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Abstract: The intriguing properties of metal sulfide nanoparticles (=MxSy-NPs), particularly tran-
sition metal dichalcogenides, are discussed for their use in diverse biological applications. Herein,
recent advances in MxSy-NPs-based imaging (MRI, CT, optical and photoacoustic) and photother-
apy (photothermal and photodynamic) are presented. Also, recent made progress in the use of
immuno-phototherapy combinatorial approaches in vitro and in vivo are reported. Furthermore,
challenges in nanomaterials-based therapies and future research directions by applying MxSy-NPs in
combinatorial therapies are envisaged.
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1. Introduction

In recent years, applications of nanotechnology have expanded into different branches
of the biomedical field [1–3]. Efforts are continually being made towards the development
of unique nanoparticles (=NPs) which can overcome limitations of traditional therapeutics
and, hence, are able to improve management of diseases [4]. Large surface area-to-volume
ratios of NPs provide a platform for easy chemical functionalization for excellent interaction
with biological systems. Among the broad range of NPs studied for biomedical applications,
metal sulfide nanoparticles (=MxSy-NPs) have been the focus of several studies in recent
years [5–7]. In addition to properties found at the nanoscale, MxSy-NPs also exhibit
favorable properties such as light conversion, Fenton catalysis, immune activation and
radiation enhancement [8,9]. The lower electronegativity of sulfur in comparison to oxygen
makes MxSy-NPs naturally versatile in comparison to highly exploited metal oxide ones [10].
The versatility of MxSy-NPs becomes evident by the fact that they can be successfully used
for various applications including different types of imaging and therapy, often alone or in
combination with other materials to enhance their intended application [11]. In addition,
MxSy-NPs possess the ability to impart multiple functionalities as “stand-alone” systems
without addition of other materials. For example, transition metal dichalcogenide-based
molybdenum disulfide (MoS2-) and tungsten disulfide (WS2-) NPs are increasingly found
in theranostic and biosensing applications [12,13]. Tunable bandgap and strong spin-orbit
coupling make MoS2-NPs particularly interesting for biomedical applications, whereas
strong near-infrared (NIR) absorptions has led to the efficacious use of copper sulfide (CuS-)
NPs as photothermal agents [14,15].

Hence, herein, various uses of MxSy-NPs towards the above-mentioned background
will be discussed on selected examples.
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2. Applications of Metal Sulfide Nanoparticles in Bioimaging
2.1. Magnetic Resonance Imaging

As a result of the use of non-ionizing radiation, high spatial resolution and non-
invasive magnetic resonance imaging (=MRI) has become one of the most used imaging
techniques in the medical field [16]. MRI makes use of pulsed magnetic waves to align
protons present in water and images are produced by recording radio-waves released by
these protons upon their relaxation to the ground state [17]. Contrast agents are applied
to significantly improve resolution and work by reducing the longitudinal or transverse
(i.e., T1 or T2) relaxation time of protons in water [18]. Studies on NPs for MR imaging
have mostly focused on metal oxides such as superparamagnetic iron oxide NPs (SPIONs);
however, in recent years, researchers have begun exploring MxSy-NPs as well [19,20].
Examples of such studies reporting the use of MxSy-NPs, wherein the MR contrast is
brought about by the metal sulfide itself, are highlighted below.

Iron sulfide quantum dots (=FeS QDs) were synthesized via a biomimetic route using
protein bovine serum albumin (=BSA) as a template. Nanoparticles based on FeS exhibit
physicochemical properties similar to that of iron oxide nanoparticles as sulfur and oxy-
gen are congeneric elements. However, iron sulfide (FeS, Fe1−xS, FeS2, Fe3S4) exist in
more phases than iron oxide (Fe3O4, Fe2O3) showing more variability and also have a
smaller band gap. The authors observed a strong NIR absorption which was exploited
for photoacoustic imaging, whereas quantum confinement effects enabled fluorescence
imaging. The longitudinal relaxation (=r1) value of FeS QDs (5.35 mM−1 s−1) was found
to be higher than that of corresponding aggregates (0.2 mM−1 s−1), which is attributed
to the template-assisted synthesis [21]. The resulting QDs thus showed good dispersion,
higher longitudinal relaxivity, extended rotational correlation time and lower magnetiza-
tion in comparison to the clinically used gadolinium-based MRI contrast agent Gd-DTPA
(r1 = 3.1 mM−1 s−1). As observed in Figure 1, the authors tested the MR, PA and fluores-
cence imaging ability of FeS QDs in vivo in 4T1 tumor-bearing mice post-intravenous (i.v.)
administration [22]. As can be seen in Figure 1A,B, MR contrasts at 5 h post-administration
is 1.8-fold higher as compared to pre-administration.
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Figure 1. Representative images of (A) MR imaging and (B) its quantitative estimation. Reprinted
with permission from Ref. [22]. Copyright © 2023, Elsevier.

A nanohybrid (=NH), based on the sulfides of bismuth and iron was prepared by
Xiong et al. via biomineralization using BSA to yield Bi2S3/FeS2@BSA NHs [23]. BSA acted
as a source of sulfur, as a template for the synthesis and as a reducing agent, whereas Fe and
Bi provided the contrast for MR and computed tomography (=CT) imaging, respectively.
The X-ray absorption coefficient of the NHs is 8.02 HU mM−1 which increased in proportion
to increasing concentrations of Bi. A similar trend was observed for MRI contrast and r2,
i.e., transverse relaxivity time was determined to 53.9 mM−1 s−1. In vivo, Bi2S3/FeS2@BSA
NHs showed accumulation in the tumor with good CT and MR imaging contrast when
injected intravenously in a 4T1 tumor-bearing mice [23]. Fu et al. exploited magnetocaloric
and MR imaging properties of iron sulfide for imaging-guided thrombolysis in celiac
vein thrombosis. The author’s synthesized hydrophilic polyvinyl pyrrolidone-capped
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Fe3S4-NPs with an r2 value of 53.1 mM−1 s−1 [24]. Through simultaneous exposure to
an alternating magnetic field (=AMF) and an 808 nm laser, the NP dispersion attained a
temperature higher than when exposed to AMF or laser alone. In vitro, the synergistic
thermal conversion resulted in near disappearance of the thrombus, whereas individual
stimulation resulted in partial dissolution. When tested in a C57 mice model of deep
vein thrombosis, it resulted in the reduction of thrombus, which was visualized by MR
imaging. Unpaired 3D electrons in cobalt (Co) were utilized by Lv and colleagues for
T2-weighted MRI [25]. Therefore, the authors prepared hollow cobalt sulfide (Co3S4-) NPs
which were coated with a shell of N-doped carbon and encapsulated the drug doxorubicin
for therapeutic (chemotherapy, photothermal therapy and photodynamic therapy) and
imaging (MRI and thermal imaging) applications [26]. The respective NPs showed a
concentration-dependent increase in MR and thermal imaging contrast. In vivo, when
tested in H22 tumor bearing mice, the nanoparticles showed a good contrast as compared
to pre-treatment. Huang et al. synthesized Cu2−xS@MnS core-shell NPs in which the
Cu2−xS-NPs are surrounded by a manganese sulfide (MnS) shell [27]. NIR absorption
by CuS enabled photothermal treatment, whereas the presence of MnS facilitated light-
triggered photodynamic therapy (PDT) and MRI. The NPs showed high photothermal
conversion efficiency (47.9%) and ability to generate reactive oxygen species (=ROS) in the
presence of hydrogen peroxide. With respect to MRI, T1 contrast increased in proportion
to the concentration of manganese and an r1 value of 1.243 mM−1 s−1 was reported.
Similarly, Chen et al. reported on the assembly of CuS-MnS2 nanoflowers for MRI-guided
photothermal-photodynamic therapy [28].

2.2. Computed Tomography

In CT imaging, differential tissue thicknesses and X-ray attenuations are exploited
to generate three-dimensional and cross-sectional images [29]. High X-ray absorption as
a consequence of high atomic numbers has resulted in the application of bismuth (Bi)
and tungsten as CT contrast agents [30,31]. PEGylated-WS2-NPs, i.e., polyethylene glycol
(PEG)-coated tungsten disulfide NPs for CT-guided photothermal therapy (PTT) were
prepared by Wang and colleagues [32]. The CT-imaging ability of the NPs was tested in
4T1 tumor-bearing mice using phosphate-buffered saline (=PBS)-treated mice as a control
group. In conclusion, good photothermal stability and an effective use as CT contrast
agents were reported. Similarly, Wang et al. introduced manganese dioxide (MnO2-) coated
mesoporous polydopamine nanosponges (=MPDA NSs) embedded with WS2 nanodots
(=ND), i.e., MPDA-WS2@MnO2 for multimodal imaging guided thermo-radiotherapy of
cancer [33]. WS2 NDs and MPDA NSs enabled radio-sensitization and PTT in addition to
contrast for CT and multi-spectral optoacoustic tomography (=MSOT), respectively. The
MnO2 component provided MRI contrast and tumor hypoxia modulating properties. In
all three imaging modalities, the contrast provided by MPDA-WS2@MnO2-NPs increased
linearly with increasing concentration of the NPs. The authors reported a CT value of
35.3 HU L g−1 and a transverse relaxation value of 6.696 mM−1 S−1 at pH 6.5. Post
intratumoral (=i.t.) and intravenous (=i.v.) administrations. In vivo, an 8- and 2.5-fold
increase in signal intensity was observed for CT and MSOT imaging, respectively. Similar
results were also observed for MRI.

Nosrati et al. used bismuth sulfide (Bi2S3-) NPs for combination therapy including
chemotherapy and radiotherapy guided by CT imaging [34]. The Bi2S3-NPs were coated
with BSA to improve their stability followed by curcumin encapsulation and function-
alization with folic acid to yield Bi2S3@BSA-FA-CUR NPs. The NPs showed sustained
release of curcumin, radio-sensitization effects and a linear increase in CT contrast with
increasing Bi concentration. Similarly, Bi2S3@MSNs, i.e., bismuth sulfide NPs coated with
mesoporous silica, were synthesized to enable drug delivery in addition to NIR-responsive
PTT and CT imaging [35]. The presence of mesoporous pores in silica enabled high drug
loadings up to 99%, whereas the presence of Bi resulted in a high photothermal conversion
efficiency of 37%. Figure 2A shows the in vitro CT performance of Bi2S3@MSNs showing
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a linear increase with increasing Bi concentration [35]. As can be seen in the figure, the
slope of iobitridol (25.63 HU L g−1) is lower than that of Bi2S3@MSNs (32.83 HU L g−1).
In vivo, the authors evaluated the CT contrast to assess the active targeting potential of
RGD (targeting ligand containing arginine(R)-glycine(G)-aspartate(D) triad) conjugated
Bi2S3@MSNs. RGD–Bi2S3@MSNs show a good accumulation at the tumor site resulting
in an increased CT signal from 2–24 h post-i.v. injection as compared to Bi2S3@MSNs
(Figure 2B).
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Figure 2. (A) In vitro CT performance of Bi2S3@MSNs in comparison with commercially available
iobitridol. Inset: Suspensions of Bi2S3@MSNs and iobitridol at different concentrations showing
CT contrast. (B) Representative CT images of UMR-106 tumor-bearing nude mice showing contrast
provided by RGD–Bi2S3@MSN and Bi2S3@MSN captured 2 and 24 h post-treatment. The red circle
highlights the tumor site. Reprinted with permission from Ref. [35]. Copyright © 2023 Wiley.

Wang et al. reported the synthesis of hydrophobic Cu3BiS3-NPs and their use for
targeted photodynamic/photothermal therapy and CT/MR dual modal imaging [36].
Modifications to the NPs included coating with DSPE-PEG/DSPE-PEG-NH2 (DSPE: 1,
2-Distearoyl-sn-glycero-3-phosphoethanolamine-Poly (ethylene glycol)) for hydrophilicity,
conjugation of photosensitizer chlorin e6 (=Ce6) and functionalization with folic acid for
targeting. The X-ray co-efficient value of Cu3BiS3-NPs was calculated as 17.7 HU mmol
Bi/L, whereas r1 relaxivity was found to be twice that of Gd-DTPA, which is a clinically used
T1-MRI contrast agent. In vivo, these translated into significant CT and MR contrast which
peaked at 4–6 h post-i.v. injection via the tail vein. For MRI, a 281.6% increase in signal
intensity was observed 6 h post-injection, whereas a quantitative CT value of 252.3± 25 HU
was observed. Combined, the NPs were able to successfully accumulate at the tumor site
and inhibit tumor growth in vivo [35]. In addition, Wang et al. discussed the use of rhenium
disulfide (ReS2-) NPs as gastrointestinal (=GI) tract and tumor imaging probes, due to
their excellent X-ray and NIR absorption properties [37]. With respect to GI tract imaging,
the ReS2-NPs showed a higher signal-to-noise ratio with increasing X-ray energy 5 min
post-oral administration in Kunming mice when compared to iohexol. Similar results were
also observed in 4T1 tumor-bearing mice, when ReS2-NPs were injected intratumorally,
whereby the HU value increased from 30–50 to 110–150 in the tumor region [38].
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2.3. Optical Imaging

When light is used to probe molecular and cellular interactions for visualization, it
is called optical imaging [39]. Depending on the tissue composition, when light travels
through it, photons may experience absorption, reflection or scattering. These interac-
tions can be analyzed in different types of optical imaging techniques to yield unique
spectral signatures [40]. For example, inelastic scattering of light is measured by Raman
spectroscopy, whereas absorption followed by emission of light can be in fluorescence [19].
Optical imaging offers advantages such as the ability to image at the microscopic level and
good spatial resolution but is limited by scattering of light in biological tissues. This is
often overcome using imaging probes in the NIR region as there is lower absorption and
scattering by soft tissue [40].

NPs exploited for optical imaging mostly include QDs, as their emission is often a
function of their size and can be effectively tuned. Changes in the size of nanoparticles also
leads to changes in their band gap which in turn influences their imaging properties. Optical
bandgap, especially of semiconductor materials is inversely proportional to nanoparticle size
distribution. Thus, size of QDs often plays an important role in imaging applications. The
ability of MxSy-NPs to absorb in the second biological window, i.e., NIR-II (1000–1700 nm),
thus enabling deep tissue penetration, better signal-to-noise ratio with reduced tissue
auto-fluorescence has led to their widespread application in optical imaging [41]. MxSy-
NPs studied for optical imaging include semiconductor metal-based QDs especially from
group II–VI elements of the periodic table of the elements such as cadmium sulfide (=CdS)
and zinc sulfide (=ZnS), respectively. Group I–VI semiconductor-based silver sulfide,
i.e., Ag2S-NPs are also being increasingly used in optical imaging due to properties like
absorption in the second NIR window, high signal-to-background noise ratio and good res-
olution [42]. Examples of MxSy-NPs used for different types of optical imaging techniques
are reported below.

Awasthi et al. prepared Ag2S QDs for fluorescence imaging due to their favorable
properties including high quantum yield, good photostability and biocompatibility [43].
To improve hydrophilicity and dispersion of the Ag2S QDs, they were encapsulated in a
PEGylated dendrimer to yield PEG-PATU-Ag2S QDs [43]. When excited with a laser at
785 nm, the appropriate QDs exhibited fluorescence at 1110 nm and intensity of fluorescence
improved when the QDs attained sizes greater than 25 nm. The authors also prepared
A549 cancer cells labeled with Ag2S QDs and intravenously injected them into BALB/c
mice to test in vivo tracking ability of the QDs. As can be seen from Figure 3, 2 min post-
administration, fluorescence signals were observed mainly from the liver which gradually
decreased over time. About 30 min following administration, fluorescence signals spread
throughout the body, thus showing the distribution of tumor cells in vivo. To probe the
ability of Ag2S QDs as a vascular imaging agent, PEG1000 was used for modification of the
QDs followed by i.v. injection into BALB/c mice. After a few seconds post-administration,
the main vascular system of the mouse was clearly visible using a real-time monitoring
system (Figure 3D).
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led to oxidation and eventual etching of plasmonic Ag in the JNP [46]. The authors also 
studied the increase in fluorescence intensity of Ag/Ag2S JNPs treated with H2O2 and ob-
served a 6-fold increase 24 h post-treatment. To confirm that fluorescence arises from the 
Ag2S component, Ag and Ag2S NPs were incubated separately with MCF-7 cells. An “al-
ways on” signal was observed in the cells in contrast to an “always off” signal solely with 
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Figure 3. Representative images of NIR-II fluorescence imaging in BALB/c mice. (A) Full body
distribution and (B) zoomed in image showing fluorescence from the femoral artery post-i.v. injection
of Ag2S QDs. [Reprinted with permission from Ref. [43]. Copyright © 2023, Royal Society of
Chemistry]. (C) Higher fluorescence intensity observed from the Eppendorf tube containing the
same concentration of alloy QDs as compared to MQDs. (D) Cell number dependent increase
in fluorescence intensity observed in HeLa cells treated with alloy QDs as compared to MQDs.
(E) Higher fluorescence intensity observed in vivo in mice treated with alloy QDs. (F) Images of liver
captured 1 h post-treatment showed higher fluorescence in mice treated with alloy QDs. Reprinted
with permission from Ref. [44]. Adopted from BioMed Central 2022.

Recently, silver/silver sulfide Janus NPs (=Ag/Ag2S JNPs) for hydrogen peroxide
(=H2O2) triggered NIR-II fluorescence imaging were reported by Zhang et al. [45]. In
the presence of H2O2, the fluorescence of Ag/Ag2S JNPs will be “turned on”, whereas in
its absence a nearly quenching effect was observed. This mechanism is attributed to an
inhibited electron transfer between plasmonic Ag to semiconductor Ag2S in the JNP when
treated with H2O2 thus giving rise to electron deficient fluorescent Ag2S. Because of the
influence of H2O2 on plasmonic Ag, changes in morphology induced in the Ag/Ag2S JNPs
post-treatment by H2O2 was assessed. Ag/Ag2S JNPs of size ~15 nm showed a decrease in
size to ~10 nm which was in accordance with the mechanism wherein addition of H2O2 led
to oxidation and eventual etching of plasmonic Ag in the JNP [46]. The authors also studied
the increase in fluorescence intensity of Ag/Ag2S JNPs treated with H2O2 and observed
a 6-fold increase 24 h post-treatment. To confirm that fluorescence arises from the Ag2S
component, Ag and Ag2S NPs were incubated separately with MCF-7 cells. An “always
on” signal was observed in the cells in contrast to an “always off” signal solely with Ag
NPs. To determine the in vivo H2O2-triggered fluorescing ability of Ag/Ag2S JNP, they
were injected intravenously in an AILI mice model of injured liver. PBS- and only Ag2S NP-
treated groups were chosen as control groups for the study. Whereas the Ag2S-NP-treated
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group showed fluorescence that was “always on”, Ag/Ag2S JNP treated mice showed a
gradual switch from off to on fluorescence signals with progressing liver injury. Harish et al.
synthesized CdS QDs coated with the biopolymer chitosan to improve its stability and
biocompatibility [47]. To test the effect of the chitosan coating, the viability of coated and
bare CdS QDs were tested in human Jurkat and erythrocyte cell lines. A reduced cytotoxicity
of chitosan-coated CdS QDs was found, as compared to the same concentration of solely
CdS. Moreover, it was reported that coated QDs were readily taken up by cells as observed
by fluorescence imaging analysis. Biocompatibility and uptake of chitosan-coated CdS QDs
was attributed to reduced leaching of Cd2+ ions from the respective QDs leading otherwise
to cytotoxic effects. In the presence of chitosan, released Cd2+ ions form coordination
bonds with the amino groups of chitosan thus preventing contact with the cells. In another
study, Xu et al. generated two cadmium telluride/cadmium sulfide (=CdTe/CdS) core-
shell QDs emitting at 545 nm and 600 nm, respectively, to visualize distribution of two
chemotherapeutic drugs in a tumor [48]. Coating of CdS over the core resulted in improved
quantum efficiency, fluorescence lifetime, stability and biocompatibility of the QDs. The
5-Fluorouracil (=5-FU) and tamoxifen (=TAM) were encapsulated into CdTe/CdS QDs
emitting at 545 nm and 600 nm, respectively. To test the effect of the drugs on the tumor
resistant cell line MDA-MB-231, the authors conducted a set of experiments. In the first set,
the cells were incubated only with QDs-5-FU and in the second set, the cells were incubated
with QDs-TAM followed by QDs-5-FU. In the first experiment, green fluorescence of QDs-
5-FU was observed only on the cell membrane, whereas in the second experiment green
fluorescence was observed within the cell with orange-red fluorescence observed on the
cell membrane.

An approach to improve the quantum yield for fluorescence imaging results from
the accessibility of QDs in an alloyed core/shell structure containing ZnS in ref. [49]. In
this study, Shim et al. modified CIS, i.e., CuInS2 QDs, to form a ZnS-CIS alloyed core
surrounded by a ZnS shell affording ZCIS/ZnS. The authors attributed this improvement
to the suppression of defect states and electronic structure evolution which, in turn, in-
creased radiative channels. In a similar study, alloy type core/shell CdSeZnS/ZnS QDs
were synthesized by Kim and colleagues for bio-imaging applications [44]. The authors
compared the quantum yield of the CdSeZnS/ZnS QDs (=alloy QDs) against conventional
multilayer CdSe/CdS/ZnS QDs (=MQDs). For alloy QDs, a 1.5-fold higher quantum yield
than that of MQDs was reported which significantly improved both in vitro and in vivo
imaging (Figure 3C–F).

2.4. Photoacoustic Imaging

Photoacoustic imaging (=PAI) is a type of modified ultrasound imaging modality in
which imaging signals are generated through acoustic (ultrasonic) waves caused by the
photothermal effects of a PTT agent and can increase the spatial resolution and imaging
depth in vivo [50]. The broad absorption by MxSy-NPs in NIR-I and NIR-II resulting from
localized surface plasmon resonance has led to their applications as PTT agents and thus
also as PAI contrast [51].

Liang et al. prepared glutathione (=GSH)-capped CuS NDs for PTT and PAI via a “one-
pot” synthetic methodology [52]. Modification with GSH ensured good water dispersibility
and size restriction of the NDs (<10 nm). Under irradiation by a 980 nm laser light, the NDs
showed PA contrast three times greater than that of water with a minimal concentration
of 1 mM Cu. In vitro studies were followed by in vivo testing in 4T1 tumor-bearing mice.
Saline or GSH-CuS NDs were injected intratumorally as control or test, respectively, fol-
lowed by irradiation at 900 nm. In a control experiment, a very weak PA signal indicating
low intrinsic absorption by the tumor at 900 nm, was observed (Figure 4A). On the other
hand, a good PA signal was observed in mice treated with GSH-CuS NDs with higher con-
trast observed in the intratumorally injected mice as evidenced by the enhanced permeation
and retention (=EPR) effect and GSH coating on the surface of the NDs. Biomimetic CuS
nanoprobes coated with a melanoma cell membrane (HCuSNP@B16F10) for PAI were made
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accessible by Wu et al. [53]. They loaded HCuSNP@B16F10 with indocyanine green (=ICG)
and doxorubicin (=DOX) for PTT and chemotherapy studies. Cell membrane coating
was confirmed by Western blotting, and cell viability remained 70% after incubation with
150 µg mL−1 for 24 h. In vivo HCuSNP@B16F10 showed a significant PA signal up to 4 h
after i.v. injection. In another study, Ouyang and colleagues fabricated CuS nanoparticles
trapped in a dendrimer functionalized with PEGylated-RGD (=RGD-CuS DENPs) peptide
for PAI-guided PTT/gene therapy [54]. UV–Visible spectroscopy analysis showed good
absorption by RGD-CuS DENPs in the 1000–1100 nm range with the CuS core having a
diameter of 3.2 nm. The nanoparticles showed PAI contrast dependent on Cu concentration
wherein PA signal peaked at 12 h post-intravenous injection in vivo. Figure 4C,D represent
PAI obtained using FeS QDs fabricated by Yang et al. which shows a gradual increase in
PAI contrast in vivo post-treatment with the QDs.
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In addition to X-ray absorption studies, strong NIR absorption has resulted in the ap-
plication of Bi2S3 NPs for PAI as well. In this respect, Zhang et al. synthesized hollow Bi2S3
nanospheres with urchin-like rods (=U-BSHM) for spatio-temporal controlled drug release
and PTT-PAI [55]. This was achieved by encapsulating the phase change material (=PCM)
1-tetradecanol and doxorubicin within the microspheres. Heat generated by U-BSHM-NPs
under irradiation using an 808 nm laser melted the PCM, which in turn led to the release
of DOX thus achieving controlled release. The authors reported a 65.37% release of DOX
when U-BSHM-NPs attained a temperature of 43 ◦C or higher under laser irradiation. With
respect to imaging, the NPs showed a concentration-dependent increase in the PA signal
intensity by 808 nm laser irradiation. A significant PA signal was also observed when
the NPs were irradiated with 700 and 900 nm lasers, respectively (Figure 4A). Zhao et al.
synthesized ultra-small Bi2S3-NPs using self-assembled single-stranded DNA as a template
and employed them imaging probe in myocardial infarction [56]. As a result, thereof, a
good PA signal was found when tested in vivo. Similarly, Cheng et al. synthesized Bi2S3
nanorods (=NR) for PTT, radiotherapy, and dual modal PA/CT imaging [11]. In vivo, a
significant PA signal post-i.v. injection of the NRs, which peaked 24 h post-treatment, was
observed. With respect to CT imaging, the NRs showed an enhanced contrast as com-
pared to the commercially available radiocontrast agent iopromide. The authors concluded
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that radiotherapy and PTT acted in synergism which inhibited tumor growth as well as
metastasis. AgBiS2-NDs coated with polyethyleneimine (=PEI) were developed by Lei and
colleagues for theranostic applications such as PTT and dual modal PA/CT imaging [57].
PEI-AgBiS2-NDs showed photothermal conversion efficiency of 35.2% which translated to
a good PAI signal in vitro. With respect to CT imaging, the authors reported a slope higher
than that of iobitridol which is a commercially available radiocontrast agent. The respective
in vitro imaging results were correlated with in vivo observations and maximum signal
intensity for CT/PA imaging was observed at 24 h post treatment.

MoS2 which has an extinction co-efficient higher in comparison to gold nanorods
(=AuNR) and a 7.8-fold higher NIR absorbance than that of graphene oxide is increasingly
being used as an NIR absorbing probe with implications in biomedicine [58]. In order
to improve the serum stability of MoS2, Shin and colleagues synthesized hyaluronate
(=HA) and MoS2 conjugates (=HA-MoS2) for PAI-guided PTT [59]. The size of MoS2
nanoparticles increased from 61.9 nm to 85.9 nm after conjugation with HA. DLS studies
revealed no significant changes in the mean hydrodynamic size of HA-MoS2 after 7 days in
comparison to MoS2 alone, indicative of no aggregate formation and, thus, good stability.
Liu et al. synthesized MoS2 nanosheets conjugated with the dye ICG [60]. The conjugation
led to a red shift in the absorption peak of MoS2 from 675 nm to 800 nm for MoS2-ICG.
As a result, a 1.35- and 1.55-fold increase in signal intensity and signal-to-noise ratio
were observed at 800 nm pulsed irradiation as compared to that of 675 nm, respectively.
The improved PA signal intensity and penetration depth is explained to reduced tissue
scattering and absorption at 800 nm. In another study, Au et al. developed nerve growth
factor (NGF) targeted AuNR coated with MoS2 nanosheets (=anti-NGF-MoS2-AuNR) for
PAI of osteoarthritis [61]. MoS2 coated AuNR resulted in a 4-fold increase in PAI signal
intensity and higher biocompaibility as compared to AuNR alone. Additionally, the
authors also reported stable PA intensity and morphology of MoS2 coated AuNR following
irradiation for 30 min. In vivo when anti-NGF-MoS2-AuNR were injected intravenously
into Balb/c mice, PA signal peaked at 6 h post-treatment in the synovium of osteoarthritic
knee. MoS2 nanosheets modified with CuS nanoparticles were developed by Zhang and
co-workers for PAI-guided chemo-PTT [62]. Colloidal stability and biocompatibility of the
nanocomposites were improved by attachment of PEG-thiol (=PEG-SH). CuS-MoS2-SH-
PEG showed photothermal conversion efficiency higher than that of MoS2 alone.

3. Applications of Metal Sulfide Nanoparticles in Photo- and Immuno-Therapy
3.1. Photothermal Therapy

Photothermal therapy (=PTT) is a non-invasive therapeutic strategy that uses photo-
absorbents in the NIR region to induce hyperthermia (40–45 ◦C) in the tumor site. The
NIR laser induces collateral thermal damage to the cancerous cells leading to cell death by
apoptosis or by altering gene expression in cancerous cells [63].

CuS-NPs are an emerging class of photothermal agents that are biocompatible, have
high extinction in the NIR range, are stable under laser irradiation and, are therefore
considered to be better suited than the so far used gold (Au-) NPs [64,65]. The NIR
absorption in CuS-NPs is due to d–d energy band transitions of Cu2+ ions and therefore
their absorption wavelength remains unaffected by the surrounding biological environment.
In one report, 980 nm NIR-light-driven CuS nanoplates were found to inhibit the growth
of prostate cancer cells both in vivo and in vitro [66]. Respective CuS nanoplates were
injected into the prostate tumor site under ultrasound guidance and PTT was performed.
Lu et al. reported a platform for dual cancer therapy (photothermal and chemotherapy)
based on PEGylated CuS@mSiO2 nanocomposites [67]. The mesoporous silica allowed
high payload capacity; however, this showed poor colloidal stability. Hence, polyethylene
glycol grafting was carried out to improve the colloidal stability and enhance the EPR effect
to deliver drugs to the target cells. Cheng et al. developed WS2 nanosheets as PTT agent for
bio-imaging and photothermal ablation of tumors [68]. The nanosheets were functionalized
with PEG to enhance physiological stability and biocompatibility. The 4T1 cells were
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incubated with 0.1 mg ml−1 WS2-PEG nanosheets for 6 h and irradiated by an 808 nm laser
of varying power densities. The nanosheets effectively induced thermal ablation at a low
dose (i.t., 2 mg kg−1) and a higher dose (i.v. injection, 20 mg kg−1) without causing any
mortality (Figure 5). On similar lines, PVP-functionalized MoSe2 nanosheets in a PNIPAM
hydrogel with both a dual photo- and thermo-responsive behavior was effective towards
HeLa cells [69]. Photo-thermal ablation of mammalian cells was also demonstrated by
Chou et al. by using chemically exfoliated MoS2-NPs at a very low concentration (<38 ppm)
to effectively destruct the cancerous cells [70].
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Figure 5. Microphotographs of HeLa cells with CuS-NPs. (A) without laser, cells were viable and had
polygonal morphology. (B) with NIR laser irradiation at 24 W cm−2 for 5 min (purple arrows show
shrinking of cells; yellow arrows show loss of cell viability by calcein-negative staining; white arrows
show loss of cell membrane integrity by EthD-1 positive staining. (C) In vivo PTT in 4T1 tumor
bearing mice with saline (top row), WS2-PEG (middle row: i.t. low dose = 2 mg kg−1), WS2-PEG
(bottom row: i.t. high dose = 20 mg kg−1). The laser power density was 0.8 W cm−2. Reprinted with
permission from Refs. [64,68]. Copyright © 2023, Future Medicine and 2014, Wiley.

Qian et al. introduced PEGylated titanium disulfide (=TiS2) as PTT agent for in vivo
PAI-guided thermal ablation of cancer [71]. PEG was incorporated into the system to
make the nanoparticles stable in polar solvents. The PTT agent exhibited strong NIR
absorbance being able to destroy tumor cells. A multifunction theranostics platform, based
on WS2 QDs (3 nm), was synthesized to achieve simultaneous CT/PAI and synergistic
PTT treatment of tumors, wherein the location of the tumor could be precisely observed
and treated [72]. MRI-guided PTT was reported using iron sulfide nanoplates. Yang
and coworkers prepared PEG-functionalized FeS nanoplates (=FeS-PEG) that exhibited
high NIR absorption and superparamagnetism [73]. Highly effective in vivo PTT ablation
in mice tumor was achieved using 20 mg kg−1 of FeS-PEG followed by 808 nm laser
irradiation. MRI studies revealed accumulation of FeS-PEG NPs in the tumor cell and no
toxicity was observed even at a higher dose.

Though metal sulfide NPs can be effectively used for photothermal ablation, however,
poor photothermal conversion efficiency restricts their use for all practical applications.
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To overcome this limitation, a combination of metal/metal sulfide NPs was designed [74].
Yang et al. reported surface plasmon-enhanced PTT using an Ag/CuS nanocomposite
for effectively killing PC3 prostate cancer cells [75]. The nanocomposite was activated
by a 980 nm laser at 0.6 W cm−2 for 5 min and, hence, an enhancement of CuS PTT
efficacy was observed. This is attributed to the presence of surface plasmon resonance
(=SPR) of the Ag-NPs that led to significant enhancement in the electric field near the
surface, thereby increasing the rate of the transition process at the interfaces. Ding and
coworkers studied the influence of dual plasmonic Au-Cu9S5-NPs on the photothermal
transduction efficiency [76]. The nanocomposite exhibited localized SPR in both the visible
and NIR region and the molar extinction coefficient of the composite was found to be
50% higher at 1064 nm than the individual counterparts. The composites were used for PTT
on tumor-bearing mice at 100 ppm under 0.6 W cm−2 1064 nm laser irradiation. Similar
observations were reported by tuning localized SPR by applying Cu5FeS4-NPs to enhance
the photothermal conversion efficiency up to 50.5% using an 808 nm laser [77].

3.2. Photodynamic Therapy

Photodynamic therapy (=PDT) is a clinically approved minimally invasive therapeutic
modality in which a photosensitizer (=PS) is activated by a light of specific wavelength
(laser) to generate singlet oxygen species (1O2) that destroys abnormal cells [78]. When
the photosensitizer is excited, it transfers its energy to the molecular oxygen in tumor cells
through a triplet state. During the process, cytotoxic singlet oxygen and other secondary
molecules such as reactive oxygen species, super-oxides, etc., are formed via oxidation
of cellular macromolecules. This event leads to necrosis or apoptosis of tumor cells [79].
Nanoparticles can be used as carriers of PS due to (i) easy functionalization with target
molecules that increases biodistribution of PS, (ii) the higher surface area-to-volume ratio of
NPs increasing the carrying capacity of PS, (iii) protect degradation of light-sensitive PS and
enhance their circulation in bloodstream, and (iv) capability to incorporate other therapeutic
or diagnostic modalities to PDT in the same system. MxSy-NPs have an edge over other
NPs such as gold NPs for use in PDT, due to their strong absorption properties in the
NIR region ranging from 700–1100 nm, high extinction coefficients and high fluorescence
properties. Hence, the following sections will focus on MxSy-NPs that are widely applied
in PDT.

Jia et al. used MoS2 nanoplates for fluorescence imaging of ATP and PDT through
ATP-mediated controllable to release 1O2 under 660 nm laser irradiation [80]. Therefore,
Ce6-aptamer was loaded on the MoS2 nanoplates that especially responded to the ATPs
in lysosomes and 1O2 induced cell death through the lysosomal pathway. The studies
exhibit the release of a single-stranded aptamer from the MoS2 nanoplates and subsequent
imaging of intracellular ATP and generation of singlet oxygen.

Plasmonic Cu2−xS-NPs confirmed excellent surface plasmon absorption in the NIR
region which mainly originates from the free holes of the unoccupied highest energy
state of the valence bond [81]. This depends on the ratio of Cu:S and the crystal phase
of the nanoparticles itself. Examples of plasmonic Cu2−xS-NPs are Cu31S16 (monocyclic
phase), Cu9S5 (cubic phase), Cu7S4 (orthorhombic phase), Cu58S32 (triclinic phase), and
CuS (hexagonal phase or covellite). With decrease in the Cu:S ratio (Cu2−xS with x > 0),
the concentration of free carriers increases inducing LSPR absorbance in the NIR area.
Cu2−xS-NPs enhanced the ROS generation in B16 cells under NIR radiation (808 nm,
0.6 W cm−2 for 5 min) [82]. Generation of hydroxyl radicals were detected by 5,5-dimethyl-
1-pyrroline-N-oxide (=DMPO) spin-trapping adducts in electron spin resonance (=ESR)
spectroscopy. The ROS generation was dependent on the concentration of the NPs and the
laser power. From the ESR signal it can be concluded that the irradiation led to around
83% enhancement in •OH generation. In vivo, Cu(II) is reduced to Cu(I) by biomolecules
such as ascorbic acid or glutathione, which reacts with hydrogen peroxide to form •OH
species. Similar results were also obtained by other researchers [81,83–85].
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Cheng and coworkers reported on the use of Bi2S3 nanorods for NIR-activated
PDT [86]. The nanorods could be excited by a NIR laser to generate free holes in the
valence band and electrons in the conduction band, which formed hydroxyl and super-
oxide radicals upon reaction with water and oxygen. Further, when the nanorods were
associated with zinc protoporphyrin IX, a pronounced inhibitory effect of the tumor was
observed under NIR irradiation. Lin et al. synthesized Co9S8 NDs and modified their
surface with albumin to make them biocompatible [67]. Upon NIR irradiation, the NDs
showed a marked time-dependent production of 1O2 production with high photothermal
conversion efficiency of 64%.

3.3. PTT-PDT Combinatorial Therapy

Photothermal and photodynamic therapies have an edge over conventional therapies
including chemotherapy, surgery, and radiation due to high specificity, minimal invasion,
and precise spatio-temporal selectivity [87]. Furthermore, in PTT and PDT, no extra
targeting is required, however, tissue penetration of light is a concern. Heat conversion
efficiency and formation of hypoxic environments in PTT and PDT are other concerns.
PTT agents convert light energy into heat and eradicate tumors by hyperthermia, while
PDT agents produce toxic reactive oxygen species to kill cancer cells. However, PTT
generally requires high-power density lasers to produce enough heat and PDT requires
the effective uptake of photosensitizers by cancer cells to induce tumor hypoxia. In other
words, in PTT, self-protection of cancer cells induces heat shock response which weakens
the PTT efficacy and on the other hand, in PDT, tissue hypoxia limits the PDT efficacy.
Therefore, synergistic strategies by combining PTT and PDT in a single platform are
now becoming important to overcome the concerns and gain improvised results of the
therapies. Simultaneous hyperthermia and ROS are envisaged to cause cancer cell death
and elimination of malignant tumors by PTT-PDT combinatorial therapy. In such cases,
a single nanoplatform that can behave as both PTT and PDT agents are highly desirable.
Following section deals with metal sulfide nanomaterials that are visualized to be PTT as
well as PDT agents.

Song et al. designed bioconjugated MoS2 nanosheets for combinatorial PTT-PDT in
which bioconjugation was done with BSA to render biocompatibility to the nanosheets
(Figure 6) [88]. The bioconjugated nanosheets produced both localized hyperthermia and
1O2. A possible mechanism of the combinatorial effects can be explained by the following
route: Firstly, when BSA-MoS2 nanosheets are irradiated with an 808 nm laser at 0.8 W cm−2,
a rise in temperature (up to 48 ◦C in 4–5 min) takes place which then activates the dissolved
oxygen to generate ROS (in the order O2 → 1O2 → O2

•− → •HO2 → H2O2 → •OH).
Thus, BSA-MoS2 nanosheets trigger ROS generation and enhance the phototherapy. In
another study, following a similar mechanism, MoS2 nanosheets in hydrogel were used
as PTT and PDT agent along with chemotherapy [89]. Remarkable reduction in primary
4T1 breast tumors and distal lung metastatic nodules in vivo was observed. A mild pho-
tothermal heating was able to increase cell membrane permeability and cellular uptake
of various agents such as photodynamic agents or chemotherapeutic drugs [90]. Similar
results were obtained by Xu and his group wherein an IR-808 dye sensitized UCNP with
Ce60-grafted MoS2 nanosheets synergistically amplified the up-conversion efficiency and
triggered the photosensitizer to produce large amounts of ROS [91].
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Figure 6. (A) Representative fluorescence images of BSA-MoS2 treated tumor-bearing mice at different
time points. (B) In vitro PAT imaging for different concentrations of BSA-MoS2. (C) Representative
PAT images of BSA-MoS2 treated tumor-bearing mice at different time points with tumor area marked
with a white dotted line. (D) Representative infrared images showing thermal profile of tumor-bearing
mice treated with BSA-MoS2 or PBS (control group) and their corresponding (E) temperature profile
and (F) tumor volume. (G) Representative pictures of mice showing reduction in tumor size with
respective treatments. (H) MR images of mice treated with BSA-MoS2 before and post- treatment
on the 14th day and corresponding (I) changes in body weight. Reprinted with permission from
Ref. [88]. Copyright © 2023, Royal Society of Chemistry.

The combination of PDT and PTT was also demonstrated by Bharathiraja and cowork-
ers where MBA-MD-231 cells were incubated with CuS-Ce6 NPs and exposed to an 808 nm
laser light for 10 min at 2 W cm−2 [92]. MTT assay revealed synergistic cytotoxicity by the
combination therapy rather than individual therapies. Similar observations were made
by Wang’s group [63]. Heat generation, due to photothermal efficacy of Cu2−xS-NPs, was
monitored in B16 cells by heat shock protein 70 (Hsp70) expression. The cells exposed
to 100 s laser radiation (808 nm and 0.6 W cm−2) showed significantly enhanced Hsp70
which is caused not only due to thermal stress but also due to elevated ROS levels [82].
Under NIR light and in tumor acidic regions, leaking of Cu(I) ions from the NP occurs,
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which react with the surrounding O2 and H2O2 to form Cu(II) along with hydroxide and
hydroxyl radicals that contribute to enhanced ROS [93]. Biocompatible PEGylated iron
sulfide NPs (=FeS2@C-PEG) were found to oxidize water to form O2 under NIR exposure
which improved the therapeutic efficacy of the NPs [94]. Formation of Fe(II) degraded
the intracellular H2O2 to produce more ROS species that contributed to the combinatorial
PTT-PDT. Zinc protoporphyrin IX (=ZP)-linked Bi2S3 nanorods provide active sites for
binding heme oxygenase-1 (HO-1) that are overexpressed in solid tumors and suppressing
the cellular antioxidant defense capability. The nanorods, upon NIR radiation, generated
heat that facilitated an efficient electron–hole separation in ZP and Bi2S3 and produced
ROS species. Once cells are attacked by ROS, the redox homeostasis is disturbed and
HO-1 catalyzed the heme molecule to generate a series of antioxidants (biliverdin, carbon
monoxide, and ferrous iron), which are the most potent endogenous scavengers of ROS.
Here, ZP, as a potent HO-1 inhibitor, suppressed the HO-1 activity and strengthened the
PDT effect. Under 808 nm laser irradiation (0.75 W cm−2, 10 min), the nanorods exhibited
photothermal conversion efficiency of 33.64%. The nanorods could accumulate in the 4T1
tumor and inhibit the HO-1 activity and enhance NIR-irradiated oxidative injury [86].
Cobalt chalcogenides also possess intrinsic peroxidase-like activity, high photothermal
conversion efficiency and broad NIR absorption properties; however, it is challenging
to synthesize biocompatible cobalt sulfide due to co-existence of both strongly reducible
cobalt ions and oxidizable sulfide ions. Further, cobalt ions have strong affinity for oxygen
and, therefore, it is difficult to exclude impurities such as cobalt oxide or cobalt hydroxide
in the resultant NPs [95,96].

3.4. Combined Photo-Immunotherapy

Immunotherapy is a biological cancer treatment that makes use of substances from
living organisms to treat cancer and help the immune system to fight cancer. Specifically,
immunotherapy or immune activation involves production of cancer-fighting immune cells
to identify and destroy cancerous cells. Immunotherapy includes checkpoint inhibitors,
T-cell transfer, monoclonal antibodies, cancer vaccines and immune system modulators.
In contrast to conventional therapies such as chemotherapy, radiotherapy, or surgery, that
aim to destroy cancer cells along with healthy cells, immunotherapy aims to prevent the
healthy cells and restore antitumor activity of the immune system. Research on delivery
of immunotherapeutic agents by NPs showed minimization of adverse effects and maxi-
mization of the therapeutic index of immunotherapy [97]. Nanomaterial-based delivery
of immunotherapeutics and biologicals (e.g., nucleic acids, antibodies, etc.) improves
pharmacological properties of drugs such as solubility, and stability in physiological media.
Assorted molecular-binding sites in nanomaterials help in shielding active drugs and bio-
logics from degradation and macrophage clearance in blood after systemic administration.
In other words, nanomaterials enhance bioavailability and control unwanted targeting
which is significant in tumor management [98]. Further, the pharmacokinetic profile of
the drug and their interaction with cells can also be modulated and controlled by the
nanosystem [99]. Release of the drug or biologics can also be controlled and regulated by
nanomaterials to enhance efficacy and reduce systemic toxicity. However, it is important to
consider the structure and composition of NPs for active targeting of drugs or biologics and
their release. Above all, nanotechnology offers possibilities of combining immunotherapy
with chemo-, radio- or even photothermal and photodynamic therapies.

Several nanosystems ranging from carbon-, metal/metal oxide-, polymer- and lipid-
based NPs are reported for specific delivery of immunotherapeutics to precisely target and
control tumors [100,101]. However, very little literature is available on the use of metal
sulfide NPs for immunotherapy. The following section will focus on metal sulfide-based
NPs that are reported for immunotherapy along with other phototherapies.

Guo and his group designed a light-induced transformative NP platform based on
chitosan-coated hollow CuS-NPs that can assemble immunoadjuvants oligodeoxynu-
cleotides containing the cytosineguanine (CpG) motifs [102]. The platform combined
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photothermal ablation and immunotherapy in which, upon laser excitation at 900 nm,
the nanostructures broke and reassembled into polymer complexes which enhanced CpG
tumor retention and uptake by plasmacytoid dendritic cells. It generates heat to ablate the
tumor cells and releases the tumor antigens into the tumor sites, while the immunoadju-
vants enhance antitumor immunity by promoting antigen uptake. The PTT synergistically
acted with immunotherapy to enhance immune responses and made the tumor residues
and metastases susceptible to immune-mediated killing. Similar observations were made by
Chen et al. using core-shell CuS@PLGA-NPs in which the model antigen ovalbumin (OVA)
was loaded [103]. On one hand, poly D, L-lactic-co-glycolic acid (=PLGA) made the system
biocompatible and exhibit controlled biodegradation kinetics, and on the other hand, the
CuS-NPs display favorable PTT by killing 4T1 tumor cells in vitro. Release of OVA and its
further internalization into antigen-presenting cells (=APCs) induced the immune response.
The heat conversion by CuS-NPs under NIR radiation not only triggered rapid release of
OVA but also enhanced the cell membrane permeability that led to higher uptake of the
antigen by the cells. Yan et al. reported synergistic PTT and immunotherapy driven by Cas9
ribonucleoprotein-loaded CuS-NPs to enhance the therapeutic effect on melanoma [104].
The NIR light triggered thermoresponsive CuS-NPs provide a platform to modify Cas9
ribonucleoprotein targeting PTPN2 for immunotherapy. Depletion of PTPN2 was observed
after treatment with the targeted NPs which caused accumulation of infiltrating CD8 T
lymphocytes in tumor mice. Also, the expression levels of interferons and cytokines (IFN-γ
and TNF-α) was upregulated which sensitized the tumors to immunotherapy. Thus, tumor
ablation along with immunogenic cell death induced by PTT amplified the anti-tumor
efficacy. Similar integration of PTT and immunotherapy in a Cu9S5@mSiO2 nanoagent
was reported in a study by Zhou et al., in which the immune response of CpG effectively
inhibited tumor metastasis [105]. Intracellular uptake of CpG promoted infiltration of
cytotoxic T lymphocytes (=CTLs) in tumor tissue, which stimulated the production of
IL-12, TNF-α and IFN-γ. Xu and coworkers verified adoptive macrophage therapy through
CuS-NP regulation for antitumor effect in mice bearing B16F10 melanoma [106]. Within
this study, bone-marrow-derived macrophages (=BMDMs) were incubated with PEGy-
lated CuS-NP to promote cellular production of ROS through dynamin-related protein 1
(Drp1)-mediated mitochondrial fission. The high intracellular ROS level directs BMDMs
polarization toward M1 phenotype by classical IKK-dependent NF-κB activation. Moreover,
the CuS-NP-stimulated BMDMs downregulated PD-1 ligand expression and contributed
to the promoted ability of phagocytosis and digestion. I.t. transfer of CuS-NP-redirected
macrophages, triggered the local and systemic tumor-suppressive alterations, further en-
hancing the antitumor activity. On similar lines, MoS2 nanosheets were functionalized with
CpG and PEG to form nanoconjugates that upon NIR irradiation significantly enhanced in-
tracellular accumulation of CpG [107]. The accumulation of CpG stimulated the production
of proinflammatory cytokines and elevated immune response. The MoS2 nanoconjugates
also reduced proliferation of 4T1 cells when co-cultured with RAW264.7 (macrophage cells)
upon NIR irradiation for 10 min at 2 W cm−2. The increased uptake efficiency of CpG is
attributed to the membrane permeability induced by laser irradiation.

MoS2-NPs are able to induce low levels of the pro-inflammatory cytokines IL-1β, IL-6,
IL-8, and TNF-α in human bronchial cells (NL-20) and activate antioxidant/detoxification
defense mechanisms [108]. The low cytotoxicity of the MoS2-NPs reflects the ability of the
NPs to induce a favorable balance of cellular responses in vitro which can be extended to
in vivo in future.

It can be inferred that the combination of photothermal therapy and immunotherapy
can produce synergistic anti-tumor effects as well as reduce systemic toxicity [109]. Major
applications of MxSy-NPs in photothermal therapy are due to their ability to convert NIR
radiation into thermal energy which is subsequently used for ablation of cancer cells. How-
ever, it is important to achieve higher conversion efficiency so that the dose requirement is
reduced. Moreover, integration of photothermal therapy with immunotherapy is essential
to address cancer heterogeneity and adaptation.
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4. Conclusions

Although MxSy-NPs have been researched as theranostic nanoplatforms over a decade,
only a handful of reviews are highlighting recent developments and challenges in this
field [9,10,20]. Metal sulfide NPs, specifically, transition metal dichalcogenides, have an
array of desirable properties such as electronic band structure, tunable bandgap, lumines-
cence, and Raman scattering, which can be tuned as per the end applications. However,
because of the semiconductor behavior, they are intrinsically toxic which limits their use
in biomedical applications. To address the concern, additional modifications of the appro-
priate nanomaterials are required to enhance biocompatibility and make them capable for
their use as diagnostic tools or imbibe properties for applications such as drug delivery,
sensing, etc. Further, metal sulfide NPs do not form very stable suspensions in polar
solvents, for example, water, and therefore, their use in in vivo applications also remains a
concern. Hence, proper NP functionalization is, therefore, required to provide colloidal
stability to the respective NPs. Thus, selection of functional molecules (e.g., dyes, polymers,
organic molecules including acids, small molecules such as hydroxyl, thiols, etc.) are crucial
for facilitating interactions between the NPs and biological systems [110]. In many cases,
functionalization may involve modification of atoms of the NPs present in the basal plane,
kinks, edges or corners, which may change the electronic band structure of the NPs [111].
Voiry et al. reported that change in phase of sulfur- and selenium-based transition metal
dichalcogenides from metal to semiconductor takes place when the NPs will be covalently
functionalized with, for example, amides and methyl moieties, respectively [112]. Thus,
designing synthesis and functionalization strategies of metal sulfide NPs are very important
to meet the requirement of structural and chemical stability, dispersibility in physiological
medium, uniformity in size distribution, and biocompatibility. In addition to functionaliza-
tion, core–shell structures may also be developed to decrease leaching of toxic metals in
cellular environments. This is especially true in heavy metal quantum dots such as lead
sulfide (PbS), CdS, mercuric sulfide (HgS) offering excellent optical imaging properties but
are limited due to their cytotoxicity. In such cases, formation of a shell over the core can
impede direct contact of the heavy metals with cells and improve biocompatibility of the
appropriate metal sulfide.

Though multimodal platforms (therapeutic and imaging) have proved beneficial for
treatment of several diseases, overtreatment is emerging as a new concern. Minimizing
the use of probe material and therapeutic dose, while maintaining the effectiveness of
the platform, is crucial for patient’s compliance. Integration of various functions in a
nanosystem without changing individual properties can significantly synergize theranostic
effects. It is also important to design a multimodal system of varying chemistries that
would not only retain their individual functions, but also not interfere with the functions
of other materials, which eventually can enhance the effectiveness of every component.
Li et al. developed such a platform based on hydrophilic MnS@Bi2S3-PEG NPs which
was successfully used as contrast agents for MRI, CT and PA-trimodal imaging moiety
along with PTT and hyperthermia applying a single injection dose for tumor therapy.
Hyperthermia significantly enhanced the efficacy of radiation and provided a unique
platform to address the concern of overtreatment [113]. More such platforms would
definitely prove beneficial; however, their short- and long-term efficacies and toxicities
need to be evaluated.

Nanoparticle-based delivery of immunotherapeutics is significant in not only treat-
ing cancer but also developing immune defensive cells that can be used to identify and
eliminate tumor cells. Due to limited toxicity and side-effects, immunotherapy can be
used in conjunction with other interventions such as chemotherapy, radiation therapy, pho-
tothermia and hyperthermia. Several multifunctional nanomaterials have been explored as
photoimmunotherapeutic agents to enhance phototherapy as well as carrier of immune
adjuvants. Despite the progress, more research is required to understand the dynamic
immune response and the molecular mechanism of NPs-immune interaction for promoting
clinical translation of nano-immunotherapy. It is also important to consider the potential
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risk associated with overstimulation of the immune system that may lead to autoimmune
toxicities. A balance between efficacy and safety rather than a strong anti-tumor immune
response is required. Nevertheless, photoimmunotherapy has shown promising pre-clinical
responses on various tumor models and therefore, has a potential for clinical translation.

Though there are proven reports of the versatility of MxSy-NP-based nanophotother-
apeutic platforms, clinical translation is a long way to go. More detailed understanding
of degradations and metabolism of MxSy-NPs is required to validate their effectiveness
with respect to degradation products of MxSy-NPs, metal metabolism, biodistribution,
pharmacokinetic mechanism, fate, and elimination process. Nevertheless, advancements in
research will have an impact on future phototherapeutic abilities of MxSy-NPs.
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