exposure disrupts the signaling between Sertoli cells and
germ cells, which, in turn, has an impact on the spermatogenesis process. The AhR/ARNT
receptor complexwas able tomodify hormonal responses directly by influencingDNA [38].
It has also been shown to reduce the volume of Leydig cells [79]. Further studies confirmed
the regulatory function of AhR on the Notch signaling pathway (ligand‑, receptor‑based
signaling pathway) by maintaining contact between adjacent cells [80,81]. The results of
these studies may suggest the mechanism of male infertility [42,81].

4. Materials and Methods
4.1. Chemicals

The chemicals were of analytical grade and were used without further chemical mod‑
ification. Unless otherwise stated, the chemicals and reagents were purchased from Sigma‑
Aldrich (Poznan, Poland), ThermoFisher Scientific (Waltham,MA,USA), orCaymanChem‑
icals (Ann Arbor, MI, USA).

4.2. Cell Culture and Treatment
The mouse‑derived spermatogonia (GC‑1 spg) cell line was obtained from the Amer‑

ican Type Culture Collection (ATTC, CRL‑2053, Manassas, VA, USA). The GC‑1 spg cell
line wasmaintained in Dulbecco’s Modified Eagle’s Medium (DMEM)without phenol red
(10–013‑CVR), supplemented with charcoal/dextran‑treated 10% fetal bovine serum (FBS)
with 100 U/mL of penicillin, 0.10 mg/mL of streptomycin, and 250 ng/mL of amphotericin
B. The cells were maintained in standard conditions (37 ◦C in a humidified atmosphere
and 5% CO2) and passaged by trypsinization every three days (confluency ~80%). For
the experiments, the cells were seeded in 96‑well (resazurin reduction test), 12‑well (Real‑
Time PCR analysis), or 6‑well culture plates (Western Blot measurement) at a density of
4 × 104 cells/well, 1 × 105 cell/well, or 1.2 × 105 cells/well, respectively, and then initially
cultured for 24 h. In the subsequent dose‑response experiments, the mediumwas replaced
with freshmediumcontaining increasing concentrations (1, 10, 50, and 100 nMand 1, 10, 50,
and 100 µM) of TBC for 48 h, unless otherwise stated. In the case of the cell cotreatment, the
mediumwas enrichedwith 10 µMof TBC (selected on the basis of dose‑response data) and
10 µM of 1,3‑dihydro‑3,3‑bis(4‑hydroxyphenyl)‑7‑methyl‑2H‑indol‑2‑one (BHPI—Erα an‑
tagonist), 100 nM of estradiol (E2—ER agonist), or 1 µM of letrozole (aromatase inhibitor)
for 48 h.
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4.3. Resazurin Reduction Assay
The resazurin reduction test was used to determine the metabolic activity of the cells.

Metabolically active cells have the ability to convert blue resazurin (non‑fluorescent form)
to red resorufin (fluorescent form) [82]. The cells were seeded in 96‑well plates and incu‑
bated with different concentrations of TBC for 48 h at 37 ◦C. Then, the medium was re‑
moved, and new medium containing 1% of FBS and 10% of resazurin (100 µL) was added.
After 30 and 60 min. of incubation at 37 ◦C, the fluorescence level was measured using
a microplate reader FilterMax F5 Multi Mode (Molecular Devices, Corp., Sunnyvale, CA,
USA) at 530 nm excitation and 590 nm emission wavelengths.

4.4. Caspase‑3 Activity
Caspase‑3 activity as an apoptosis marker for GC‑1 spg cells was measured according

to the protocol proposed by Nicholson et al. [83]. After the incubation with different con‑
centrations of TBC and the cotreatment with the tested compounds, the cells were lysed
using CAB buffer (50 mMHEPES, pH 7.4, 100 mMNaCl, 0.1% CHAPS, 1 mM EDTA, 10%
glycerol, and 10 mM DTT) at 10 ◦C for 10 min. Then, the caspase‑3 substrate (Ac‑DEVD‑
pNA) was added. Subsequently, the absorbance was measured (405 nm) for 30 min using
a microplate reader (FilterMax F5 Multi‑Mode).

4.5. Western Blotting
The caspase‑3 protein level was visualized by Western blotting, according to Szy‑

chowski et al. [84], with modifications. Briefly, the GC‑1 spg cells were seeded and treated
as described above for 48 h. Subsequently, the medium was removed, and the cells were
washed once with phosphate‑buffered saline without Ca2+ andMg+ (PBS) and lysed using
the ice‑cold radioimmunoprecipitation assay (RIPA) buffer supplemented with protease
inhibitors. Next, the protein concentration was determined by the Bradford quantitation
assay using bovine serum albumin (BSA) as a standard. Next, 30 µg of the samples were
fractionated by 10% SDS‑PAGE and electrotransferred from polyacrylamide gel to PVDF
membranes. Unspecific protein‑binding sites were blocked using 1% BSA in TBST and in‑
cubated with the primary antibodies overnight at 4 ◦C: anti‑β‑actin (1:10,000; #PA1‑16889,
RRID: AB_568434) and anti‑caspase 3 (9H19L2) (1:1000, #PA1‑700182; RRID: AB_2532293).
Next, themembraneswerewashed four times and incubated (1h, RT)with secondaryHRP‑
conjugated antibodies: anti‑mouse (1:40,000; #A9044, RRID: AB_258431). Subsequently,
the membranes were washed three times with TBST and visualized by the chemilumines‑
cent substrate (ECL) using the Western Blotting Luminol Reagent (Santa Cruz Biotechnol‑
ogy, Inc., Dallas, TX, USA) and LiCor C‑DiGit according to the provided instructions. The
densitometric analysis was performed with the GelQuantNET software. The bands were
quantified and normalized to their corresponding β‑actin bands (loading control).

4.6. Real‑Time PCR
The Real‑Time PCR method was chosen to determine the impact of TBC and the

tested compounds on the expression of certain genes, as in Skóra and Szychowski [85].
After the 24 h exposure to 1 µM of TBC alone or in the cotreatment with the other com‑
pounds, RNA was extracted using the Universal RNA Purification Kit according to the
manufacturer’s instructions (EURx, Gdańsk, Polska). Then, the RNA quality and quan‑
tity were controlled spectrophotometrically at 260 and 280 nm and normalized to 500 ng
(ND/1000 UV/Vis; Thermo Fisher NanoDrop, Waltham, MA, USA). Subsequently, the re‑
verse transcription reaction (RT) was performed using the obtained RNA as a template
and the High‑Capacity cDNA Reverse Transcription Kit according to the producer’s man‑
ual (Thermo Fisher, Waltham, MA, USA). Next, the obtained RT reaction products were
amplified using Fast Probe qPCRMasterMix (2x), plus ROX Solution (EURx), primers, and
TaqMan probes specific for genes Gapdh (Mm99999915_g1), Ki67 (Mm01278617_m1), p53
(Mm01731290_g1), Pparγ (Mm00440945_m1), Ahr (Mm01291777_m1), Esr1 (Mm0043314
7_m1), and Esr2 (Mm 01281854_m1 and Mm00599821_m1). The total volume of the reac‑
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tion was 20 µL. The qPCR reactions were conducted according to the standard procedures:
2 min at 50 ◦C and 10 min at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C and 1 min at
60 ◦C. The threshold value (Ct) for each sample was set during the exponential phase, and
the ∆∆Ct method was used for data analysis. Gapdhwas used as a reference gene.

4.7. Statistical Analysis
All data are presented as means ± standard deviation (SD) of three independent ex‑

periments (total number of replicates n = 9). The results were analyzed with a one‑way
analysis of variance (ANOVA) followed by posthoc Tukey’s or t‑test usingGraphPad Prism
8.0 Statistical Analysis Panel. Significant differences were marked as follows: *** p < 0.001,
** p < 0.01, and * p < 0.05 vs. the control group. # p < 0.05 vs. the TBC‑exposed group.

5. Conclusions and Perspectives
In conclusion, the presented research shows that TBC, as a ubiquitous environmental

pollutant, has a toxic effect on spermatogenic cells (GC‑1 spg cells). In addition, acting
together with E2, it has a strengthening and additive effect, activating steroid and nuclear
receptors, e.g., Pparγ and AhR. Moreover, given the comparison of TBC to BHPI and E2
and the measurement of gene expression, we believe that TBC is at least a weak estrogen
and competes with E2 for cellular receptors. These results suggest the tremendous effect of
TBC on the cells of the male reproductive system. However, the exact mechanism still re‑
mains to be clarified; therefore, we plan to conduct studies on human cell lines and animals
for the next stages of this research.
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