Cyclic [Cu-biRadical]2 Secondary Building Unit in 2p-3d and 2p-3d-4f Complexes: Crystal Structure and Magnetic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectral Properties
2.2. Description of the Crystal Structures
2.3. Magnetic Properties
3. Materials and Methods
3.1. Materials and Physical Measurements
3.2. Synthesis of the Complexes
3.2.1. [Cu8 (biNIT-3Py-5-Ph)4(hfac)16] (1)
3.2.2. {[Gd(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n (2)
3.2.3. {[Tb(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n (3)
3.2.4. {[Dy(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n (4)
3.3. X-Ray Structure Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Caneschi, A.; Gatteschi, D.; Sessoli, R.; Rey, P. Toward molecular magnets: The metal-radical approach. Acc. Chem Res. 1989, 22, 392–398. [Google Scholar] [CrossRef]
- Demir, S.; Jeon, I.-R.; Long, J.R.; Harris, T.D. Radical ligand-containing single-molecule magnets. Coord. Chem. Rev. 2015, 289–290, 149–176. [Google Scholar] [CrossRef] [Green Version]
- Thorarinsdottir, A.E.; Harris, T.D. Metal–Organic Framework Magnets. Chem. Rev. 2020, 120, 8716–8789. [Google Scholar] [CrossRef]
- Inoue, K.; Hayamizu, T.; Iwamura, H.; Hashizume, D.; Ohashi, Y. Assemblage and Alignment of the Spins of the Organic Trinitroxide Radical with a Quartet Ground State by Means of Complexation with Magnetic Metal Ions. A Molecule-Based Magnet with Three-Dimensional Structure and High TC of 46 K. J. Am. Chem. Soc. 1996, 118, 1803–1804. [Google Scholar] [CrossRef]
- Fegy, K.; Luneau, D.; Ohm, T.; Paulsen, C.; Rey, P. Two-Dimensional Nitroxide-Based Molecular Magnetic Materials. Angew. Chem. Int. Ed. 1998, 37, 1270–1273. [Google Scholar] [CrossRef]
- Lanfranc de Panthou, F.; Belorizky, E.; Calemczuk, R.; Luneau, D.; Marcenat, C.; Ressouche, E.; Turek, P.; Rey, P. A New Type of Thermally Induced Spin Transition Associated with an Equatorial. dblarw. Axial Conversion in a Copper(II)-Nitroxide Cluster. J. Am. Chem. Soc. 1995, 117, 11247–11253. [Google Scholar] [CrossRef]
- Lanfranc de Panthou, F.; Luneau, D.; Musin, R.; Öhrström, L.; Grand, A.; Turek, P.; Rey, P. Spin-Transition and Ferromagnetic Interactions in Copper(II) Complexes of a 3-Pyridyl-Substituted Imino Nitroxide. Dependence of the Magnetic Properties upon Crystal Packing. Inorg. Chem. 1996, 35, 3484–3491. [Google Scholar] [CrossRef]
- Kaszub, W.; Marino, A.; Lorenc, M.; Collet, E.; Bagryanskaya, E.G.; Tretyakov, E.V.; Ovcharenko, V.I.; Fedin, M.V. Ultrafast Photoswitching in a Copper-Nitroxide-Based Molecular Magnet. Angew. Chem. Int. Ed. 2014, 53, 10636–10640. [Google Scholar] [CrossRef]
- Fedin, M.V.; Veber, S.L.; Maryunina, K.Y.; Romanenko, G.V.; Suturina, E.A.; Gritsan, N.P.; Sagdeev, R.Z.; Ovcharenko, V.I.; Bagryanskaya, E.G. Intercluster Exchange Pathways in Polymer-Chain Molecular Magnets Cu(hfac)2L-R Unveiled by Electron Paramagnetic Resonance. J. Am. Chem. Soc. 2010, 132, 13386–13891. [Google Scholar] [CrossRef]
- Zhu, M.; Li, C.; Wang, X.; Li, L.; Sutter, J.-P. Thermal Magnetic Hysteresis in a Copper–Gadolinium–Radical Chain Compound. Inorg. Chem. 2016, 55, 2676–2678. [Google Scholar] [CrossRef]
- Caneschi, A.; Gatteschi, D.; Lalioti, N.; Sangregorio, C.; Sessoli, R.; Venturi, G.; Vindigni, A.; Rettori, A.; Pini, M.G.; Novak, M.A. Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew. Chem. Int. Ed. 2001, 40, 1760–1763. [Google Scholar] [CrossRef]
- Patrascu, A.A.; Briganti, M.; Soriano, S.; Calancea, S.; Allão Cassaro, R.A.; Totti, F.; Vaz, M.G.F.; Andruh, M. SMM Behavior Tuned by an Exchange Coupling LEGO Approach for Chimeric Compounds: First 2p–3d–4f Heterotrispin Complexes with Different Metal Ions Bridged by One Aminoxyl Group. Inorg. Chem. 2019, 58, 13090–13101. [Google Scholar] [CrossRef]
- Kanegawa, S.; Karasawa, S.; Maeyama, M.; Nakano, M.; Koga, N. Crystal Design of Monometallic Single-Molecule Magnets Consisting of Cobalt-Aminoxyl Heterospins. J. Am. Chem. Soc. 2008, 130, 3079–3094. [Google Scholar] [CrossRef] [PubMed]
- Bencini, A.; Caneschi, A.; Dei, A.; Gatteschi, D.; Sangregorio, C.; Shultz, D.; Sorace, L.; Vaz, M.G.F. Polyoxolenes may provide a tool for designing paramagnetic molecules with predetermined spin topologies. Comptes Rendus Chim. 2003, 6, 663–676. [Google Scholar] [CrossRef]
- Dei, A.; Gatteschi, D.; Sangregorio, C.; Sorace, L. Quinonoid Metal Complexes: Toward Molecular Switches. Acc. Chem. Res. 2004, 37, 827–835. [Google Scholar] [CrossRef]
- Ovcharenko, V.I.; Gorelik, E.V.; Fokin, S.V.; Romanenko, G.V.; Ikorskii, V.N.; Krashilina, A.V.; Cherkasov, V.K.; Abakumov, G.A. Ligand Effects on the Ferro- to Antiferromagnetic Exchange Ratio in Bis(o-Semiquinonato) copper(II). J. Am. Chem. Soc. 2007, 129, 10512–10521. [Google Scholar] [CrossRef]
- Iwamura, H.; Koga, N. Studies of organic di-, oligo-, and polyradicals by means of their bulk magnetic properties. Acc. Chem. Res. 1993, 26, 346–351. [Google Scholar] [CrossRef]
- Luneau, D.; Rey, P. Magnetism of metal-nitroxide compounds involving bis-chelating imidazole and benzimidazole substituted nitronyl nitroxide free radicals. Coord. Chem. Rev. 2005, 249, 2591–2611. [Google Scholar] [CrossRef]
- Baskett, M.; Paduan-Filho, A.; Oliveira, N.F., Jr.; Chandrasekaran, A.; Mague, J.T.; Lahti, P.M. Loops, Chains, Sheets, and Networks from Variable Coordination of Cu(hfac)2 with a Flexibly Hinged Aminoxyl Radical Ligand. Inorg. Chem. 2011, 50, 5060–5074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Z.-X.; Xie, H.-M.; Li, M.-X.; Woods, T.J.; Dunbar, K.R. A cobalt(ii) spin-crossover compound with partially charged TCNQ radicals and an anomalous conducting behavior. Chem. Sci. 2016, 7, 1569–1574. [Google Scholar] [CrossRef] [Green Version]
- Pokhodnya, K.I.; Bonner, M.; Her, J.H.; Stephens, P.W.; Miller, J.S. Magnetic ordering (Tc = 90 K) observed for layered [FeII(TCNE•−)(NCMe)2]+[(FeIIICl4)]− (TCNE = Tetracyanoethylene). J. Am. Chem. Soc. 2006, 128, 15592–15593. [Google Scholar] [CrossRef]
- Miller, J.S. Zero-dimensional organic-based magnets possessing decamethylmetallocene. J. Mater. Chem. 2010, 20, 1846–1857. [Google Scholar] [CrossRef]
- Wang, C.; Lin, S.-Y.; Shi, W.; Cheng, P.; Tang, J.-K. Exploiting verdazyl radicals to assemble 2p–3d–4f one-dimensional chains. Dalton Trans. 2015, 44, 5364–5368. [Google Scholar] [CrossRef]
- Brook, D.J.R.; Lynch, V.; Conklin, B.; Fox, M.A. Spin Delocalization in the Copper(I) Complexes of Bis(verdazyl) Diradicals. J. Am. Chem. Soc. 1997, 119, 5155–5162. [Google Scholar] [CrossRef]
- Fujita, W.; Awaga, K. Ferromagnetic Coordination Polymer Composed of Heterocyclic Thiazyl Radical, 1,3,5-Trithia-2,4,6-triazapentalenyl (TTTA), and Bis(hexafluoroacetylacetonato) copper(II) (Cu(hfac)2). J. Am. Chem. Soc. 2001, 123, 3601–3602. [Google Scholar] [CrossRef] [PubMed]
- Alberola, A.; Less, R.J.; Pask, C.M.; Rawson, J.M.; Palacio, F.; Oliete, P.; Paulsen, C.; Yamaguchi, A.; Farley, R.D.; Murphy, D.M. A Thiazyl-Based Organic Ferromagnet. Angew. Chem. Int. Ed. 2003, 42, 4782–4785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Perfetti, M.; Kern, M.; Hallmen, P.P.; Ungur, L.; Lenz, S.; Ringenberg, M.R.; Frey, W.; Stoll, H.; Rauhut, G.; et al. Exchange coupling and single molecule magnetism in redox-active tetraoxolene-bridged dilanthanide complexes. Chem. Sci. 2018, 9, 1221–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, T.; Wang, X.-Q.; Chai, Y.-C.; Zheng, Y.-Z. Slow Relaxation of Magnetization in a p-Semiquinone Radical-Bridged Dysprosium Complex. Cryst. Growth Des. 2023, 23, 24–30. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, H.; Ballesteros-Rivas, M.; Woods, T.J.; Dunbar, K.R. Conducting Molecular Nanomagnet of DyIII with Partially Charged TCNQ Radicals. Chem. Eur. J. 2017, 23, 7448–7452. [Google Scholar] [CrossRef]
- Üngör, Ö.; Burrows, M.; Liu, T.; Bodensteiner, M.; Adhikari, Y.; Hua, Z.; Casas, B.; Balicas, L.; Xiong, P.; Shatruk, M. Paramagnetic Molecular Semiconductors Combining Anisotropic Magnetic Ions with TCNQ Radical Anions. Inorg. Chem. 2021, 60, 10502–10512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Saber, M.R.; Prosvirin, A.P.; Reibenspies, J.H.; Sun, L.; Ballesteros-Rivas, M.; Zhao, H.; Dunbar, K.R. Magnetic ordering in TCNQ-based metal–organic frameworks with host–guest interactions. Inorg. Chem. Front. 2015, 2, 904–911. [Google Scholar] [CrossRef]
- Novitchi, G.; Shova, S.; Lan, Y.; Wernsdorfer, W.; Train, C. Verdazyl Radical, a Building Block for a Six-Spin-Center 2p–3d–4f Single-Molecule Magnet. Inorg. Chem. 2016, 55, 12122–12125. [Google Scholar] [CrossRef] [PubMed]
- Vostrikova, K.E.; Luneau, D.; Wernsdorfer, W.; Rey, P.; Verdaguer, M. A S = 7 Ground Spin-State Cluster Built from Three Shells of Different Spin Carriers Ferromagnetically Coupled, Transition-Metal Ions and Nitroxide Free Radicals. J. Am. Chem. Soc. 2000, 122, 718–719. [Google Scholar] [CrossRef]
- Bogani, L.; Sangregorio, C.; Sessoli, R.; Gatteschi, D. Molecular Engineering for Single-Chain-Magnet Behavior in a One-Dimensional Dysprosium–Nitronyl Nitroxide Compound. Angew. Chem. Int. Ed. 2005, 44, 5817–5821. [Google Scholar] [CrossRef]
- Bernot, K.; Bogani, L.; Caneschi, A.; Gatteschi, D.; Sessoli, R. A Family of Rare-Earth-Based Single Chain Magnets: Playing with Anisotropy. J. Am. Chem. Soc. 2006, 128, 7947–7956. [Google Scholar] [CrossRef]
- Zhou, N.; Ma, Y.; Wang, C.; Xu, G.F.; Tang, J.-K.; Xu, J.-X.; Yan, S.-P.; Cheng, P.; Li, L.-C.; Liao, D.-Z. A monometallic tri-spin single-molecule magnet based on rare earth radicals. Dalton Trans. 2009, 40, 8489–8492. [Google Scholar] [CrossRef] [PubMed]
- Coronado, E.; Giménez-Saiz, C.; Recuenco, A.; Tarazón, A.; Romero, F.M.; Camón, A.; Luis, F. Single-Molecule Magnetic Behavior in a Neutral Terbium(III) Complex of a Picolinate-Based Nitronyl Nitroxide Free Radical. Inorg. Chem. 2011, 50, 7370–7372. [Google Scholar] [CrossRef]
- Wang, X.-L.; Li, L.-C.; Liao, D.-Z. Slow Magnetic Relaxation in Lanthanide Complexes with Chelating Nitronyl Nitroxide Radical. Inorg. Chem. 2010, 49, 4735–4737. [Google Scholar] [CrossRef] [PubMed]
- Murakami, R.; Ishida, T.; Yoshii, S.; Nojiri, H. Single-molecule magnet [Tb(hfac)3(2pyNO)] (2pyNO = t-butyl 2-pyridyl nitroxide) with a relatively high barrier of magnetization reversal. Dalton Trans. 2013, 42, 13968–13973. [Google Scholar] [CrossRef]
- Poneti, G.; Bernot, K.; Bogani, L.; Caneschi, A.; Sessoli, R.; Wernsdorfer, W.; Gatteschi, D. A rational approach to the modulation of the dynamics of the magnetisation in a dysprosium–nitronyl-nitroxide radical complex. Chem. Commun. 2007, 18, 1807–1809. [Google Scholar] [CrossRef]
- Pointillart, F.; Bernot, K.; Poneti, G.; Sessoli, R. Crystal Packing Effects on the Magnetic Slow Relaxation of Tb(III)-Nitronyl Nitroxide Radical Cyclic Dinuclear Clusters. Inorg. Chem. 2012, 51, 12218–12229. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Han, J.; Huang, X.-H.; Li, L.-C. Nitronyl Nitroxide Biradical-Based Binuclear Lanthanide Complexes: Structure and Magnetic Properties. Magnetochemistry 2020, 6, 48. [Google Scholar] [CrossRef]
- Bernot, K.; Pointillart, F.; Rosa, P.; Etienne, M.; Sessoli, R.; Gatteschi, D. Single molecule magnet behaviour in robust dysprosium-biradical complexes. Chem. Commun. 2010, 46, 6458–6460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, L.; Li, H.; Sun, J.; Ma, Y.; Tang, J.-K.; Li, L.-C. Designing Multicoordinating Nitronyl Nitroxide Radical Toward Multinuclear Lanthanide Aggregates. Inorg. Chem. 2020, 59, 443–451. [Google Scholar] [CrossRef]
- Xiao, Z.-X.; Miao, H.; Shao, D.; Wei, H.-Y.; Zhang, Y.-Q.; Wang, X.-Y. Single-molecule magnet behaviour in a dysprosium-triradical complex. Chem. Commun. 2018, 54, 9726–9729. [Google Scholar] [CrossRef]
- Ito, S.; Takano, R.; Hatanaka, S.-i.; Ishida, T. Rare-Earth (RE = Y, Gd, Tb, Dy, Ho, and Er) Chains Bridged with a Triplet Biradical and Magnetic Hysteresis Recorded for RE = Tb. Inorg. Chem. 2022, 61, 10619–10623. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Li, H.-D.; Yang, M.; Sun, J.; Li, L.-C.; Sutter, J.-P. Improved single-chain-magnet behavior in a biradical-based nitronyl nitroxide-Cu–Dy chain. Chem. Commun. 2019, 55, 3398–3401. [Google Scholar] [CrossRef]
- Wang, H.-M.; Liu, Z.-L.; Liu, C.-M.; Zhang, D.-Q.; Lü, Z.-L.; Geng, H.; Shuai, Z.-G.; Zhu, D.-B. Coordination Complexes of 2-(4-Quinolyl) nitronyl Nitroxide with M(hfac)2 [M = Mn(II), Co(II), and Cu(II)]: Syntheses, Crystal Structures, and Magnetic Characterization. Inorg. Chem. 2004, 43, 4091–4098. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Sun, J.; Guo, J.-N.; Sun, G.-F.; Li, L.-C. Cu–Ln compounds based on nitronyl nitroxide radicals: Synthesis, structure, and magnetic and fluorescence properties. CrystEngComm 2016, 18, 9345–9356. [Google Scholar] [CrossRef]
- Lluncll, M.; Casanova, D.; Circra, J.; Bofill, J.; Alcmany, P.; Alvarez, S.; Pinsky, M.; Avnir, D. SHAPE, version 2.1; University of Barcelona: Barcelona, Spain; Hebrew University of Jerusalem: Jerusalem, Israel, 2005. [Google Scholar]
- Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Stereochemistry of Eight-Vertex Polyhedra: A Continuous Shape Measures Study. Chem. Eur. J. 2005, 11, 1479–1494. [Google Scholar] [CrossRef]
- Caneschi, A.; Ferraro, F.; Gatteschi, D.; Rey, P.; Sessoli, R. Crystal structure and magnetic properties of a copper(II) chloride nitronyl nitroxide complex containing six exchange-coupled S = 1/2 spins. Inorg. Chem. 1990, 29, 1756–1760. [Google Scholar] [CrossRef]
- Fettouhi, M.; El Ali, B.; El-Ghanam, A.M.; Golhen, S.; Ouahab, L.; Daro, N.; Sutter, J.-P. Temperature Dependence of the Crystal Lattice Organization of Coordination Compounds Involving Nitronyl Nitroxide Radicals: A Magnetic and Structural Investigation. Inorg. Chem. 2002, 41, 3705–3712. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Caneschi, A.; Gatteschi, D.; Hoffman, S.K.; Laugier, J.; Rey, P.; Sessoli, R. Crystal and molecular structure, magnetic properties and EPR spectra of a trinuclear copper(II) complex with bridging nitronyl nitroxides. Inorg. Chem. 1988, 27, 2390–2392. [Google Scholar] [CrossRef]
- Fokin, S.; Ovcharenko, V.; Romanenko, G.; Ikorskii, V. Problem of a Wide Variety of Products in the Cu(hfac)2−Nitroxide System. Inorg. Chem. 2004, 43, 969–977. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Wang, J.-J.; Huang, Q.; Chen, J. Crystal structures and magnetic properties of nitronyl nitroxide NIT2-phtrz and its M(II) hexafluoroacetylacetonate (M = manganese, copper) complexes [M(hfac)2(NIT2-phtrz)]. Transit. Met. Chem. 2012, 37, 743–749. [Google Scholar] [CrossRef]
- Li, H.-D.; Lu, J.; Xie, J.; Jing, P.; Li, L.-C. Two-Dimensional Nitronyl Nitroxide–Cu Networks Based on Multi-Dentate Nitronyl Nitroxides: Structures and Magnetic Properties. Magnetochemistry 2021, 7, 73. [Google Scholar] [CrossRef]
- Luneau, D.; Rey, P.; Laugier, J.; Fries, P.; Caneschi, A.; Gatteschi, D.; Sessoli, R. Nitrogen-bonded copper(II)-imino nitroxide complexes exhibiting large ferromagnetic interactions. J. Am. Chem. Soc. 1991, 113, 1245–1251. [Google Scholar] [CrossRef]
- Caneschi, A.; Ferraro, F.; Gatteschi, D.; Rey, P.; Sessoli, R. Structure and Magnetic Properties of a Chain Compound Formed by Copper (II) and a Tridentate Nitronyl Nitroxide Radical. Inorg. Chem. 1991, 30, 3162–3166. [Google Scholar] [CrossRef]
- Sun, J.; Xi, L.; Xie, J.; Wang, K.; Li, L.C.; Sutter, J.P. A loop chain and a three-dimensional network assembled from a multi-dentate nitronyl nitroxide radical and M(hfac)(2) (M = Co-II, Cu-II). Dalton Trans. 2018, 47, 14630–14635. [Google Scholar] [CrossRef]
- Souza, D.A.; Moreno, Y.; Ponzio, E.A.; Resende, J.A.L.C.; Jordão, A.K.; Cunha, A.C.; Ferreira, V.F.; Novak, M.A.; Vaz, M.G.F. Synthesis, crystal structure, magnetism and electrochemical properties of two copper(II) furoyltrifluoroacetonate complexes with nitroxide radical. Inorg. Chim. Acta 2011, 370, 469–473. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Qu, X.-N.; Song, H.-B.; Li, L.-C.; Jiang, Z.-H.; Liao, D.-Z. Metal–radical complexes [M(NITm-Py)2(N3)2(DMSO)2] [M=Cu(II), Ni(II), Co(II)]: Syntheses, crystal structures and magnetic properties. Polyhedron 2007, 26, 741–747. [Google Scholar] [CrossRef]
- Gupta, T.; Rajeshkumar, T.; Rajaraman, G. Magnetic exchange in {GdIII–radical} complexes: Method assessment, mechanism of coupling and magneto-structural correlations. Phys. Chem. Chem. Phys. 2014, 16, 14568–14577. [Google Scholar] [CrossRef]
- Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L.; Rey, P.; Shum, D.P.; Carlin, R.L. Magnetic properties of lanthanide complexes with nitronyl nitroxides. Inorg. Chem. 1989, 28, 272–275. [Google Scholar] [CrossRef]
- Andruh, M.; Ramade, I.; Codjovi, E.; Guillou, O.; Kahn, O.; Trombe, J.C. Crystal structure and magnetic properties of [Ln2Cu4] hexanuclear clusters (where Ln = trivalent lanthanide). Mechanism of the gadolinium(III)-copper(II) magnetic interaction. J. Am. Chem. Soc. 1993, 115, 1822–1829. [Google Scholar] [CrossRef]
- Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L. Gadolinium(III) complexes with pyridine-substituted nitronyl nitroxide radicals. Inorg. Chem. 1992, 31, 741–746. [Google Scholar] [CrossRef]
- Lu, J.; Jing, P.; Jin, C.; Xie, J.; Li, L. Modulating the magnetization dynamics in Ln–Cu-Rad hetero-tri-spin complexes through cis/trans coordination of nitronyl nitroxide radicals around the metal center. Dalton Trans. 2021, 50, 3280–3288. [Google Scholar] [CrossRef] [PubMed]
- Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L.; Rey, P. Linear-chain gadolinium(III) nitronyl nitroxide complexes with dominant next-nearest-neighbor magnetic interactions. Inorg. Chem. 1990, 29, 4223–4228. [Google Scholar] [CrossRef]
- Sutter, J.P.; Kahn, M.L.; Golhen, S.; Ouahab, L.; Kahn, O. Synthesis and Magnetic Behavior of Rare-Earth Complexes with N,O-Chelating Nitronyl Nitroxide Triazole Ligands: Example of a [GdIII{Organic Radical}2] Compound with an S=9/2 Ground State. Chem. Eur. J. 1998, 4, 571–576. [Google Scholar] [CrossRef]
- Sutter, J.P.; Kahn, M.L.; Kahn, O. Conclusive Demonstration of the Ferromagnetic Nature of the Interaction Between Holmium(III) and Aminoxyl Radicals. Adv. Mater. 1999, 11, 863–865. [Google Scholar] [CrossRef]
- Davis, M.S.; Morokuma, K.; Kreilick, R.W. Free radicals with large negative spin densities. J. Am. Chem. Soc. 1972, 94, 5588–5592. [Google Scholar] [CrossRef]
- Meier, P.; Legraverant, S.; Muller, S.; Schaub, J. Synthesis of formylphenylpyridinecarboxylic acids using Suzuki-Miyaura coupling reactions. Synthesis 2003, 4, 551–554. [Google Scholar] [CrossRef]
- Kahn, O. Molecular Magnetism; VCH: Weinheim, Germany, 1993. [Google Scholar]
- Sheldrick, G.M. SHELXS-2014, Program for Structure Solution; Universität of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Sheldrick, G.M. SHELXL-2014, Program for Structure Refinement; Universität of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
Complex | TDD-8 | SAPR-8 | BTPR-8 | JBTPR-8 |
---|---|---|---|---|
GdCu | 0.369 | 1.572 | 2.040 | 2.607 |
TbCu | 0.361 | 1.578 | 2.053 | 2.641 |
DyCu | 0.324 | 1.618 | 2.050 | 2.631 |
Complex | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Formula | C90H70Cu4F48N10O24 | C85H69Cu2F42GdN10O22 | C81H53Cu2F42TbN10O22O22 | C81H53Cu2F42DyN10O22 |
Mr, g·mol−1 | 2841.72 | 2664.83 | 2666.50 | 2670.08 |
T/K | 113(2) | 113(2) | 113(2) | 113(2) |
Crystal system | Triclinic | Monoclinic | Monoclinic | Monoclinic |
Space group | Pī | P21/n | P21/n | P21/n |
a/Å | 16.9339(5) | 15.2072(4) | 15.1947(4) | 15.2346(4) |
b/Å | 18.6148(7) | 26.5688(7) | 26.6157(4) | 26.6466(6) |
c/Å | 20.4094(8) | 30.2985(9) | 30.2844(7) | 30.2582(7) |
α/° | 71.591(3) | 90 | 90 | 90 |
β/° | 71.330(3) | 99.343(3) | 99.0810(17) | 98.792(2) |
γ/° | 89.533(3) | 90 | 90 | 90 |
V/Å3 | 5752.0(4) | 12,079.3(6) | 12,094.0(5) | 12,139.0(5) |
Z | 2 | 4 | 4 | 4 |
Dcalcd/g·cm–3 | 1.641 | 1.465 | 1.465 | 1.461 |
μ(mm−1) | 0.878 | 1.018 | 1.054 | 1.083 |
θ/° | 1.648–26.372 | 1.559–24.713 | 1.531–24.713 | 1.611–24.713 |
F (000) | 2840 | 5300 | 5304 | 5308 |
Reflections collected | 61,762 | 47,646 | 91,466 | 84,653 |
Unique reflns/Rint | 23,530/0.0599 | 19,859/0.0556 | 20,584/0.0692 | 20,681/0.1009 |
GOF (F2) | 0.98 | 1.001 | 1.002 | 1.021 |
R1/wR2 [I>2σ(I)] a | 0.0702/0.1518 | 0.1024/0.2331 | 0.0760/0.1975 | 0.0795/0.1964 |
R1/wR2 (All data) a | 0.1288/0.1935 | 0.1310/0.2449 | 0.0929/0.2060 | 0.1187/0.2223 |
Complex | 1 Cu |
---|---|
Cu1-Orad, Cu2-Orad | 1.985(4), 2.592(4) |
Cu3-Orad | 2.464(5), 2.506(5) |
Cu4-Orad | 2.489(4) |
Cu2-N, Cu4-N | 2.005(4), 2.013(4) |
Cu1-Ohfac | 1.912(4)–2.119(4) |
Cu2-Ohfac | 1.939(4)–2.217(4) |
Cu3-Ohfac | 1.927(4)–1.936(4) |
Cu4-Ohfac | 1.942(4)–2.261(4) |
N-Orad-Cu1, N-Orad-Cu2 | 119.8(3), 144.1(4) |
N-Orad-Cu3 | 141.2(4), 121.4(3) |
N-Orad-Cu4 | 129.2(5) |
N-Cu2-Orad, N-Cu4-Orad | 88.70(16), 90.19(15) |
Orad-Cu2-N, Orad-Cu4-N | 88.72(2), 90.19(2) |
Orad-Cu3-Orad | 163.7(2) |
Complex | 2 GdCu | 3 TbCu | 4 DyCu |
---|---|---|---|
Ln-Orad | 2.367(7), 2.364(7) | 2.369(5), 2.355(5) | 2.358(5), 2.337(5) |
Ln-Ohfac | 2.358(7)–2.415(7) | 2.366(5)–2.398(5) | 2.347(5)–2.392(5) |
Ln-O-N | 131.9(5), 134.3(6) | 132.6(4), 134.9(4) | 133.1(5), 134.3(5) |
Orad-Ln-Orad | 141.0(2) | 141.05(16) | 140.92(19) |
Cu-Ohfac | 1.930(6)–2.202(7) | 1.944(5)–2.201(5) | 1.942(5)–2.206(6) |
1.940(7)–2.249(8) | 1.945(5)–2.253(6) | 1.937(6)–2.259(8) | |
Cu-N | 2.003(8), 2.034(8) | 2.012(5), 2.020(6) | 2.019(6), 2.034(7) |
Cu-Orad | 2.519(8), 2.509(8) | 2.506(6), 2.493(6) | 2.522(6), 2.493(7) |
Cu-O-N | 157.4(7), 153.3(7) | 157.5(5), 154.6(5) | 157.5(5), 156.5(5) |
N-Cu-O | 87.7(3), 88.1(3) | 87.3(2), 87.6(2) | 87.6(2), 86.5(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-T.; Huang, X.-H.; Song, H.-W.; Ma, Y.; Li, L.-C.; Sutter, J.-P. Cyclic [Cu-biRadical]2 Secondary Building Unit in 2p-3d and 2p-3d-4f Complexes: Crystal Structure and Magnetic Properties. Molecules 2023, 28, 2514. https://doi.org/10.3390/molecules28062514
Wang X-T, Huang X-H, Song H-W, Ma Y, Li L-C, Sutter J-P. Cyclic [Cu-biRadical]2 Secondary Building Unit in 2p-3d and 2p-3d-4f Complexes: Crystal Structure and Magnetic Properties. Molecules. 2023; 28(6):2514. https://doi.org/10.3390/molecules28062514
Chicago/Turabian StyleWang, Xiao-Tong, Xiao-Hui Huang, Hong-Wei Song, Yue Ma, Li-Cun Li, and Jean-Pascal Sutter. 2023. "Cyclic [Cu-biRadical]2 Secondary Building Unit in 2p-3d and 2p-3d-4f Complexes: Crystal Structure and Magnetic Properties" Molecules 28, no. 6: 2514. https://doi.org/10.3390/molecules28062514
APA StyleWang, X. -T., Huang, X. -H., Song, H. -W., Ma, Y., Li, L. -C., & Sutter, J. -P. (2023). Cyclic [Cu-biRadical]2 Secondary Building Unit in 2p-3d and 2p-3d-4f Complexes: Crystal Structure and Magnetic Properties. Molecules, 28(6), 2514. https://doi.org/10.3390/molecules28062514