Effects of Ultra-High-Pressure Jet Processing on Casein Structure and Curdling Properties of Skimmed Bovine Milk
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of UHPJ Processing on Temperature of Skimmed Milk
2.2. Effect of UHPJ Processing on the Composition of Skimmed Milk
2.3. Effect of UHPJ Processing on Content of Free Sulfhydryl and Disulfide Bonds in Casein
2.4. Effect of UHPJ Processing on Secondary Structure of Casein
2.5. Effect of UHPJ Processing on Average Particle Size of Casein Micelle
2.6. Effect of UHPJ Processing on Zeta Potential of Casein Micelles
2.7. Effect of UHPJ Processing on the Microstructure of Casein
2.8. Effect of UHPJ Processing on Apparent Viscosity of Skimmed Milk
2.9. Effect of UHPJ Processing on Skimmed Milk Color
2.10. Effect of UHPJ Processing on Coagulation Properties of Skimmed Milk
3. Materials and Methods
3.1. Materials and Reagents
3.2. Degreasing
3.3. UHPJ Processing
3.4. Analysis of Milk Composition
3.5. Extraction of Bovine Casein
3.6. Determination of Sulfhydryl and Disulfide Bonds in Casein
3.7. Analysis of the Secondary Structure of Casein by Circular Dichroism
3.8. Determination of Particle Size and Zeta Potential of Casein
3.9. Surface Structure of Casein Mapped by Scanning Electron Microscope (SEM)
3.10. Measurement of Color of Skimmed Milk
3.11. Fermentation of Skimmed Milk
3.12. Properties of Skimmed Milk and Curd Texture
3.13. Water-Holding Capacity of Curd
3.14. Data Processing and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Liu, J.H.; Xie, M.Y.; Liu, C.M.; Liu, W.L.; Wan, J. Characterization and High-Pressure Microfluidization-Induced Activation of Polyphenoloxidase from Chinese Pear (Pyrus pyrifolia Nakai). J. Agric. Food Chem. 2009, 57, 5376–5380. [Google Scholar] [CrossRef]
- Liu, G.X.; Tu, Z.C.; Wang, H.; Zhang, L.; Huang, T.; Ma, D. Monitoring of the functional properties and unfolding change of ovalbumin after DHPM treatment by HDX and FTICR MS: Functionality and unfolding of oval after DHPM by HDX and FTICR MS. Food Chem. 2017, 227, 413–421. [Google Scholar] [CrossRef]
- Shen, L.; Tang, C. Microfluidization as a potential technique to modify surface properties of soy protein isolate. Food Res. Int. 2012, 48, 108–118. [Google Scholar] [CrossRef]
- Gong, K.J.; Chen, L.R.; Xia, H.Y. Driving forces of disaggregation and reaggregation of peanut protein isolates in aqueous dispersion induced by high-pressure microfluidization. Int. J. Biol Macromol. 2019, 130, 915–921. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Yang, Y.L.; Zhou, P.; Zhang, X.; Wang, J.Y. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chem. 2017, 217, 678–686. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Wang, P.X.; Zheng, X.Y.; Hu, J.M. Effect of dynamic high pressure microfluidization on the solubility properties and structure profiles of proteins in water-insoluble fraction of edible bird’s nests. LWT-Food Sci. Technol. 2020, 132, 109923. [Google Scholar] [CrossRef]
- Ginger, M.R.; Grigor, M.R. Comparative aspects of milk caseins. Comp. Biochem. Phys. B 1999, 124, 133–145. [Google Scholar] [CrossRef]
- Kumar, A.; Badgujar, P.C.; Mishra, V.; Upadhyay, A. Effect of microfluidization on cholesterol, thermal properties and in vitro and in vivo protein digestibility of milk. LWT-Food Sci. Technol. 2019, 116, 108523. [Google Scholar] [CrossRef]
- Tran, M.; Roberts, R.; Felix, T.L.; Harte, F.M. Effect of high-pressure-jet processing on the viscosity and foaming properties of pasteurized whole milk. J. Dairy Sci. 2018, 101, 3887–3899. [Google Scholar] [CrossRef]
- Bucci, A.J.; Van Hekken, D.L.; Tunick, M.H.; Tomasula, P.M. The effects of microfluidization on the physical, microbial, chemical, and coagulation properties of milk. J. Dairy Sci. 2018, 101, 6990–7001. [Google Scholar] [CrossRef] [Green Version]
- Pereda, J.; Ferragut, V.; Quevedo, J.M.; Guamis, B.; Trujillo, A.J. Effects of Ultra-High Pressure Homogenization on Microbial and Physicochemical Shelf Life of Milk. J. Dairy Sci. 2007, 90, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Xing, B.B.; Zhang, T.T.; Zhao, Q.; Xiong, H. Effect of High Pressure Microfluidization Treatment on the Properties of Thermal Glutelin Aggregates. Food Sci. 2019, 40, 109–115. [Google Scholar]
- Wang, C.Y.; Ma, Y.P.; Liu, B.G.; Kang, Z.L.; Geng, S.; Wang, J.N.; Wei, L.P.; Ma, H.J. Effects of dynamic ultra-high pressure homogenization on the structure and functional properties of casein. Int. J. Agric. Biol. Eng. 2019, 12, 229–234. [Google Scholar] [CrossRef]
- De Kruif, C.G.; Holt, C. Casein Micelle Structure, Functions and Interactions. In Advanced Dairy Chemistry-1 Proteins, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2003; pp. 233–275. [Google Scholar]
- Farrell, H.M.; Jimenez-Flores, R.; Bleck, G.T.; Swaisgood, H.E. Nomenclature of the Proteins of Cows’ Milk—Sixth Revision. J. Dairy Sci. 2004, 87, 1641–1674. [Google Scholar] [CrossRef] [Green Version]
- Daiki, O.; Wataru, O.; Shojiro, T.; Tomohiro, N.G.; Takano, K. Effects of the thermal denaturation degree of a whey protein isolate on the strength of acid milk gels and the dissociation of κ-casein. J. Dairy Res. 2022, 89, 104–108. [Google Scholar]
- Zhou, X.F.; Zheng, Y.R.; Zhong, Y.; Wang, D.F.; Deng, Y. The Effect of DPCD on the Structure and Physical Properties of Casein. J. Chin. Inst. Food Sci. Technol. 2022, 22, 120–128. [Google Scholar]
- Mohan, M.S.; Ye, R.; Harte, F. Initial study on high pressure jet processing using a modified waterjet on physicochemical and rennet coagulation properties of pasteurized skim milk. Int. Dairy J. 2016, 55, 52–58. [Google Scholar] [CrossRef]
- López-Fandiño, R. High pressure-induced changes in milk proteins and possible applications in dairy technology. Int. Dairy J. 2005, 16, 1119–1131. [Google Scholar] [CrossRef]
- Roach, A.; Harte, F. Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization. Innov. Food Sci. Emerg. Technol. 2008, 9, 1–8. [Google Scholar] [CrossRef]
- Lunardi, C.N.; Gomes, A.J.; Rocha, F.S.; De Tommaso, J.; Patience, G.S. Experimental methods in chemical engineering: Zeta potential. Can. J. Chem. Eng. 2021, 99, 627–639. [Google Scholar] [CrossRef]
- Janahar, J.J.; Marciniak, A.; Balasubramaniam, V.M.; Jimenez-Flores, R.; Ting, E. Effects of pressure, shear, temperature, and their interactions on selected milk quality attributes. J. Dairy Sci. 2021, 104, 1531–1547. [Google Scholar] [CrossRef]
- Sandra, S.; Dalgleish, D.G. Effects of ultra-high-pressure homogenization and heating on structural properties of casein micelles in reconstituted skim milk powder. Int. Dairy J. 2005, 15, 1095–1104. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, M.; Sun, W.; Zhao, G.; Ren, J. Effects of microfluidization treatment and transglutaminase cross-linking on physicochemical, functional, and conformational properties of peanut protein isolate. J. Agric. Food Chem. 2011, 59, 8886. [Google Scholar] [CrossRef]
- Huppertz, T.; Fox, P.F.; Kelly, A.L. Properties of casein micelles in high pressure-treated bovine milk. Food Chem. 2003, 87, 103–110. [Google Scholar] [CrossRef]
- Hettiarachchi, C.A.; Corzo-Martínez, M.; Mohan, M.S.; Harte, F.M. Enhanced foaming and emulsifying properties of high-pressure-jet-processed skim milk. Int. Dairy. 2018, 87, 60–66. [Google Scholar] [CrossRef]
- Nassar, K.S.; Zhang, S.W.; Lu, J.; Pang, X.Y.; Ragab, E.S.; Yue, Y.C.; Lv, J.P. Combined effects of high-pressure treatment and storage temperature on the physicochemical properties of caprine milk. Int. Dairy J. 2019, 96, 66–72. [Google Scholar] [CrossRef]
- Serra, M.; Trujillo, A.J.; Jaramillo, P.D.; Guamis, B.; Ferragut, V. Ultra-High Pressure Homogenization-Induced Changes in Skim Milk: Impact on Acid Coagulation Properties. J. Dairy Res. 2008, 75, 69–75. [Google Scholar] [CrossRef]
- Ravash, N.; Peighambardoust, S.H.; Soltanzadeh, M.; Pateiro, M.; Lorenzo, J.M. Impact of high-pressure treatment on casein micelles, whey proteins, fat globules and enzymes activity in dairy products: A review. Crit. Rev. Food Sci. 2022, 62, 2888–2908. [Google Scholar] [CrossRef]
- Panagiotis, S.F.; Constatnina, T. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review. Foods. 2014, 3, 176–193. [Google Scholar]
- Hernandez, A.; Harte, F.M. Manufacture of Acid Gels from Skim Milk Using High-Pressure Homogenization. J. Dairy Sci. 2008, 91, 3761–3767. [Google Scholar] [CrossRef] [Green Version]
- Ciron, C.I.E.; Gee, V.L.; Kelly, A.L.; Auty, M.A.E. Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. Int. Dairy J. 2010, 20, 314–320. [Google Scholar] [CrossRef]
- Morin, P.; Jiménez-Flores, R.; Pouliot, Y. Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. Int. Dairy J. 2007, 17, 1179–1187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.Q.; Wang, Y.Y.; Li, R.; Zhou, G.W.; Wang, L.; Wang, X.B. Effect of Ultra-Pasteurization on Microstructure and Aggregation Properties of Casein from Bovine Milk. Food Sci. 2020, 41, 106–110. [Google Scholar]
- Chi, X.L.; Tong, L.J.; Pan, M.H.; Alifu, N.; Ai, N.S.; Wang, B.; Sun, B.G. Effect of Fat Content on Physicochemical Properties of Milk. Food Sci. 2018, 39, 26–31. [Google Scholar]
Protein (%) | Fat (%) | Lactose (%) | SNF (%) | TS (%) | |
---|---|---|---|---|---|
Raw milk | 3.37 ± 0.01 | 4.04 ± 0.02 | 4.73 ± 0.01 | 9.18 ± 0.02 | 12.98 ± 0.02 |
Skimmed milk | 3.01 ± 0.00 a | 0.11 ± 0.03 a | 4.91 ± 0.00 a | 9.76 ± 0.01 a | 9.82 ± 0.02 a |
100 MPa | 3.01 ± 0.02 a | 0.11 ± 0.02 a | 4.91 ± 0.03 a | 9.76 ± 0.02 a | 9.82 ± 0.02 a |
150 MPa | 3.01 ± 0.03 a | 0.11 ± 0.01 a | 4.91 ± 0.02 a | 9.76 ± 0.01 a | 9.82 ± 0.02 a |
200 MPa | 3.01 ± 0.02 a | 0.11 ± 0.02 a | 4.91 ± 0.01 a | 9.76 ± 0.02 a | 9.82 ± 0.02 a |
250 MPa | 3.01 ± 0.02 a | 0.11 ± 0.02 a | 4.91 ± 0.02 a | 9.76 ± 0.02 a | 9.82 ± 0.02 a |
300 MPa | 3.01 ± 0.02 a | 0.11 ± 0.02 a | 4.91 ± 0.02 a | 9.76 ± 0.03 a | 9.82 ± 0.02 a |
Pressure/MPa | Content of Secondary Structure Components of Casein (%) | |||
---|---|---|---|---|
α-Helic | β-Sheet | β-Turn | Random Coils | |
0 | 12.22 ± 0.23 c | 26.92 ± 0.35 b | 25.07 ± 0.04 a | 36.14 ± 0.22 c |
100 | 11.14 ± 0.18 f | 27.35 ± 0.11 b | 24.86 ± 0.08 a | 34.75 ± 0.17 e |
150 | 11.73 ± 0.32 d | 28.41 ± 0.25 a | 25.19 ± 0.12 a | 35.09 ± 0.13 de |
200 | 11.48 ± 0.09 e | 28.95 ± 0.05 a | 24.65 ± 0.22 a | 35.52 ± 0.19 d |
250 | 14.39 ± 0.15 a | 24.63 ± 0.18 c | 24.53 ± 0.14 a | 37.07 ± 0.16 b |
300 | 13.21 ± 0.21 b | 23.18 ± 0.16 d | 24.71 ± 0.13 a | 39.03 ± 0.21 a |
Pressure/MPa | L* | a* | b* | ΔE* |
---|---|---|---|---|
0 | 70.60 ± 0.29 a | −7.22 ± 0.07 a | −5.12 ± 0.07 b | / |
100 | 70.61 ± 0.29 a | −7.79 ± 0.27 b | −6.57 ± 0.27 d | 1.57 ± 0.31 a |
150 | 70.80 ± 0.12 a | −7.74 ± 0.05 b | −5.74 ± 0.12 c | 0.90 ± 0.00 b |
200 | 70.50 ± 0.25 a | −8.01 ± 0.10 b | −5.55 ± 0.30 bc | 0.91 ± 0.27 b |
250 | 70.60 ± 0.33 a | −7.87 ± 0.06 b | −5.33 ± 0.06 bc | 0.68 ± 0.02 b |
300 | 70.59 ± 0.39 a | −6.89 ± 0.13 a | −4.16 ± 0.22 a | 1.03 ± 0.20 b |
Pressure/ MPa | Curding Time/h | Apparent Viscosity/mPa·s | Water Holding Capacity/% | Firmness/g | Cohesive/g | Viscosity/g.Sec |
---|---|---|---|---|---|---|
0 | 4.50 ± 0.08 a | 70.72 ± 0.12 f | 24.51 ± 1.1 d | 6.21 ± 0.56 d | 0.79 ± 0.53 d | 1.19 ± 0.78 e |
100 | 4.50 ± 0.22 a | 131.93 ± 0.16 d | 25.77 ± 0.95 c | 6.36 ± 0.37 c | 0.81 ± 0.42 bc | 1.21 ± 0.43 cd |
150 | 3.75 ± 0.15 b | 130.81 ± 0.09 de | 26.86 ± 1.5 b | 6.35 ± 1.2 c | 0.87 ± 0.86 b | 1.39 ± 0.39 c |
200 | 3.33 ± 0.05 bc | 148.16 ± 0.13 c | 26.80 ± 1.3 b | 6.33 ± 0.81 c | 0.85 ± 0.94 b | 1.43 ± 1.2 c |
250 | 2.67 ± 0.8 d | 286.38 ± 0.21 b | 35.31 ± 0.68 a | 6.86 ± 0.85 a | 1.07 ± 0.68 a | 1.95 ± 0.94 b |
300 | 2.67 ± 0.13 d | 419.95 ± 0.25 a | 35.85 ± 0.84 a | 6.61 ± 0.62 b | 1.10 ± 0.83 a | 2.39 ± 1.7 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Xue, L.; Ma, Y.; Niu, T.; Zhao, P.; Wu, Z.; Wang, Y. Effects of Ultra-High-Pressure Jet Processing on Casein Structure and Curdling Properties of Skimmed Bovine Milk. Molecules 2023, 28, 2396. https://doi.org/10.3390/molecules28052396
Xu F, Xue L, Ma Y, Niu T, Zhao P, Wu Z, Wang Y. Effects of Ultra-High-Pressure Jet Processing on Casein Structure and Curdling Properties of Skimmed Bovine Milk. Molecules. 2023; 28(5):2396. https://doi.org/10.3390/molecules28052396
Chicago/Turabian StyleXu, Fei, Lu Xue, Yanfeng Ma, Tianjiao Niu, Pei Zhao, Zijian Wu, and Yanfa Wang. 2023. "Effects of Ultra-High-Pressure Jet Processing on Casein Structure and Curdling Properties of Skimmed Bovine Milk" Molecules 28, no. 5: 2396. https://doi.org/10.3390/molecules28052396
APA StyleXu, F., Xue, L., Ma, Y., Niu, T., Zhao, P., Wu, Z., & Wang, Y. (2023). Effects of Ultra-High-Pressure Jet Processing on Casein Structure and Curdling Properties of Skimmed Bovine Milk. Molecules, 28(5), 2396. https://doi.org/10.3390/molecules28052396