The Novel Chiral 2(5H)-Furanone Sulfones Possessing Terpene Moiety: Synthesis and Biological Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Thioethers of 5-Menthyloxy- and 5-Bornyloxyfuranones
2.2. Synthesis of Sulfones of 5-Menthyloxy- and 5-Bornyloxyfuranones
2.3. Antimicrobial Activity of 2(5H)-Furanone Derivatives
2.4. Evaluation of the Biological Activity of 26 In Vitro and In Vivo
2.4.1. Bactericidal Activity of 26 against Gram-Positive Pathogens
2.4.2. Analysis of Synergistic Interactions of 26 and Aminoglycoside Antibiotics
2.4.3. The Cytotoxicity of 26
2.4.4. Assessment of Resistance Development by S. aureus to 26
2.4.5. Evaluation of Antimicrobial Activity of 26 Combined with Gentamicin on a Rat Skin Infection Model
3. Materials and Methods
3.1. General Information
3.2. Chemical Synthesis
3.2.1. General Procedure for the Synthesis of Thioethers 8–18
3.2.2. General Procedure for the Synthesis of Sulfones 20–30
3.3. Strains and Growth Conditions
3.4. Determination of Minimum Inhibitory Concentration (MIC)
3.5. Determination of Biofilm-Preventing Concentration (BPC)
3.6. Evaluation of Cytotoxicity
3.7. Assessment of Synergy between Furanone and Antibiotics
3.8. Resistance Development
3.9. Animals, Wounds Creation and Wound-Healing Assays
3.10. Preparing Gels with Antimicrobial Compounds
3.11. Animals Grouping and Treatment Options
3.12. Evaluation of Wounds Healing and Microbial Decontamination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216. [Google Scholar] [CrossRef]
- Devendar, P.; Yang, G.F. Sulfur-containing agrochemicals. Top. Curr. Chem. 2017, 375, 82. [Google Scholar] [CrossRef]
- Zhao, C.; Rakesh, K.; Ravidar, L.; Fang, W.-Y.; Qin, H.-L. Pharmaceutical and medicinal significance of sulfur (SVI)-containing motifs for drug discovery: A critical review. Eur. J. Med. Chem. 2019, 162, 679–734. [Google Scholar] [CrossRef] [PubMed]
- Ferro, C.T.B.; Dos Santos, B.F.; da Silva, C.D.G.; Brand, G.; da Silva, B.A.L.; de Campos Domingues, N.L. Review of the syntheses and activities of some sulfur-containing drugs. Curr. Org. Synth. 2020, 17, 192–210. [Google Scholar] [CrossRef]
- Matavos-Aramyan, S.; Soukhakian, S.; Jazebizadeh, M.H. Selected methods for the synthesis of sulfoxides and sulfones with emphasis on oxidative protocols. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195, 181–193. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Li, H.; Zhang, Q.; Liu, H. Sulfur-functionalized metal-organic frameworks: Synthesis and applications as advanced adsorbents. Coord. Chem. Rev. 2020, 408, 213191. [Google Scholar] [CrossRef]
- Zhang, R.; Ding, H.; Pu, X.; Qian, Z.; Xiao, Y. Recent advances in the synthesis of sulfides, sulfoxides and sulfones via C–S bond construction from non-halide substrates. Catalysts 2020, 10, 1339. [Google Scholar] [CrossRef]
- Wang, N.; Saidhareddy, P.; Jiang, X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep. 2020, 37, 246–275. [Google Scholar] [CrossRef]
- Passia, M.T.; Schöbel, J.H.; Bolm, C. Sulfondiimines: Synthesis, derivatisation and application. Chem. Soc. Rev. 2022, 51, 4890–4901. [Google Scholar] [CrossRef]
- Mustafa, M.; Winum, J.Y. The importance of sulfur-containing motifs in drug design and discovery. Expert Opin. Drug Discov. 2022, 17, 501–512. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Kamel, M.S.; Aboelez, M.O.; Ma, X.; Al-Karmalawy, A.A.; Mousa, S.A.; Shokr, E.K.; Abdel-Ghany, H.; Belal, A.; El Hamd, M.A.; et al. Thieno[2,3-b]thiophene derivatives as potential EGFRWT and EGFRT790M inhibitors with antioxidant activities: Microwave-assisted synthesis and quantitative in vitro and in silico studies. ACS Omega 2022, 7, 45535–45544. [Google Scholar] [CrossRef]
- Galeone, C.; Pelucchi, C.; Levi, F.; Negri, E.; Franceschi, S.; Talamini, R.; Giacosa, A.; La Vecchia, C. Onion and garlic use and human cancer. Am. J. Clin. Nutr. 2006, 84, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Boukouvalas, J.; Albert, V. Regiospecific synthesis of Cepanolide, a cancer chemoprotective micronutrient found in green onions. Tetrahedron Lett. 2012, 53, 3027–3029. [Google Scholar] [CrossRef]
- Chakraborty, A.J.; Uddin, T.M.; Matin Zidan, B.M.R.; Mitra, S.; Das, R.; Nainu, F.; Dhama, K.; Roy, A.; Hossain, M.J.; Khusro, A.; et al. Allium cepa: A treasure of bioactive phytochemicals with prospective health benefits. Evid. Based Complement. Alternat. Med. 2022, 2022, 4586318. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Benkeblia, N.; Xiao, J. Onion (Allium cepa L.) bioactives: Chemistry, pharmacotherapeutic functions, and industrial applications. Food Front. 2022, 3, 380–412. [Google Scholar] [CrossRef]
- Cheu, E.L.; Yapp, D.T.; Patrick, B.O.; James, B.R. Synthesis and characterization of dithioethers, and their RuII and RuIII complexes. Inorg. Chim. Acta 2019, 494, 49–54. [Google Scholar] [CrossRef]
- Jia, T.; Wang, M.; Liao, J. Chiral sulfoxide ligands in asymmetric catalysis. Top. Curr. Chem. 2019, 377, 8. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, V.; Capaccio, V.; Lamparelli, D.H.; Capacchione, C. Metal complexes bearing sulfur-containing ligands as catalysts in the reaction of CO2 with epoxides. Catalysts 2020, 10, 825. [Google Scholar] [CrossRef]
- Kamakura, Y.; Tanaka, D. Metal-organic frameworks and coordination polymers composed of sulfur-based nodes. Chem. Lett. 2021, 50, 523–533. [Google Scholar] [CrossRef]
- Prilezhaeva, E.N. Sulfones and sulfoxides in the total synthesis of biologically active natural compounds. Russ. Chem. Rev. 2000, 69, 367–408. [Google Scholar] [CrossRef]
- Alba, A.-N.R.; Companyó, X.; Rios, R. Sulfones: New reagents in organocatalysis. Chem. Soc. Rev. 2010, 39, 2018–2033. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.-W.; Liang, S.; Manolikakes, G. Recent advances in the synthesis of sulfones. Synthesis 2016, 48, 1939–1973. [Google Scholar] [CrossRef]
- Trost, B.M.; Kalnmals, C.A. Sulfones as chemical chameleons: Versatile synthetic equivalents of small-molecule synthons. Chem. Eur. J. 2019, 25, 11193–11213. [Google Scholar] [CrossRef]
- Ahmad, I.; Shagufta. Sulfones: An important class of organic compounds with diverse biological activities. Int. J. Pharm. Pharm. Sci. 2015, 7, 19–27. [Google Scholar]
- Li, P.; Wang, L.; Wang, X. Recent advances on the pesticidal activity evaluations of sulfone derivatives: A 2010 to 2020 decade in mini-review. J. Heterocycl. Chem. 2021, 58, 28–39. [Google Scholar] [CrossRef]
- Ahmadi, R.; Emami, S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur. J. Med. Chem. 2022, 234, 114255. [Google Scholar] [CrossRef] [PubMed]
- Angelova, V.T.; Pencheva, T.; Vassilev, N.; K-Yovkova, E.; Mihaylova, R.; Petrov, B.; Valcheva, V. Development of new antimycobacterial sulfonyl hydrazones and 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives. Antibiotics 2022, 11, 562. [Google Scholar] [CrossRef]
- Diaz-Ruiz, A.; Nader-Kawachi, J.; Calderón-Estrella, F.; Mata-Bermudez, A.; Alvarez-Mejia, L.; Ríos, C. Dapsone, more than an effective neuro and cytoprotective drug. Curr. Neuropharmacol. 2022, 20, 194–210. [Google Scholar] [CrossRef] [PubMed]
- Marzolf, G.; Lipsker, D. Dapsone in non-bullous skin lesions of lupus erythematosus: A literature review. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e189–e190. [Google Scholar] [CrossRef]
- Hori, T.; Owusu, Y.B.; Sun, D. US FDA-approved antibiotics during the 21st century. In Encyclopedia of Infection and Immunity, 1st ed.; Rezaei, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 4, pp. 556–585. [Google Scholar] [CrossRef]
- Frampton, J.E.; Basset-Séguin, N. Vismodegib: A review in advanced basal cell carcinoma. Drugs 2018, 78, 1145–1156. [Google Scholar] [CrossRef]
- León-Rojas, A.F.; Urbina-González, J.M. Las furan-2[5H]-onas (Δα,β-butenolidas), su preparación e importancia biológica. Av. Química 2015, 10, 67–78. [Google Scholar]
- Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F. Synthesis and biological properties of 2(5H)-furanones featuring bromine atoms on the heterocyclic ring and/or brominated substituents. Curr. Org. Chem. 2017, 21, 964–1018. [Google Scholar] [CrossRef]
- Husain, A.; Khan, S.A.; Iram, F.; Iqbal, M.A.; Asif, M. Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. Eur. J. Med. Chem. 2019, 171, 66–92. [Google Scholar] [CrossRef]
- Villamizar-Mogotocoro, A.-F.; León-Rojas, A.-F.; Urbina-González, J.-M. Δα,β-Butenolides [furan-2(5H)-ones]: Ring construction approaches and biological aspects—A mini-review. Mini-Rev. Org. Chem. 2020, 17, 922–945. [Google Scholar] [CrossRef]
- Kayumov, A.R.; Sharafutdinov, I.S.; Trizna, E.Y.; Bogachev, M.I. Antistaphylococcal activity of 2(5H)-furanone derivatives. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms: Current Research and Future Trends in Microbial Biofilms, 1st ed.; Yadav, M.K., Singh, B.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 77–89. [Google Scholar] [CrossRef]
- Yang, K.; Yang, J.Q.; Luo, S.H.; Mei, W.J.; Lin, J.Y.; Zhan, J.Q.; Wang, Z.Y. Synthesis of N-2(5H)-furanonyl sulfonyl hydrazone derivatives and their biological evaluation in vitro and in vivo activity against MCF-7 breast cancer cells. Bioorg. Chem. 2021, 107, 104518. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.Q.; Liu, H.M.; Zhou, X.Z.; Shao, Z.H. Synthesis and evaluation of antitumor activities of novel chiral 1,2,4-triazole Schiff bases bearing γ-butenolide moiety. Org. Med. Chem. Lett. 2012, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.X.; Zhang, J.; Ma, F.L.; Li, M.; Yu, J.Y.; Luo, W.; Li, X.Q. Synthesis and biological activities of dithiocarbamates containing 2(5H)-furanone-piperazine. Eur. J. Med. Chem. 2018, 155, 165–170. [Google Scholar] [CrossRef]
- Wei, M.X.; Yu, J.Y.; Liu, X.X.; Li, X.Q.; Yang, J.H.; Zhang, M.W.; Yang, P.W.; Zhang, S.S.; He, Y. Synthesis and biological evaluation of novel artemisone-piperazine-tetronamide hybrids. RSC Adv. 2021, 11, 18333–18341. [Google Scholar] [CrossRef]
- Dryden, M.S.; Cooke, J.; Salib, R.J.; Holding, R.E.; Biggs, T.; Salamat, A.A.; Allan, R.N.; Newby, R.S.; Halstead, F.; Oppenheim, B.; et al. Reactive oxygen: A novel antimicrobial mechanism for targeting biofilm-associated infection. J. Glob. Antimicrob. Resist. 2017, 8, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Hodille, E.; Rose, W.; Diep, B.A.; Goutelle, S.; Lina, G.; Dumitrescu, O. The role of antibiotics in modulating virulence in Staphylococcus aureus. Clin. Microbiol. Rev. 2017, 30, 887–917. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Cosgrove, S.E.; Kaye, K.S.; Eliopoulous, G.M.; Carmeli, Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch. Intern. Med. 2002, 162, 185–190. [Google Scholar] [CrossRef]
- Ren, D.C.; Sims, J.J.; Wood, T.K. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ. Microbiol. 2001, 3, 731–736. [Google Scholar] [CrossRef]
- Hentzer, M.; Riedel, K.; Rasmussen, T.B.; Heydorn, A.; Andersen, J.B.; Parsek, M.R.; Rice, S.A.; Eberl, L.; Molin, S.; Hoiby, N.; et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 2002, 148, 87–102. [Google Scholar] [CrossRef]
- Hentzer, M.; Wu, H.; Andersen, J.B.; Riedel, K.; Rasmussen, T.B.; Bagge, N.; Kumar, N.; Schembri, M.A.; Song, Z.J.; Kristoffersen, P.; et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 2003, 22, 3803–3815. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.C.; Bedzyk, L.A.; Setlow, P.; England, D.F.; Kjelleberg, S.; Thomas, S.M.; Ye, R.W.; Wood, T.K. Differential gene expression to investigate the effect of (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone on Bacillus subtilis. Appl. Environ. Microbiol. 2004, 70, 4941–4949. [Google Scholar] [CrossRef] [PubMed]
- Janssens, J.C.A.; Steenackers, H.; Robijns, S.; Gellens, E.; Levin, J.; Zhao, H.; Hermans, K.; De Coster, D.; Verhoeven, T.L.; Marchal, K.; et al. Brominated furanones inhibit biofilm formation by Salmonella enterica Serovar Typhimurium. Appl. Environ. Microbiol. 2008, 74, 6639–6648. [Google Scholar] [CrossRef]
- Kuehl, R.; Al-Bataineh, S.; Gordon, O.; Luginbuehl, R.; Otto, M.; Textor, M.; Landmann, R. Furanone at subinhibitory concentrations enhances Staphylococcal biofilm formation by luxs repression. Antimicrob. Agents Chemother. 2009, 53, 4159–4166. [Google Scholar] [CrossRef]
- Lönn-Stensrud, J.; Landin, M.A.; Benneche, T.; Petersen, F.C.; Scheie, A.A. Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections? J. Antimicrob. Chemother. 2009, 63, 309–316. [Google Scholar] [CrossRef]
- Ho, K.K.K.; Kutty, S.K.; Chan, D.S.-H.; Chen, R.; Willcox, M.; Kumar, N. Development of fimbrolides, halogenated furanones and their derivatives as antimicrobial agents. In Antibacterial Surfaces, 1st ed.; Ivanova, E.P., Crawford, R.J., Eds.; Springer: Cham, Switzerland, 2015; pp. 149–170. [Google Scholar] [CrossRef]
- Kayumov, A.R.; Khakimullina, E.N.; Sharafutdinov, I.S.; Trizna, E.Y.; Latypova, L.Z.; Lien, H.T.; Margulis, A.B.; Bogachev, M.I.; Kurbangalieva, A.R. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones. J. Antibiot. 2015, 68, 297–301. [Google Scholar] [CrossRef]
- Brackman, G.; Coenye, T. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 2015, 21, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Trizna, E.; Latypova, L.; Kurbangalieva, A.; Bogachev, M.; Kayumov, A. 2(5H)-Furanone derivatives as inhibitors of Staphylococcal biofilms. BioNanoSci. 2016, 6, 423–426. [Google Scholar] [CrossRef]
- Sharafutdinov, I.S.; Pavlova, A.S.; Khabibrakhmanova, A.M.; Faizova, R.G.; Kurbangalieva, A.R.; Tanaka, K.; Trizna, E.Y.; Baidamshina, D.R.; Bogachev, M.I.; Kayumov, A.R. Targeting Bacillus cereus cells: Increasing efficiency of antimicrobials by the bornyl-possessing 2(5H)-furanone derivative. New Microbiol. 2019, 42, 29–36. [Google Scholar]
- Proctor, C.R.; McCarron, P.A.; Ternan, N.G. Furanone quorum-sensing inhibitors with potential as novel therapeutics against. J. Med. Microbiol. 2020, 69, 195–206. [Google Scholar] [CrossRef]
- Gómez, A.C.; Lyons, T.; Mamat, U.; Yero, D.; Bravo, M.; Daura, X.; Elshafee, O.; Brunke, S.; Gahan, C.G.M.; O’Driscoll, M.; et al. Synthesis and evaluation of novel furanones as biofilm inhibitors in opportunistic human pathogens. Eur. J. Med. Chem. 2022, 242, 114678. [Google Scholar] [CrossRef]
- Li, J.; Wei, X.; Song, Y.; Li, X.; Wang, C. In vitro study of the effect of inhibition of quorum sensing by brominated furanone on peritoneal dialysis-associated peritonitis associated with Escherichia coli infection. Curr. Microbiol. 2022, 79, 337. [Google Scholar] [CrossRef]
- Sharafutdinov, I.S.; Trizna, E.Y.; Baidamshina, D.R.; Ryzhikova, M.N.; Sibgatullina, R.R.; Khabibrakhmanova, A.M.; Latypova, L.Z.; Kurbangalieva, A.R.; Rozhina, E.V.; Klinger-Strobel, M.; et al. Antimicrobial effects of sulfonyl derivative of 2(5H)-furanone against planktonic and biofilm associated methicillin-resistant and -susceptible Staphylococcus aureus. Front. Microbiol. 2017, 8, 2246. [Google Scholar] [CrossRef]
- Sharafutdinov, I.S.; Pavlova, A.S.; Akhatova, F.S.; Khabibrakhmanova, A.M.; Rozhina, E.V.; Romanova, Y.J.; Fakhrullin, R.F.; Lodochnikova, O.A.; Kurbangalieva, A.R.; Bogachev, M.I.; et al. Unraveling the molecular mechanism of selective antimicrobial activity of 2(5H)-furanone derivative against Staphylococcus aureus. Int. J. Mol. Sci. 2019, 20, 694. [Google Scholar] [CrossRef]
- Sharafutdinov, I.S.; Ozhegov, G.D.; Sabirova, A.E.; Novikova, V.V.; Lisovskaya, S.A.; Khabibrakhmanova, A.M.; Kurbangalieva, A.R.; Bogachev, M.I.; Kayumov, A.R. Increasing susceptibility of drug-resistant Candida albicans to fluconazole and terbinafine by 2(5H)-furanone derivative. Molecules 2020, 25, 642. [Google Scholar] [CrossRef] [PubMed]
- Fenske, D.; Merzweiler, K. Ein beitrag zur synthese neuer chiraler phosphanliganden. Z. Naturforsch. 1989, 44b, 87–883. [Google Scholar] [CrossRef]
- Chen, Q.; Geng, Z.; Huang, B. Synthesis of enantiomerically pure 5-(l-menthyloxy)-3,4-dibromo-2(5H)-furanone and its tandem asymmetric Michael addition-elimination reaction. Tetrahedron Asymmetry 1995, 6, 401–404. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, B. A novel chiral 5((–)-bornyloxy)-3,4-dichloro-2(5H)-furanone the efficient optically pure synthesis and stereospecific tandem Michael addition elimination reaction. Chin. Chem. Lett. 1993, 4, 675–678. [Google Scholar]
- Chen, Q.H. Synthesis and stereospecific reactions of borneol auxiliaries. Chin. Sci. Bull. 1994, 39, 2154–2157. [Google Scholar] [CrossRef]
- Bott, S.G.; Yang, K.; Richmond, M.G. X-ray diffraction structure of (5S)-3,4-dichloro-5-menthoxy-2(5H)-furanone. J. Chem. Crystallogr. 2003, 33, 585–588. [Google Scholar] [CrossRef]
- Kurbangalieva, A.R.; Devyatova, N.F.; Bogdanov, A.V.; Berdnikov, E.A.; Mannafov, T.G.; Krivolapov, D.B.; Litvinov, I.A.; Chmutova, G.A. Synthesis of novel arylthio derivatives of mucochloric acid. Phosphorus Sulfur Silicon Relat. Elem. 2007, 182, 607–630. [Google Scholar] [CrossRef]
- Devyatova, N.F.; Kosolapova, L.S.; Kurbangalieva, A.R.; Berdnikov, E.A.; Lodochnikova, O.A.; Litvinov, I.A.; Chmutova, G.A. Reactions of 2-sulfanylethanol with mucochloric acid and its derivatives. Russ. J. Org. Chem. 2008, 44, 1225–1232. [Google Scholar] [CrossRef]
- Kurbangalieva, A.R.; Devyatova, N.F.; Kosolapova, L.S.; Lodochnikova, O.A.; Berdnikov, E.A.; Litvinov, I.A.; Chmutova, G.A. Reactions of 2-mercaptoacetic acid with mucochloric acid and its derivatives. Russ. Chem. Bull. 2009, 58, 126–133. [Google Scholar] [CrossRef]
- Kurbangalieva, A.R.; Lodochnikova, O.A.; Devyatova, N.F.; Berdnikov, E.A.; Gnezdilov, O.I.; Litvinov, I.A.; Chmutova, G.A. Structural diversity of interaction products of mucochloric acid and its derivatives with 1,2-ethanedithiol. Tetrahedron 2010, 66, 9945–9953. [Google Scholar] [CrossRef]
- Hoang, T.L.; Kurbangalieva, A.R.; Yezhova, A.S.; Berdnikov, E.A.; Chmutova, G.A. The bis-thioethers based on 3,4-dichloro-2(5H)-furanone and propane-1,3-dithiol. Butlerov Commun. 2015, 42, 33–40. [Google Scholar]
- Latypova, L.Z.; Saigitbatalova, E.S.; Chulakova, D.R.; Lodochnikova, O.A.; Kurbangalieva, A.R.; Berdnikov, E.A.; Chmutova, G.A. Sulfides, sulfones, and sulfoxides of the furan-2(5H)-one series. Synthesis and structure. Russ. J. Org. Chem. 2014, 50, 521–534. [Google Scholar] [CrossRef]
- Latypova, L.Z.; Saigitbatalova, E.S.; Kurbangalieva, A.R.; Lodochnikova, O.A.; Chmutova, G.A. Novel sulfones based on the dithioderivatives of 2(5H)-furanone. Butlerov Commun. 2016, 46, 89–96. [Google Scholar]
- Khabibrakhmanova, A.M.; Rabbanieva, E.S.; Gerasimova, D.P.; Islamov, D.R.; Latypova, L.Z.; Lodochnikova, O.A.; Kurbangalieva, A.R. Optically active bisthioethers and disulfones derived from furan-2(5H)-one and dithiols: Synthesis and structure. Russ. J. Org. Chem. 2022, 58, 1160–1169. [Google Scholar] [CrossRef]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Baidamshina, D.R.; Koroleva, V.A.; Trizna, E.Y.; Pankova, S.M.; Agafonova, M.N.; Chirkova, M.N.; Vasileva, O.S.; Akhmetov, N.; Shubina, V.V.; Porfiryev, A.G.; et al. Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. Int. J. Biol. Macromol. 2020, 164, 4205–4217. [Google Scholar] [CrossRef] [PubMed]
- Yaikova, V.V.; Gerasimov, O.V.; Fedyanin, A.O.; Zaytsev, M.A.; Baltin, M.E.; Baltina, T.V.; Sachenkov, O.A. Automation of bone tissue histology. Front. Phys. 2019, 7, 91. [Google Scholar] [CrossRef]
- Harrigan, T.P.; Mann, R.W. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 1984, 19, 761–767. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Flack, H.D.; Bernardinelli, G. Reporting and evaluating absolute-structure and absolute-configuration determinations. J. Appl. Crystallogr. 2000, 33, 1143–1148. [Google Scholar] [CrossRef]
- Parsons, S.; Flack, H.D.; Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2013, 69, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, R.; Trizna, E.; Kolesnikova, A.; Khabibrakhmanova, A.; Kurbangalieva, A.; Bogachev, M.; Kayumov, A. Antimicrobial and biofilm-preventing activity of l-borneol possessing 2(5H)-furanone derivative F131 against S. aureus—C. albicans mixed cultures. Pathogens 2023, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, R.; Canton, R.; Brown, D.F.J.; Giske, C.G.; Heisig, P.; MacGowan, A.P.; Mouton, J.W.; Nordmann, P.; Rodloff, A.C.; Rossolini, G.M.; et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2013, 19, 141–160. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef]
- Baidamshina, D.R.; Trizna, E.Y.; Holyavka, M.G.; Bogachev, M.I.; Artyukhov, V.G.; Akhatova, F.S.; Rozhina, E.V.; Fakhrullin, R.F.; Kayumov, A.R. Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci. Rep. 2017, 7, 46068. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials 2003, 24, 1121–1131. [Google Scholar] [CrossRef]
- den Hollander, J.G.; Mouton, J.W.; Verbrugh, H.A. Use of pharmacodynamic parameters to predict efficacy of combination therapy by using fractional inhibitory concentration kinetics. Antimicrob. Agents Chemother. 1998, 42, 744–748. [Google Scholar] [CrossRef]
- Kazakova, R.R.; Luong, D.T. Anesthetics for magnetic resonance studies in rodents (systematic review of experimental results). Eksp. Klin. Farmakol. 2016, 79, 39–44. [Google Scholar]
- Simonetti, O.; Lucarini, G.; Orlando, F.; Pierpaoli, E.; Ghiselli, R.; Provinciali, M.; Castelli, P.; Guerrieri, M.; Di Primio, R.; Offidani, A.; et al. Role of daptomycin on burn wound healing in an animal methicillin-resistant Staphylococcus aureus infection model. Antimicrob. Agents Chemother. 2017, 61, e00606-17. [Google Scholar] [CrossRef]
Compounds | Gram-Positive | Gram-Negative | ||||
---|---|---|---|---|---|---|
S. aureus ATCC 29213 | B. subtilis 168 | S. epidermidis (Clinical Isolate) | E. coli ATCC 25922 | K. pneumonia (Clinical Isolate) | P. aeruginosa ATCC 27853 | |
7 | >64 | >64 | >64 | >64 | >64 | >64 |
8 | >64 | >64 | >64 | >64 | >64 | >64 |
9 | >64 | >64 | >64 | >64 | >64 | >64 |
10 | >64 | >64 | >64 | >64 | >64 | >64 |
11 | >64 | >64 | >64 | >64 | >64 | >64 |
12 | >64 | >64 | >64 | >64 | >64 | >64 |
13 | >64 | >64 | >64 | >64 | >64 | >64 |
14 | >64 | >64 | >64 | >64 | >64 | >64 |
15 | >64 | >64 | >64 | >64 | >64 | >64 |
16 | >64 | >64 | >64 | >64 | >64 | >64 |
17 | >64 | >64 | >64 | >64 | >64 | >64 |
18 | >64 | >64 | >64 | >64 | >64 | >64 |
19 | 16 | 16 | 16 | >64 | >64 | >64 |
20 | 16 | 16 | 16 | >64 | >64 | >64 |
21 | 32 | 32 | 16 | >64 | >64 | >64 |
22 | 32 | 32 | 32 | >64 | >64 | >64 |
23 | 32 | 16 | 32 | >64 | >64 | >64 |
24 | 32 | 16 | 32 | >64 | >64 | >64 |
25 | 16 | 32 | 16 | >64 | >64 | >64 |
26 | 8 | 8 | 16 | >64 | >64 | >64 |
27 | 16 | 16 | 16 | >64 | >64 | >64 |
28 | 16 | 16 | 16 | >64 | >64 | >64 |
29 | 16 | 16 | 16 | >64 | >64 | >64 |
30 | 16 | 16 | 16 | >64 | >64 | >64 |
Vancomycin | 2 | 0.5 | 4 | >64 | >64 | 64 |
Benzalkonium chloride | 4 | 8 | 4 | >64 | >64 | >64 |
Miramistin | 2 | 1 | 4 | >64 | >64 | 64 |
Compounds | Gram-Positive | Gram-Negative | ||||
---|---|---|---|---|---|---|
S. aureus ATCC 29213 | B. subtilis 168 | S. epidermidis (Clinical Isolate) | E. coli ATCC 25922 | K. pneumonia (Clinical Isolate) | P. aeruginosa ATCC 27853 | |
7 | >64 | >64 | >64 | >64 | >64 | >64 |
8 | >64 | >64 | >64 | >64 | >64 | >64 |
9 | >64 | >64 | >64 | >64 | >64 | >64 |
10 | >64 | >64 | >64 | >64 | >64 | >64 |
11 | >64 | >64 | >64 | >64 | >64 | >64 |
12 | >64 | >64 | >64 | >64 | >64 | >64 |
13 | >64 | >64 | >64 | >64 | >64 | >64 |
14 | >64 | >64 | >64 | >64 | >64 | >64 |
15 | >64 | >64 | >64 | >64 | >64 | >64 |
16 | >64 | >64 | >64 | >64 | >64 | >64 |
17 | >64 | >64 | >64 | >64 | >64 | >64 |
18 | >64 | >64 | >64 | >64 | >64 | >64 |
19 | 32 | 32 | 32 | >64 | >64 | >64 |
20 | 32 | >64 | 32 | >64 | >64 | >64 |
21 | 32 | >64 | 64 | >64 | >64 | >64 |
22 | 32 | 32 | 32 | >64 | >64 | >64 |
23 | 32 | 32 | 16 | >64 | >64 | >64 |
24 | 32 | 32 | 16 | >64 | >64 | >64 |
25 | 32 | 32 | 16 | >64 | >64 | >64 |
26 | 16 | 16 | 16 | >64 | >64 | >64 |
27 | 16 | 16 | 16 | >64 | >64 | >64 |
28 | 32 | 32 | 32 | >64 | >64 | >64 |
29 | 16 | 16 | 16 | >64 | >64 | >64 |
30 | 32 | 32 | 32 | >64 | >64 | >64 |
Bacteria | pH of the Medium | ||||||
---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 10 | |
S. aureus | nd | 0.5 | 8 | 32 | 64 | 128 | 128 |
S. epidermidis | nd | nd | 2 | 8 | 32 | nd | nd |
M. luteus | nd | 1 | 4 | 16 | 64 | 128 | >128 |
B. cereus | nd | <0.25 | 8 | 16 | 64 | >128 | nd |
MIC, μg/mL | FICI | EC50, μg/mL | |
---|---|---|---|
26 | 8 | – | – |
Kanamycin | 2 | 0.44 ± 0.17 | 1.1 ± 0.24 |
Gentamicin | 0.06 | 0.33 ± 0.16 | 0.4 ± 0.23 |
Amikacin | 2 | 0.33 ± 0.04 | 0.5 ± 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khabibrakhmanova, A.M.; Faizova, R.G.; Lodochnikova, O.A.; Zamalieva, R.R.; Latypova, L.Z.; Trizna, E.Y.; Porfiryev, A.G.; Tanaka, K.; Sachenkov, O.A.; Kayumov, A.R.; et al. The Novel Chiral 2(5H)-Furanone Sulfones Possessing Terpene Moiety: Synthesis and Biological Activity. Molecules 2023, 28, 2543. https://doi.org/10.3390/molecules28062543
Khabibrakhmanova AM, Faizova RG, Lodochnikova OA, Zamalieva RR, Latypova LZ, Trizna EY, Porfiryev AG, Tanaka K, Sachenkov OA, Kayumov AR, et al. The Novel Chiral 2(5H)-Furanone Sulfones Possessing Terpene Moiety: Synthesis and Biological Activity. Molecules. 2023; 28(6):2543. https://doi.org/10.3390/molecules28062543
Chicago/Turabian StyleKhabibrakhmanova, Alsu M., Roza G. Faizova, Olga A. Lodochnikova, Regina R. Zamalieva, Liliya Z. Latypova, Elena Y. Trizna, Andrey G. Porfiryev, Katsunori Tanaka, Oskar A. Sachenkov, Airat R. Kayumov, and et al. 2023. "The Novel Chiral 2(5H)-Furanone Sulfones Possessing Terpene Moiety: Synthesis and Biological Activity" Molecules 28, no. 6: 2543. https://doi.org/10.3390/molecules28062543
APA StyleKhabibrakhmanova, A. M., Faizova, R. G., Lodochnikova, O. A., Zamalieva, R. R., Latypova, L. Z., Trizna, E. Y., Porfiryev, A. G., Tanaka, K., Sachenkov, O. A., Kayumov, A. R., & Kurbangalieva, A. R. (2023). The Novel Chiral 2(5H)-Furanone Sulfones Possessing Terpene Moiety: Synthesis and Biological Activity. Molecules, 28(6), 2543. https://doi.org/10.3390/molecules28062543