Bioactives from Crude Rice Bran Oils Extracted Using Green Technology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Rice Bran Oil Extraction Methods on Yield, and Oil Chemical Qualities
2.2. Effect of Extraction Methods on Antioxidant Activities of the Crude Rice Bran Oil from White and Red Rice Bran
2.3. Effect of Oil Extraction Methods on Nutraceutical Content of the Crude Rice Bran Oil
2.3.1. Effect of Extraction Methods on γ-Oryzanol Contents
2.3.2. Effect of Extraction Methods on Phytosterol Contents
2.3.3. Effect of Extraction Methods on Policosanol Contents (PC)
3. Materials and Methods
3.1. Reagents
3.2. Materials
3.3. Preparation and Stabilization of Rice Bran Materials
3.4. Extraction of the Crude Rice Bran Oils
3.4.1. Cold-Pressing Extraction (CPE)
3.4.2. Hexane Extraction (HE)
3.4.3. Supercritical Fluid Carbon Dioxide Extraction (SF-CO2)
3.4.4. Subcritical Liquefied Dimethyl Ether Extraction (SUBLDME)
3.5. Chemical Analysis
3.5.1. Acid Value (AV) and Free Fatty Acid Content (FFA) of Oil
3.5.2. Determination of Peroxide Value (PV) of Oil
- V = Difference, in mL, between sample and blank titration;
- N = Normality of 0.01 N sodium thiosulphate.
3.5.3. Crude Fat Content of Crude Rice Bran Oil
- W1 = Weight of empty flask (g);
- W2 = Weight of flask and extracted fat (g).
3.6. Analysis of Total Phenolic Content (TPC) and Antioxidant Activities
3.6.1. Extraction of CRBO for TPC and Antioxidant Activities Analysis
3.6.2. Total Phenolic Content (TPC)
3.6.3. Total Antioxidant Activity by DPPH Method
3.6.4. Total Antioxidant Activity by FRAP Method
3.7. Analysis of Nutraceuticals
3.7.1. Analysis of γ-Oryzanol Contents
3.7.2. Analysis of Phytosterol Contents
3.7.3. Analysis of Policosanol Contents (PC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, R.; Xu, Y.; Chang, M.; Tang, L.; Lu, M.; Liu, R.; Jin, Q.; Wang, X. Antioxidant Interaction of α-Tocopherol, γ-Oryzanol and Phytosterol in Rice Bran Oil. Food Chem. 2021, 343, 128431. [Google Scholar] [CrossRef]
- Jung, D.M.; Lee, M.J.; Yoon, S.H.; Jung, M.Y. A Gas Chromatography-Tandem Quadrupole Mass Spectrometric Analysis of Policosanols in Commercial Vegetable Oils. J. Food Sci. 2011, 76, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, G.; Binello, A.; Merizzi, G.; Avogadro, M. Improving Solvent-Free Extraction of Policosanol from Rice Bran by High-Intensity Ultrasound Treatment. Eur. J. Lipid Sci. Technol. 2004, 106, 147–151. [Google Scholar] [CrossRef]
- Krishna, A.G.G.; Khatoon, S.; Shiela, P.M.; Sarmandal, C.V.; Indira, T.N.; Mishra, A. Effect of Refining of Crude Rice Bran Oil on the Retention of Oryzanol in the Refined Oil. J. Am. Oil Chem. Soc. 2001, 78, 127–131. [Google Scholar] [CrossRef]
- Orthoefer, F.T. Rice Bran Oil. In Bailey’s Industrial Oil and Fat Products; Shahid, F., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; Volume 2, pp. 465–489. ISBN 9780471678496. [Google Scholar]
- Huang, Y.P.; Lai, H.M. Bioactive Compounds and Antioxidative Activity of Colored Rice Bran. J. Food Drug Anal. 2016, 24, 564–574. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.W.; Lee, A.Y.; Yeo, S.K.; Chung, H.; Lee, J.H.; Hoang, M.H.; Jia, Y.; Han, S.I.; Oh, S.K.; Lee, S.J.; et al. Metabolic Profiling and Biological Mechanisms of Body Fat Reduction in Mice Fed the Ethanolic Extract of Black-Colored Rice. Food Res. Int. 2013, 53, 373–390. [Google Scholar] [CrossRef]
- Ling, W.H.; Cheng, Q.X.; Ma, J.; Wang, T. Red and Black Rice Decrease Atherosclerotic Plaque Formation and Increase Antioxidant Status in Rabbits. J. Nutr. 2001, 131, 1421–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattanachitthawat, S.; Suwannalert, P.; Riengrojpitak, S.; Chaiyasut, C.; Pantuwatana, S. Phenolic Content and Antioxidant Activities in Red Unpolished Thai Rice Prevents Oxidative Stress in Rats. J. Med. Plants Res. 2010, 4, 796–801. [Google Scholar] [CrossRef]
- Wang, Q.; Han, P.; Zhang, M.; Xia, M.; Zhu, H.; Ma, J.; Hou, M.; Tang, Z.; Ling, W. Supplementation of Black Rice Pigment Fraction Improves Antioxidant and Anti-Inflammatory Status in Patients with Coronary Heart Disease. Asia Pac. J. Clin. Nutr. 2007, 16, 295–301. [Google Scholar]
- Kerckhoffs, D.A.J.M.; Brouns, F.; Hornstra, G.; Mensink, R.P. Effects on the Human Serum Lipoprotein Profile of β-Glucan, Soy Protein and Isoflavones, Plant Sterols and Stanols, Garlic and Tocotrienols. J. Nutr. 2002, 132, 2494–2505. [Google Scholar] [CrossRef] [Green Version]
- Most, M.M.; Tulley, R.; Morales, S.; Lefevre, M. Rice Bran Oil, Not Fiber, Lowers Cholesterol in Humans. Am. J. Clin. Nutr. 2005, 81, 64–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hongu, N.; Kitts, D.D.; Zawistowski, J.; Dossett, C.M.; Kopeć, A.; Pope, B.T.; Buchowski, M.S. Pigmented Rice Bran and Plant Sterol Combination Reduces Serum Lipids in Overweight and Obese Adults. J. Am. Coll. Nutr. 2014, 33, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hoed, V.; Depaemelaere, G.; Ayala, J.V.V.; Santiwattana, P.; Verhe, R.; Greyt, W. De Influence of Chemical Refining on the Major and Minor Components of Rice Bran Oil. J. Am. Oil Chem. Soc. 2006, 83, 315–321. [Google Scholar] [CrossRef]
- Iqbal, J.; Minhajuddin, M.; Beg, Z. Suppression of 7,12-Dimethylbenz[Alpha]Anthracene-Induced Carcinogenesis and Hypercholesterolaemia in Rats by Tocotrienol-Rich Fraction Isolated from Rice Bran Oil. Eur. J. Cancer Prev. 2003, 12, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Rong, N.; Ausman, L.M.; Nicolosi, R.J. Oryzanol Decreases Cholesterol Absorption and Aortic Fatty Streaks in Hamsters. Lipids 1997, 32, 303–309. [Google Scholar] [CrossRef]
- Wester, I. Cholesterol-Lowering Effect of Plant Sterols. Eur. J. Lipid Sci. Technol. 2000, 102, 37–44. [Google Scholar] [CrossRef]
- Pinto, T.I.; Coelho, J.A.; Pires, B.I.; Neng, N.R.; Nogueira, J.M.; Bordado, J.C.; Sardinha, J.P. Supercritical Carbon Dioxide Extraction, Antioxidant Activity, and Fatty Acid Composition of Bran Oil from Rice Varieties Cultivated in Portugal. Separations 2021, 8, 115. [Google Scholar] [CrossRef]
- Charoenchai, L.; Suksaeree, J.; Monton, C.; Chusut, T.; Kraisintu, K. Method Validation and Determination of Fatty Acid Components in Cold Pressed RBO Using Gas Chromatography. Rangsit J. Arts Sci. 2013, 3, c-1–c-5. [Google Scholar]
- Çakaloğlu, B.; Özyurt, V.H.; Ötleş, S. Cold Press in Oil Extraction. A Review. Ukr. Food J. 2018, 7, 640–654. [Google Scholar] [CrossRef]
- Reshad, A.S.; Tiwari, P.; Goud, V.V. Extraction of Oil from Rubber Seeds for Biodiesel Application: Optimization of Parameters. Fuel 2015, 150, 636–644. [Google Scholar] [CrossRef]
- Boonnoun, P.; Shotipruk, A.; Kanda, H.; Goto, M. Optimization of Rubber Seed Oil Extraction Using Liquefied Dimethyl Ether. Chem. Eng. Commun. 2018, 206, 746–753. [Google Scholar] [CrossRef]
- Li, J.; Sun, D.; Qian, L.; Liu, Y. Subcritical Butane Extraction of Wheat Germ Oil and Its Deacidification by Molecular Distillation. Molecules 2016, 21, 1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical Water Extraction of Bioactive Compounds from Waste Onion Skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Cheigh, C.I.; Yoo, S.Y.; Ko, M.J.; Chang, P.S.; Chung, M.S. Extraction Characteristics of Subcritical Water Depending on the Number of Hydroxyl Group in Flavonols. Food Chem. 2015, 168, 21–26. [Google Scholar] [CrossRef]
- Sun, D.; Cao, C.; Li, B.; Chen, H.; Li, J.; Cao, P.; Liu, Y. Antarctic Krill Lipid Extracted by Subcritical N-Butane and Comparison with Supercritical CO2 and Conventional Solvent Extraction. LWT 2018, 94, 1–7. [Google Scholar] [CrossRef]
- Santos, K.A.; Bariccatti, R.A.; Cardozo-Filho, L.; Schneider, R.; Palú, F.; Da Silva, C.; Da Silva, E.A. Extraction of Crambe Seed Oil Using Subcritical Propane: Kinetics, Characterization and Modeling. J. Supercrit. Fluids 2015, 104, 54–61. [Google Scholar] [CrossRef]
- Xu, B.; Han, J.; Zhou, S.; Wu, Q.; Ding, F. Quality Characteristics of Wheat Germ Oil Obtained by Innovative Subcritical Butane Experimental Equipment. J. Food Process Eng. 2016, 39, 79–87. [Google Scholar] [CrossRef]
- Ko, M.J.; Cheigh, C.I.; Chung, M.S. Relationship Analysis between Flavonoids Structure and Subcritical Water Extraction (SWE). Food Chem. 2014, 143, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Castro-Puyana, M.; Mendiola, J.A.; Ibañez, E. Compressed Fluids for the Extraction of Bioactive Compounds. TrAC—Trends Anal. Chem. 2013, 43, 67–83. [Google Scholar] [CrossRef]
- Sapkale, G.N.; Patil, S.M.; Surwase, U.S.; Bhatbhage, P.K. Supercritical Fluid Extraction—A Review. Int. J. Chem. Sci. 2010, 8, 729–743. [Google Scholar]
- Fang, Y.; Gu, S.; Liu, S.; Zhang, J.; Ding, Y.; Liu, J. Extraction of Oil from High-Moisture Tuna Liver by Subcritical Dimethyl Ether: Feasibility and Optimization by the Response Surface Method. RSC Adv. 2018, 8, 2723–2732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subratti, A.; Lalgee, L.J.; Jalsa, N.K. Liquified Dimethyl Ether (DME): A Green Solvent for the Extraction of Hemp (Cannabis sativa L.) Seed Oil. Sustain. Chem. Pharm. 2019, 12, 100144. [Google Scholar] [CrossRef]
- Kanda, H.; Kamo, Y.; Machmudah, S.; Wahyudiono; Goto, M. Extraction of Fucoxanthin from Raw Macroalgae Excluding Drying and Cell Wall Disruption by Liquefied Dimethyl Ether. Mar. Drugs 2014, 12, 2383–2396. [Google Scholar] [CrossRef] [PubMed]
- Kanda, H.; Li, P.; Makino, H. Production of Decaffeinated Green Tea Leaves Using Liquefied Dimethyl Ether. Food Bioprod. Process. 2013, 91, 376–380. [Google Scholar] [CrossRef]
- Goto, M.; Kanda, H.; Wahyudiono; Machmudah, S. Extraction of Carotenoids and Lipids from Algae by Supercritical CO2 and Subcritical Dimethyl Ether. J. Supercrit. Fluids 2015, 96, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Kanda, H.; Li, P. Simple Extraction Method of Green Crude from Natural Blue-Green Microalgae by Dimethyl Ether. Fuel 2011, 90, 1264–1266. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific Opinion on the Safety of Use of Dimethyl Ether as an Extraction Solvent under the Intended Conditions of Use and the Proposed Maximum Residual Limits. Eur. Food Saf. Auth. J. 2015, 13, 4174. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand (FSANZ). Application A1056 Dimethyl Ether as a Processing Aid for Dairy Ingredients & Products Assessment Report; Food Standards Australia New Zealand: Wellington, New Zealand, 2011. [Google Scholar]
- Vakili, R.; Pourazadi, E.; Setoodeh, P.; Eslamloueyan, R.; Rahimpour, M.R. Direct Dimethyl Ether (DME) Synthesis through a Thermally Coupled Heat Exchanger Reactor. Appl. Energy 2011, 88, 1211–1223. [Google Scholar] [CrossRef]
- Peinado, C.; Liuzzi, D.; Ladera-Gallardo, R.M.; Retuerto, M.; Ojeda, M.; Peña, M.A.; Rojas, S. Effects of Support and Reaction Pressure for the Synthesis of Dimethyl Ether over Heteropolyacid Catalysts. Sci. Rep. 2020, 10, 8551. [Google Scholar] [CrossRef]
- Sun, J.; Yang, G.; Yoneyama, Y.; Tsubaki, N. Catalysis Chemistry of Dimethyl Ether Synthesis. ACS Catal. 2014, 4, 3346–3356. [Google Scholar] [CrossRef]
- Banivaheb, S.; Pitter, S.; Delgado, K.H.; Rubin, M.; Sauer, J.; Dittmeyer, R. Recent Progress in Direct DME Synthesis and Potential of Bifunctional Catalysts. Chem. Ing. Tech. 2022, 94, 240–255. [Google Scholar] [CrossRef]
- Delrue, F.; Setier, P.A.; Sahut, C.; Cournac, L.; Roubaud, A.; Peltier, G.; Froment, A.K. An Economic, Sustainability, and Energetic Model of Biodiesel Production from Microalgae. Bioresour. Technol. 2012, 111, 191–200. [Google Scholar] [CrossRef]
- Guo, T.; Wan, C.; Huang, F. Extraction of Rapeseed Cake Oil Using Subcritical R134a/Butane: Process Optimization and Quality Evaluation. Food Sci. Nutr. 2019, 7, 3570–3580. [Google Scholar] [CrossRef]
- Qi, Z.; Xiao, J.; Ye, L.; Chuyun, W.; Chang, Z.; Shugang, L.; Fenghong, H. The Effect of the Subcritical Fluid Extraction on the Quality of Almond Oils: Compared to Conventional Mechanical Pressing Method. Food Sci. Nutr. 2019, 7, 2231–2241. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, G.L.; Ghazani, S.M.; Corazza, M.L.; Marangoni, A.G.; Ribani, R.H. Assessment of Subcritical Propane, Supercritical CO2 and Soxhlet Extraction of Oil from Sapucaia (Lecythis pisonis) Nuts. J. Supercrit. Fluids 2018, 133, 122–132. [Google Scholar] [CrossRef]
- Gao, P.; Liu, R.; Jin, Q.; Wang, X. Effects of Processing Methods on the Chemical Composition and Antioxidant Capacity of Walnut (Juglans regia L.) Oil. LWT 2021, 135, 109958. [Google Scholar] [CrossRef]
- Stevanato, N.; Iwassa, I.J.; Cardozo-Filho, L.; da Silva, C. Quality Parameters of Radish Seed Oil Obtained Using Compressed Propane as Solvent. J. Supercrit. Fluids 2020, 159, 104751. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Angonese, M.; Gomes, C.; Ferreira, S.R.S. Valorization of Passion Fruit (Passiflora edulis sp.) by-Products: Sustainable Recovery and Biological Activities. J. Supercrit. Fluids 2016, 111, 55–62. [Google Scholar] [CrossRef]
- Erşan, S.; Güçlü Üstündağ, Ö.; Carle, R.; Schweiggert, R.M. Subcritical Water Extraction of Phenolic and Antioxidant Constituents from Pistachio (Pistacia vera L.) Hulls. Food Chem. 2018, 253, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Zanqui, A.B.; da Silva, C.M.; Ressutte, J.B.; Rotta, E.M.; Cardozo-Filho, L.; Matsushita, M. Cashew Nut Oil Extracted with Compressed Propane under Different Experimental Conditions: Evaluation of Lipid Composition. J. Food Process. Preserv. 2020, 44, e14599. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.S.; Zhang, T.F.; Wang, X. De Extraction and Characterization of Flaxseed Oil Obtained with Subcritical N-Butane. J. Oleo Sci. 2020, 69, 1011–1020. [Google Scholar] [CrossRef]
- Soares, J.F.; Prá, V.D.; Barrales, F.M.; Dos Santos, P.; Kuhn, R.C.; Rezende, C.A.; Martínez, J.; Mazutti, M.A. Extraction of Rice Bran Oil Using Supercritical CO2 Combined with Ultrasound. Brazilian J. Chem. Eng. 2018, 35, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Kuk, M.S.; Dowd, M.K. Supercritical CO2 Extraction of Rice Bran. J. Am. Oil Chem. Soc. 1998, 75, 623–628. [Google Scholar] [CrossRef]
- Soares, J.F.; Dal Prá, V.; De Souza, M.; Lunelli, F.C.; Abaide, E.; Da Silva, J.R.F.; Kuhn, R.C.; Martínez, J.; Mazutti, M.A. Extraction of Rice Bran Oil Using Supercritical CO2 and Compressed Liquefied Petroleum Gas. J. Food Eng. 2016, 170, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-M.; Wang, F.-Y.; Li, H.-Y.; Wang, X.-D.; Qin, G.-Y. Subcritical Butane and Propane Extraction of Oil from Rice Bran. BioResources 2015, 10, 4652–4662. [Google Scholar] [CrossRef]
- Chen, C.-R.; Wang, C.-H.; Wang, L.-Y.; Hong, Z.-H.; Chen, S.-H.; Ho, W.-J.; Chang, C.-M.J. Supercritical Carbon Dioxide Extraction and Deacidification of Rice Bran Oil. J. Supercrit. Fluids 2008, 45, 322–331. [Google Scholar] [CrossRef]
- Chia, S.L.; Boo, H.C.; Muhamad, K.; Sulaiman, R.; Umanan, F.; Chong, G.H. Effect of Subcritical Carbon Dioxide Extraction and Bran Stabilization Methods on Rice Bran Oil. J. Am. Oil Chem. Soc. 2015, 92, 393–402. [Google Scholar] [CrossRef]
- Sarmento, C.M.P.; Ferreira, S.R.S.; Hense, H. Supercritical Fluid Extraction (SFE) of Rice Bran Oil to Obtain Fractions Enriched with Tocopherols and Tocotrienols. Brazilian J. Chem. Eng. 2006, 23, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Pengkumsri, N.; Chaiyasut, C.; Saenjum, C.; Sirilun, S.; Peerajan, S.; Suwannalert, P.; Sirisattha, S.; Sivamaruthi, B.S. Physicochemical and Antioxidative Properties of Black, Brown and Red Rice Varieties of Northern Thailand. Food Sci. Technol. 2015, 35, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Mingyai, S.; Kettawan, A.; Srikaeo, K.; Singanusong, R. Physicochemical and Antioxidant Properties of Rice Bran Oils Produced from Colored Rice Using Different Extraction Methods. J. Oleo Sci. 2017, 572, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Dunford, N.T.; King, J.W. Supercritical Carbon Dioxide Fractionation of Crude Rice Bran Oil Using a Packed Column with Characterization of the Resultant Fractions. In Proceedings of the 5th International Symposium on Supercritical Fluids, Atlanta, GA, USA, 8–12 April 2000. [Google Scholar]
- Bondioli, P.; Mariani, C.; Lanzani, A.; Fedeli, E.; Mossa, A.; Muller, A. Lampante Olive Oil Refining with Supercritical Carbon Dioxide. J. Am. Oil Chem. Soc. 1992, 69, 477–480. [Google Scholar] [CrossRef]
- Brunetti, L.; Daghetta, A.; Fedell, E.; Kikic, I.; Zanderighi, L. Deacidification of Olive Oils by Supercritical Carbon Dioxide. J. Am. Oil Chem. Soc. 1989, 66, 209–217. [Google Scholar] [CrossRef]
- Arora, R.; Toor, A.P.; Wanchoo, R.K. Esterification of High Free Fatty Acid Rice Bran Oil: Parametric and Kinetic Study. Chem. Biochem. Eng. Q. 2015, 29, 617–623. [Google Scholar] [CrossRef]
- Pandey, A. Handbook of Plant-Based Biofuels; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Amin, S.K.; Abdallah, H.A.M. Enhancement of Free Fatty Acid in Rice Bran Oil for Acid Catalysis Biodiesel Production. Aust. J. Basic Appl. Sci. 2012, 6, 795–806. [Google Scholar]
- Oluremi, O.I.; Solomon, A.O.; Saheed, A.A. Fatty Acids, Metal Composition and Physico-Chemical Parameters of Igbemo Ekiti Rice Bran Oil. Environ. Chem. 2013, 5, 39–46. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. CODEX Standard for Named Vegetable Oils CXS 210-1999. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf (accessed on 25 January 2023).
- Sawadikiat, P.; Hongsprabhas, P. Phytosterols and γ-Oryzanol in Rice Bran Oils and Distillates from Physical Refining Process. Int. J. Food Sci. Technol. 2014, 49, 2030–2036. [Google Scholar] [CrossRef]
- Malekian, F.; Rao, R.M.; Prinyawiwatkul, W.; Marshall, W.E.; Windhauser, M.; Ahmedna, M. Lipase and Lipoxygenase Activity, Functionality, and Nutrient Losses in Rice Bran During Storage; LSU AgCenter, Louisiana State University: Baton Rouge, LA, USA, 2000; pp. 1–70. [Google Scholar]
- Thanonkaew, A.; Wongyai, S.; McClements, D.J.; Decker, E.A. Effect of Stabilization of Rice Bran by Domestic Heating on Mechanical Extraction Yield, Quality, and Antioxidant Properties of Cold-Pressed Rice Bran Oil (Oryza saltiva L.). LWT 2012, 48, 231–236. [Google Scholar] [CrossRef]
- Kilic, B.; Richards, M.P. Lipid Oxidation in Poultry Döner Kebab: Pro-Oxidative and Anti-Oxidative Factors. J. Food Sci. 2003, 68, 686–689. [Google Scholar] [CrossRef]
- Leardkamolkarn, V.; Thongthep, W.; Suttiarporn, P.; Kongkachuichai, R.; Wongpornchai, S.; Wanavijitr, A. Chemopreventive Properties of the Bran Extracted from a Newly-Developed Thai Rice: The Riceberry. Food Chem. 2011, 125, 978–985. [Google Scholar] [CrossRef]
- Kongthitilerd, P.; Suantawee, T.; Cheng, H.; Thilavech, T.; Marnpae, M.; Adisakwattana, S. Anthocyanin-Enriched Riceberry Rice Extract Inhibits Cell Proliferation and Adipogenesis in 3t3-L1 Preadipocytes by Downregulating Adipogenic Transcription Factors and Their Targeting Genes. Nutrients 2020, 12, 2480. [Google Scholar] [CrossRef]
- Settapramote, N.; Laokuldilok, T.; Boonyawan, D.; Utama-ang, N. Physiochemical, Antioxidant Activities and Anthocyanin of Riceberry Rice from Different Locations in Thailand. Food Appl. Biosci. J. 2018, 6, 84–94. [Google Scholar]
- Duthie, G.G.; Duthie, S.J.; Kyle, J.A.M. Plant Polyphenols in Cancer and Heart Disease: Implications as Nutritional Antioxidants. Nutr. Res. Rev. 2000, 13, 79–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krga, I.; Milenkovic, D. Anthocyanins: From Sources and Bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. J. Agric. Food Chem. 2019, 67, 1771–1783. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, W. Metabolism of Anthocyanins and Consequent Effects on the Gut Microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [Google Scholar] [CrossRef]
- Akiya, T. Components of Unsaponifiable Matter of Rice Bran by Toshimi AKIYA Food Research Institute, Ministry of Agriculture and Forestry, Tokyo in Several Countries, Rice Bran Is a Potential Source of Oil in Considerable Quantity. Agric. Biol. Chem. 1962, 26, 180–186. [Google Scholar] [CrossRef]
- Hvolby, A. Removal of Nonhydratable Phospholipids from Soybean Oil. J. Am. Oil Chem. Soc. 1971, 48, 503–509. [Google Scholar] [CrossRef]
- Lilitchan, S.; Aryusuk, K. Health Benefits and Production of Policosanol from Rice Bran Wax. J. Public Health 2008, 38, 457–464. [Google Scholar]
- Jennings, B.H.; Akoh, C.C. Trans-Free Plastic Shortenings Prepared with Palm Stearin and Rice Bran Oil Structured Lipid. J. Am. Oil Chem. Soc. 2010, 87, 411–417. [Google Scholar] [CrossRef]
- Hussain, N.; Ishak, I.; Agus, B.A.P.; Samah, N.F.A. Effects of Different Stabilization Conditions and Extraction Methods (Soxhlet and Ultrasonic-Assisted) on Quality of Rice Bran Oil. Emir. J. Food Agric. 2021, 33, 220–227. [Google Scholar] [CrossRef]
- Gopala Krishna, A.G. Influence of Viscosity on Wax Settling and Refining Loss in Rice Bran Oil. J. Am. Oil Chem. Soc. 1993, 70, 895–898. [Google Scholar] [CrossRef]
- Jun, H.I.; Song, G.S.; Yang, E.I.; Youn, Y.; Kim, Y.S. Antioxidant Activities and Phenolic Compounds of Pigmented Rice Bran Extracts. J. Food Sci. 2012, 77, C759–C764. [Google Scholar] [CrossRef] [PubMed]
- Laokuldilok, T.; Shoemaker, C.F.; Jongkaewwattana, S.; Tulyathan, V. Antioxidants and Antioxidant Activity of Several Pigmented Rice Brans. J. Agric. Food Chem. 2011, 59, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Wisetkomolmat, J.; Arjin, C.; Satsook, A.; Seel-audom, M.; Ruksiriwanich, W.; Prom-u-Thai, C.; Sringarm, K. Comparative Analysis of Nutritional Components and Phytochemical Attributes of Selected Thai Rice Bran. Front. Nutr. 2022, 9, 833730. [Google Scholar] [CrossRef]
- Pengkumsri, N.; Chaiyasut, C.; Sivamaruthi, B.S.; Saenjum, C.; Sirilun, S.; Peerajan, S.; Suwannalert, P.; Sirisattha, S.; Chaiyasut, K.; Kesika, P. The Influence of Extraction Methods on Composition and Antioxidant Properties of Rice Bran Oil. Food Sci. Technol. 2015, 35, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Godber, J.S. Comparison of Supercritical Fluid and Solvent Extraction Methods in Extracting γ-Oryzanol from Rice Bran. J. Am. Oil Chem. Soc. 2000, 77, 547–551. [Google Scholar] [CrossRef]
- Ruen-Ngam, D.; Thawai, C.; Sukonthamat, S.; Khuwaranyu, K. Effect of Subcritical Solvent Extraction Conditions on Amount of γ-Oryzanol and γ-Tocopherol in Dawk Pa-Yom Rice Bran Oil. Curr. Appl. Sci. Technol. 2021, 21, 151–161. [Google Scholar] [CrossRef]
- Katsri, K.; Noitup, P.; Junsangsree, P.; Singanusong, R. The Optimum Mixing Ratio between Hydrogenated Palm Kernel Oil and Cold- Pressed Rice Bran Oil for Further Utilization in Liquid Coffee Whitener. In Proceedings of the 13th ASEAN Food Conference 2013: Meeting Future Food Demands: Security & Sustainability, Singapore, 9–11 September 2013; pp. 9–11. [Google Scholar]
- Patel, M.; Naik, S.N. Gamma-Oryzanol from Rice Bran Oil—A Review. J. Sci. Ind. Res. 2004, 63, 569–578. [Google Scholar]
- Somseemee, O.; Morakot, N.; Sittiwet, C. Analysis of Sterol Content in Jasmine Rice (Oryza sativa). In Proceedings of the Rajabhat Maha Sarakham University Research Conference, Maha Sarakham, Thailand, 18–19 September 2014; pp. 1–10. [Google Scholar]
- Mingyai, S.; Srikaeo, K.; Kettawan, A.; Singanusong, R.; Nakagawa, K.; Kimura, F.; Ito, J. Effects of Extraction Methods on Phytochemicals of Rice Bran Oils Produced from Colored Rice. J. Oleo Sci. 2018, 67, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Derakhshan-Honarparvar, M.; Hamedi, M.M.; Pirouzifard, M.K. Rice Bran Phytosterols of Three Widespread Iranian Cultivars. J. Agric. Sci. Technol. 2010, 12, 167–172. [Google Scholar]
- Geçgel, Ü.; Dağlioğlu, O.; Yilmaz, İ.; Arici, M.; Güner, K.G.; Apaydin, D.; Dülger, G.Ç.; Onur, A.Y.; Ersöz, B.; Çotra, Y.; et al. Determination of Physicochemical Properties and Oxidative Stability of Rice Bran Oils. J. Tekirdag Agric. Fac. 2017, 14, 93–102. [Google Scholar]
- Salehi, E.A.; Sardarodiyan, M. Bioactive Phytochemicals in Rice Bran: Processing and Functional Properties. Biochemistry 2016, 10, 101. [Google Scholar]
- Balachandran, C.; Mayamol, P.N.; Thomas, S.; Sukumar, D.; Sundaresan, A.; Arumughan, C. An Ecofriendly Approach to Process Rice Bran for High Quality Rice Bran Oil Using Supercritical Carbon Dioxide for Nutraceutical Applications. Bioresour. Technol. 2008, 99, 2905–2912. [Google Scholar] [CrossRef] [PubMed]
- Kamchonemenukool, S.; Ho, C.-T.; Boonnoun, P.; Li, S.; Pan, M.-H.; Klangpetch, W.; Weerawatanakorn, M. High Levels of Policosanols and Phytosterols from Sugar Mill Waste by Subcritical Liquefied Dimethyl Ether. Foods 2022, 11, 2937. [Google Scholar] [CrossRef] [PubMed]
- Zanqui, A.B.; da Silva, C.M.; Ressutte, J.B.; de Morais, D.R.; Santos, J.M.; Eberlin, M.N.; Cardozo-Filho, L.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Brazil Nut Oil Extraction Using Subcritical. J. Braz. Chem. Soc. 2020, 31, 603–612. [Google Scholar]
- Han, J.H.; Wu, Q.F.; Xu, B.; Zhou, S.L.; Ding, F. Quality Characteristics of Soybean Germ Oil Obtained by Innovative Subcritical Butane Experimental Equipment. Qual. Assur. Saf. Crop. Foods 2016, 8, 369–377. [Google Scholar] [CrossRef]
- Wongwaiwech, D.; Weerawatanakorn, M.; Tharatha, S.; Ho, C.T. Comparative Study on Amount of Nutraceuticals in By-Products from Solvent and Cold Pressing Methods of Rice Bran Oil Processing. J. Food Drug Anal. 2019, 27, 71–82. [Google Scholar] [CrossRef] [Green Version]
- AOCS. AOCS Official Method: Acid Value. In Official Methods and Recommended Practices of American Oil Chemist′ s Society; American Oil Chemist’s Society: Champaign, IL, USA, 2003. [Google Scholar]
- AOCS. AOCS Official Method Cd 8-53: Peroxide Value. In Official Methods and Recommended Practices of American Oil Chemist′ s Society; Firestone, D., Ed.; American Oil Chemist’s Society: Champaign, IL, USA, 1997. [Google Scholar]
- Gutfinger, T. Polyphenols in Olive Oils. J. Am. Oil Chem. Soc. Vol. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Thanh, T.T.; Vergnes, M.F.; Kaloustian, J.; El-Moselhy, T.F.; Amiot-Carlin, M.J.; Portugal, H. Effect of Storage and Heating on Phytosterol Concentrations in Vegetable Oils Determined by GC/MS. J. Sci. Food Agric. 2006, 86, 220–225. [Google Scholar] [CrossRef]
Plant Matrix | Nutraceutical Composition | Extraction Methods | Yields (%) | Antioxidant Activity | References |
---|---|---|---|---|---|
Rapeseed cake |
|
| 87.76 74.18 74.25 | [45] | |
Almond |
|
| 44.05 49.71 41.52 | TPC (SF-CO2 > CPE) | [46] |
Sapucaia nuts |
|
| 46.22 33.32 49.50 | [47] | |
Tuna liver |
|
| 17.46 17.51 | [32] | |
Walnut |
|
| 47.04 45.10 58.11 54.84 44.46 | DPPH (μmol TE/kg) 247 172 261 272 241 | [48] |
Radish seed |
|
| 14.94 28.40 19.33 | [49] | |
Passion fruit seed |
|
| 25.90 23.70 23.10 | TPC (mgGAE/g) 33.0 284 336 | [50] |
Wheat germ |
|
| 11.69 11.09 10.19 | [28] | |
Wheat germ |
|
| 9.10 9.24 8.78 | [23] | |
Hemp seed |
|
| 31 23 26 | [33] | |
Pistachio hull |
|
| 70.9 59.5 | TPC (g/kg) 39.3 81.8 | [51] |
Cashew nut |
|
| 35.9 33.1 | ORAC (μmol/ET.g of TL) 176.3 156.4 | [52] |
Flaxseed |
|
| 28.75 27.53 19.56 | [53] | |
Rice bran |
|
| 9.94 11.13–12.10 | DPPH (%) 71.7 69.3–72.4 | [54] |
Rice bran |
|
| 20.5 19.2–20.4 | [55] | |
Rice bran |
|
| 12.68 12.07 | DPPH (%) 71.67 67.49 | [56] |
Rice bran |
|
| 89.11 91.42 67.73 | [57] | |
Rice bran |
|
| 15.70 | [58] | |
Rice bran |
|
| 22.07–22.80 13.32–14.5 | [59] | |
Parboiled rice bran |
|
| 10–80 | [60] |
Extraction Method | Sample | Oil Yield (%) | Acid Value (mg KOH/g Oil) | FFA (%) | Peroxide Value (meq/kg Oil) |
---|---|---|---|---|---|
HE | Red rice bran | 20.8 ± 7.4 bc | 13.30 ± 0.23 e | 6.69 ± 0.12 e | 0.53 ± 0.19 f |
White rice bran | 26.0 ± 2.0 a | 14.38 ± 0.12 d | 7.23 ± 0.06 d | 0.43 ± 0.37 f | |
CPE | Red rice bran | 5.4 ± 1.0 e | 16.55 ± 0.40 c | 8.32 ± 0.20 c | 10.77 ± 0.71 a |
White rice bran | 4.2 ± 2.1 e | 14.39 ± 0.29 d | 7.23 ± 0.15 d | 9.57 ± 0.34 b | |
SF-CO2 | Red rice bran | 15.5 ± 3.0 d | 48.09 ± 0.62 b | 24.17 ± 0.31 b | 5.18 ± 0.48 c |
White rice bran | 16.2 ± 2.1 d | 49.27 ± 0.29 a | 24.77 ± 0.14 a | 3.94 ± 1.03 d | |
SUBLDME | Red rice bran | 19.6 ± 1.5 cd | 14.04 ± 0.35 d | 7.06 ± 0.18 d | 2.98 ± 0.51 de |
White rice bran | 24.6 ± 1.2 ab | 16.23 ± 0.37 c | 8.16 ± 0.19 c | 2.66 ± 0.49 e |
Extraction Methods | Samples | L* | a* | b* | Viscosity (cPs) |
---|---|---|---|---|---|
HE | Red rice bran | 15.53 ± 0.06 h | 0.33 ± 0.06 h | −1.00 ± 0.00 f | 43.15 ± 0.09 f |
White rice bran | 26.00 ± 0.01 d | 2.57 ± 0.06 c | 8.17 ± 0.06 d | 19.73 ± 0.07 g | |
CPE | Red rice bran | 21.84 ± 0.01 g | 2.20 ± 0.01 e | −4.38 ± 0.01 g | 75.67 ± 1.53 e |
White rice bran | 23.20 ± 0.01 f | 1.49 ± 0.02 g | −0.94 ± 0.01 f | 84.67 ± 1.53 d | |
SF-CO2 | Red rice bran | 40.87 ± 0.06 a | 4.80 ± 0.01 a | 30.20 ± 0.10 a | 191.00 ± 0.57 b |
White rice bran | 37.07 ± 0.12 b | 2.27 ± 0.06 d | 14.00 ± 0.01 c | 186.90 ± 0.71 b | |
SUBLDME | Red rice bran | 24.27 ± 0.06 e | 2.10 ± 0.01 f | 7.57 ± 0.06 e | 225.85 ± 7.00 a |
White rice bran | 35.37 ± 0.06 c | 4.10 ± 0.01 b | 17.83 ± 0.06 b | 152.10 ± 1.27 c |
Extraction Method | Sample | TPC (mg GAE/100 g Oil) | DPPH (mg Trox E/100 g) | FRAP (mg Trox E/100 g) |
---|---|---|---|---|
HE | Red rice bran | 362.05 ± 12.81 b | 37.03 ± 1.06 a | 1732.13 ± 24.13 b |
White rice bran | 190.39 ± 5.85 c | 15.92 ± 0.99 c | 364.80 ± 5.54 g | |
CPE | Red rice bran | 192.12 ± 2.81 c | 26.58 ± 0.37 b | 483.24 ± 13.97 f |
White rice bran | 66.60 ± 0.40 d | 16.41 ± 0.10 c | 266.48 ± 2.02 g | |
SF-CO2 | Red rice bran | 68.64 ± 3.14 d | 12.89 ± 0.16 e | 1119.71 ± 55.08 c |
White rice bran | 38.71 ± 0.52 d | 11.40 ± 0.05 f | 720.99 ± 24.12 e | |
SUBLDME | Red rice bran | 1880.36 ± 92.80 a | 14.63 ± 0.36 d | 25,304.69 ± 138.43 a |
White rice bran | 400.39 ± 35.71 b | 5.59 ± 0.53 g | 942.53 ± 48.46 d |
Extraction Method | Rice Bran | γ-Oryzanol (mg/100 g) | Phytosterol Content (mg/100 g) | ||||
---|---|---|---|---|---|---|---|
CAMP | STGM | B-SIT | SIT | Total | |||
HE | Red rice | 1046.10 ± 10.03 d | 180.07 ± 2.52 c | 280.43 ± 0.83 d | 736.40 ± 1.14 d | 40.12 ± 0.41 g | 1237.02 ± 4.89 e |
White rice | 1096.11 ± 10.81 c | 74.12 ± 1.07 f | 132.04 ± 0.97 g | 371.00 ± 1.74 g | 46.93 ± 2.96 f | 624.09 ± 3.26 g | |
CPE | Red rice | 1338.32 ± 3.50 a | 135.64 ± 0.36 e | 265.41 ± 1.01 e | 597.17 ± 3.87 e | 32.69 ± 0.20 h | 1030.92 ± 5.45 f |
White rice | 1370.43 ± 26.60 a | 57.52 ± 0.24 g | 25.04 ± 0.03 h | 145.78 ± 0.79 h | 170.19 ± 1.29 b | 398.53 ± 1.88 h | |
SF-CO2 | Red rice | 1118.49 ± 7.37 c | 237.89 ± 0.26 b | 391.29 ± 3.82 a | 955.76 ± 0.54 b | 59.46 ± 0.28 e | 1644.40 ± 4.33 c |
White rice | 741.13 ± 31.74 f | 161.55 ± 0.28 d | 319.35 ± 2.68 c | 799.44 ± 0.85 c | 66.99 ± 0.37 d | 1347.33 ± 4.18 d | |
SUBLDME | Red rice | 949.00 ± 44.21 e | 739.26 ± 12.18 a | 232.32 ± 5.70 f | 531.37 ± 0.89 f | 281.21 ± 2.17 a | 1784.17 ± 7.75 a |
White rice | 1213.64 ± 5.25 b | 229.85 ± 0.93 b | 337.96 ± 5.14 b | 1033.13 ± 13.18 a | 81.27 ± 0.06 c | 1682.21 ± 19.30 b |
Extraction Method | Rice Bran | Policosanol Content (mg/100 g) | |||||
---|---|---|---|---|---|---|---|
C24 | C26 | C28 | C30 | C32 | Total | ||
HE | Red rice | 60.80 ± 2.26 b | 37.98 ± 0.17 ef | 47.92 ± 0.10 ef | 41.33 ± 0.03 e | 42.12 ± 0.11 cd | 230.14 ± 2.68 d |
White rice | 47.78 ± 1.09 d | 43.23 ± 1.06 b | 56.45 ± 0.51 a | 55.82 ± 0.40 a | 43.00 ± 0.36 bc | 246.29 ± 0.53 c | |
CPE | Red rice | 41.88 ± 0.48 e | 36.94 ± 031 f | 46.48 ± 0.10 f | 40.51 ± 0.34 e | 39.87 ± 0.10 d | 205.69 ± 1.34 f |
White rice | 43.90 ± 1.40 e | 38.32 ± 0.03 ef | 48.82 ± 0.71 e | 43.80 ± 4.97 de | 45.00 ± 1.42 b | 219.85 ± 7.11 e | |
SF-CO2 | Red rice | 58.66 ± 0.18 bc | 39.33 ± 0.03 de | 50.38 ± 0.44 d | 44.90 ± 5.14 cde | 54.51 ± 0.23 a | 247.78 ± 4.32 bc |
White rice | 57.43 ± 1.61 c | 41.57 ± 2.03 bc | 53.63 ± 0.23 b | 50.51 ± 0.01 abc | 52.14 ± 0.28 a | 255.27 ± 0.10 b | |
SUBLDME | Red rice | 60.38 ± 0.80 bc | 40.51 ± 0.02 cd | 51.97 ± 1.01 c | 48.11 ± 0.46 bcd | 53.80 ± 2.35 a | 254.78 ± 4.46 bc |
White rice | 68.10 ± 1.05 a | 45.73 ± 0.25 a | 57.20 ± 1.07 a | 51.31 ± 0.49 ab | 52.06 ± 1.22 a | 274.40 ± 1.98 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongwaiwech, D.; Kamchonemenukool, S.; Ho, C.-T.; Li, S.; Majai, N.; Rungrat, T.; Sujipuli, K.; Pan, M.-H.; Weerawatanakorn, M. Bioactives from Crude Rice Bran Oils Extracted Using Green Technology. Molecules 2023, 28, 2457. https://doi.org/10.3390/molecules28062457
Wongwaiwech D, Kamchonemenukool S, Ho C-T, Li S, Majai N, Rungrat T, Sujipuli K, Pan M-H, Weerawatanakorn M. Bioactives from Crude Rice Bran Oils Extracted Using Green Technology. Molecules. 2023; 28(6):2457. https://doi.org/10.3390/molecules28062457
Chicago/Turabian StyleWongwaiwech, Donporn, Sudthida Kamchonemenukool, Chi-Tang Ho, Shiming Li, Nutthaporn Majai, Tepsuda Rungrat, Kawee Sujipuli, Min-Hsiung Pan, and Monthana Weerawatanakorn. 2023. "Bioactives from Crude Rice Bran Oils Extracted Using Green Technology" Molecules 28, no. 6: 2457. https://doi.org/10.3390/molecules28062457
APA StyleWongwaiwech, D., Kamchonemenukool, S., Ho, C. -T., Li, S., Majai, N., Rungrat, T., Sujipuli, K., Pan, M. -H., & Weerawatanakorn, M. (2023). Bioactives from Crude Rice Bran Oils Extracted Using Green Technology. Molecules, 28(6), 2457. https://doi.org/10.3390/molecules28062457