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Abstract: Misgurnus anguillicaudatus (loach) is a widely distributed benthic fish in Asia. In this study,
the alkaline protease was used to hydrolyze loach, and the hydrolysate products of different molec‑
ular weights were obtained by membrane separation. In vitro antioxidant assays showed that the
<3 kDa fraction (SLH‑1) exhibited the strongest antioxidant activity (DPPH, hydroxyl radical and su‑
peroxide radical scavenging ability, and reducing power), while SLH‑1 was purified by gel filtration
chromatography, and peptide sequences were identified by LC‑MS/MS. A total of six peptides with
antioxidant activity were identified, namely SERDPSNIKWGDAGAQ (D‑1), TVDGPSGKLWR (D‑2),
NDHFVKL (D‑3), AFRVPTP (D‑4), DAGAGIAL (D‑5), and VSVVDLTVR (D‑6). In vitro angiotensin‑
converting enzyme (ACE) inhibition assay and pancreatic cholesterol esterase (CE) inhibition assay,
peptide D‑4 (IC50 95.07 µg/mL, 0.12mM) andD‑2 inhibited ACE, and peptide D‑2 (IC50 3.19mg/mL,
2.62 mM), D‑3, and D‑6 acted as pancreatic CE inhibitors. The inhibitory mechanisms of these pep‑
tides were investigated bymolecular docking. The results showed that the peptides acted by binding
to the key amino acids of the catalytic domain of enzymes. These results could provide the basis for
the nutritional value and promote the type of healthy products from hydrolyzed loach.

Keywords: Misgurnus anguillicaudatus (loach); peptides bioactivity; antioxidants; enzymes inhibitor;
molecular docking

1. Introduction
Antioxidant compounds are important for human health as they prevent or reduce

excessive free radicals and reactive oxygen species (ROS) produced by the body, thus re‑
ducing damage toDNA, proteins, and lipids [1–3]. Antioxidants and enzyme inhibitors are
employed as part of the control strategy for the management of healthy [4]. Metabolic dis‑
eases have always been a problem for modern people [5]. Among them, hypertension and
hypercholesterolemia are metabolic disorders of the body, and oxidative stress is thought
to be involved in their pathogenesis [2,3,5]. ROS are considered to be mediators of blood
pressure caused by an angiotensin‑converting enzyme (ACE) [3]. Bioactive peptides are
defined as specific protein fragments that have a positive impact on body functions [6].
Bioactive peptides are generally formed from 2–20 amino acid units and performmultiple
health benefits such as antioxidant [7], antihypertensive [8], hypoglycemic [9], cholesterol
lowering effect [10], immunomodulatory [11], antifatigue [12], and antiaging activities [13].
Bioactive peptides, such as antioxidant peptides, are rich in aromatic amino acids, acidic
amino acids, and hydrophobic amino acids that contribute to antioxidant properties [14].
Likewise, these amino acids can facilitate the formation of hydrogen bonds, hydrophobic
interactions, and other interactions with ACE and pancreatic cholesterol esterase (CE) to
inhibit enzyme activity and exert health‑promoting effects [10,15].
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A parent protein contains inactive but specific amino acids, and the protein is able
to demonstrate its potential biological activity only when these amino acids are released
through processes, such as in vitro hydrolysis of peptide bonds [16]. Enzymatic hydrol‑
ysis causes some improvement in the functional properties of proteins and has the ad‑
vantages of being rapid, safe, easily controllable, and low cost [17]. Rona et al. [18] used
pepsin‑chymotrypsin‑trypsin to enzymatically decompose pigeon pea seeds, and hydrol‑
ysis peptides showed strong ACE inhibitory activity and antioxidant activity. Priti [19]
et al. used papain to hydrolyze camel milk protein to obtain three pancreatic CE inhibitory
peptides. Animal and plant proteins are the source of bioactive peptides [8]. Due to the
excellent nutritional profile, good amino acid composition, and beneficial biological activ‑
ity of fish hydrolysates, their potential industrial applications as functional food ingredi‑
ents have been extensively investigated [20], such as sardine hydrolysates [21] and stur‑
geon skin hydrolysates [22], which were shown to have antioxidant effects. Furthermore,
Khawaja et al. [23] obtained 10 antioxidant peptides from mackerel muscle hydrolysates.
The peptide ALSTWTLQLGSTSFSASPM had the highest DPPH scavenging activity, and
the peptide LGTLLFIAIP had the highest SOD‑like activity. Furthermore, researchers
have applied modern bioinformatic techniques, such as molecular docking techniques
and molecular dynamics simulations, to explain the molecules mechanism of bioactive
peptides [24,25].

Misgurnus anguillicaudatus (loach) is widely distributed in a benthic river in Asia [26]
and is a common traditional freshwater food fish in China and Korea [27]. Loaches are
small commercial fish, and its meat is very delicious [28,29]. According to the China
Fishery Statistical Yearbook, loach productions continuously increased at an average an‑
nual rate of 5.7% in recent years, and loach production reached 367,428 tons in 2021 [30].
The meat of loach is rich in nutrients and contains many healthful active substances, and
the Chinese discovered its medicinal value in ancient [31]. Loach has been studied for
the lectins, antimicrobial peptides, polysaccharides, and glycoproteins purified from its
mucus [26]. Loach proteins have recently received considerable research attention, and
the studies aremainly focused on active peptides of these proteins for their antioxidant, an‑
tifatigue, and anticancer cell proliferative properties. You et al. [32] hydrolyzed loach with
papain to obtain crude peptides with antifatigue, antioxidant, and anticancer cell prolifer‑
ative effects. In addition, the new antioxidant sequence Pro–Ser–Tyr–Val was produced
from loach [31].

The aim of this study was to isolate antioxidant active peptides from protease hy‑
drolyzed loach with a variety of biological activities that could be beneficial to human
health (ACE inhibitory activity and pancreatic CE inhibitory activity). The mechanism of
action of the peptideswas studied bymolecular docking and experiments. Our results will
provide a basis for determining the nutritional of loach value of human health. In addition,
it will broaden the type of products of processed loach.

2. Results and Discussion
2.1. Barrier Separation

As shown in Figure 1, at a concentration of 10 mg/mL, the DPPH, hydroxyl radical,
and total reducing power of SLH–1 were 58.34%, 34.15%, and 0.106, respectively, which
were significantly higher than those of SLH, SLH‑2, and SLH‑3. Many studies have shown
that the enzymatic products of protein and low‑molecular‑weight peptides can effectively
inhibit the interaction of free radicals [17]. Studies have also shown that the DPPH scav‑
enging activity of SLH–1 at different mass concentrations increasedwith the concentration
(Figure 2a). When the SLH–1 concentration reached 5.53 mg/mL, the DPPH clearance rate
reached 50%. DPPH is a relatively stable lipid‑free radical, and antioxidants could inhibit
the oxidation of free radicals [33]. DPPH inhibition and reduction have been extensively
used to assess the antioxidant capacity of substances [34]. As shown in Figure 2b, SLH–
1 exhibited dose‑dependent hydroxyl radical scavenging activity at 10–50 mg/mL, with
an IC50 value of 30.66 mg/mL. Superoxide anion, which is produced through aerobic res‑
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piration, is a signaling molecule that is particularly crucial for regulating apoptosis and
senescence [35]. The superoxide radical scavenging activity was 39.96% at 2mg/mL SLH–1
(Figure 2c). The IC50 value was calculated to be 7.46 mg/mL, which indicated that SLH–1
had a good superoxide radical scavenging activity. The total reducing force absorbance
of SLH–1 was 0.298 at a concentration of 50 mg/mL (Figure 2d). The absorbance continu‑
ously increased with an increase in mass concentration, which indicates a good restoring
force. The loach protein was hydrolyzed by protease to form small‑molecule polypeptides,
which exhibited good antioxidant activity. The biological activity of peptides is affected
by their molecular weights. The membrane separation technology can be used to enrich
peptides of a certain molecular weight [36]. Different molecular sizes of peptides may con‑
tribute to their different biological activities and functional properties [37], and overall,
low‑molecular‑weight peptides have more biological activity [38]. Our results are similar
to those of Zhong [39], who extracted bioactive peptides from tuna hydrolysates.
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Figure 1. Antioxidant activity of various fraction of hydrolysates of loach (a) DPPH radical scav‑
enging rate of various fraction of hydrolysates of loach; (b) Hydroxyl radical scavenging rate of
various fraction of hydrolysates of loach; (c) Superoxide radical scavenging rate of various fraction
of hydrolysates of loach; (d) Total reducing force of various fraction of hydrolysates of loach. The
different letters represent the statistically significant difference (p < 0.05).
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Figure 2. Antioxidant activity of SLH–1 (a) DPPH radical scavenging rate of SLH–1; (b) Hydroxyl
radical scavenging rate of SLH–1; (c) Superoxide radical scavenging rate of SLH–1; (d) Total reducing
force of SLH–1.

2.2. G–25 Gel Chromatographic Separation
Figure 3a presents the results of the sample separation of SLH–1 according to the

molecular size of the peptide by using a G25 chromatographic column. The peptide was
separated into five components, and the hydroxyl radical scavenging activities of these
components are presented in Figure 3b. Component F2 (Tube Number: 71–111, second
peak) exhibited the strongest hydroxyl radical activity compared with other components.
At 0.35 mg/mL, Component F2 showed the strongest hydroxyl radical scavenging activity,
indicating that the antioxidant activity is related to the molecular weight. Other studies
have purified antioxidant peptides similar to those found in the present study [17]. The
relationship between the functional properties and structure of the active peptidewas clari‑
fied by further identifying the amino acid sequence in Component F2 through LC–MS/MS.

2.3. Peptide Identification
We identified the bioactive peptides in F2 through the LC–MS/MS polypeptide se‑

quence analysis, and a total of 535 peptides were identified. The six peptides with the
highest score in the total peptides were chosen (Table 1), which were SERDPSNIKWGDA‑
GAQ (D‑1), TVDGPSGKLWR (D‑2), NDHFVKL (D‑3), AFRVPTP (D‑4), DAGAGIAL (D‑5),
and VSVVDLTVR (D‑6)) (The spectra of these peptides are in Figures S1–S3). The different
bioactive functions of a peptide are related to factors, such as the composition and sequence
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of amino acids, and the type and size of amino acids at the amino or carboxyl ends [16].
These factors determine the solubility and hydrophobicity of peptides and directly affect
their activity and their ability to be absorbed by the body [40]. The secondary structure of
the six peptides was predicted to be a random coil by online website. It has been shown
that the biological activity of peptides were related to their structure, and the increase in
the random coil of their secondary structure enhanced their antioxidant activity [41]. The
higher the proportion of irregular curl, the looser the structure of the peptide, which can
better expose the active site and thus bind to the receptor [41,42].
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Table 1. Information on six peptides.

Number Peptide Sequences Peptide
Length Score Scan Time Intensity pI

Grand
Average of
Hydropathy

Toxicity Anaphylaxis

D‑1 SERDPSNIKWGDAGAQ 16 557.90 22.14 64,628,000 4.56 −1.42 No No
D‑2 TVDGPSGKLWR 11 524.20 23.70 78,281,000 8.41 −0.79 No Possible
D‑3 NDHFVKL 7 456.80 22.93 193,440,000 6.74 −0.47 No Possible
D‑4 AFRVPTP 7 444.60 31.85 4,081,200 9.79 0.06 No No
D‑5 DAGAGIAL 8 437.10 35.57 49,091,000 3.80 1.18 No Possible
D‑6 VSVVDLTVR 9 412.70 35.28 6,303,100 5.81 1.23 No No

2.4. Biological Activity of Synthetic Peptides
2.4.1. Antioxidant Activity

As shown in Figure 4a, the DPPH scavenging activity of peptide D–2 was 86.57% at
0.5 mg/mL, which was higher than that of glutathione at the same concentration. This
indicated that Peptide D–2 had stronger DPPH scavenging activity than glutathione. At
0.5 mg/mL, theDPPHscavenging activity of PeptidesD–1, D–3, D–4, D–5, andD–6 reached
more than 90% of that of glutathione at the same concentration. Thus, D–1, D–3, D–4, D–5,
and D–6 had excellent DPPH scavenging activity similar to glutathione, and with an in‑
crease in concentration, the DPPH scavenging activity increased. The peptide extracted
from the loach had a high DPPH scavenging activity. Figure 4b shows that the hydroxyl
radical scavenging activities of peptides D–1, D–4, and D–6 at 0.5 mg/mL were 15.87%,
10.99%, and 9.15% higher than that of glutathione at the same concentration. As shown
in Figure 4c, although the superoxide anion and reducing power of the six peptide seg‑
ments were weaker than those of glutathione at 0.5 mg/mL, the superoxide anion scav‑
enging activity of these six peptide segments increased with an increase in concentration.
At 1 mg/mL, the superoxide radical scavenging capacity of all the six peptides exceeded
50%, exhibiting different antioxidant activities. Studies have shown that the antioxidant
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activity of peptides is closely related to the hydrophobic amino acids contained in those
peptide species [33]. Acidic amino acids have an ability to donate electrons to free radicals
and have been proven to strongly contribute to DPPH clearance [14,33]. All the peptides
synthesized in the present study, except D–4, contained Asp. In addition, aromatic amino
acids are considered the main antioxidant amino acids that are a crucial player in antioxi‑
dant activity [43,44].
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2.4.2. ACE Inhibitory Activity
Peptide segments D–2 and D–4 exhibited ACE inhibitory activity, and the inhibitory

activity of D–4 was significantly higher than that of D–2, reaching 92.12% (Figure 5a). The
bioactivity of protein hydrolysis products is dependent on the amino acid composition, se‑
quence, and configuration of peptides [16,45]. The sequence and configuration of peptides
are related [46]. The hydrophilic–hydrophobic ratio in the peptide sequence is the key
factor for ACE inhibitory activity, and ACE is believed to prefer inhibitors containing hy‑
drophobic amino acid residues at the C‑terminal position [45]. Moreover, the C‑terminal
proline residue most likely enhances the peptide’s inhibitory activity against ACE because
the imidazole ring of Pro residues and the electron cloud of the hydrophobic interaction
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easily bind to the amino acid residues at the ACE active site [47]. The peptide AFRVPTP
had the same C‑terminal proline residue as lisinopril and enalapril [48], and its IC50 for
ACE inhibition was 95.07 µg/mL(0.12 mM) (Figure 5b). Furthermore, D–2 contained the
aromatic residue tryptophan in its C‑terminal tripeptide sequence. Peptides containing
branched aliphatic amino acids such as glycine, valine, leucine, and isoleucine at the N–
terminal position have been reported to exhibit ACE inhibitory activity [45,49]. In addition,
the C‑terminal with Arg greatly promotes the potent ACE inhibitory activity of long‑chain
peptides, and D–2 contained R at the C‑terminal, which improved its ACE inhibitory activ‑
ity [47]. The hydrophobic amino acid leucine (L) and the positively charged amino acid (K)
present in the peptide fragments favored the ACE inhibitory activity of the peptide [46,49].
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2.4.3. Pancreatic CE Inhibitory Activity
CE is a polymerase produced by pancreatic acinar cells. It plays a key role in hy‑

drolyzing cholesterol esters in diet, thus producing cholesterol and free fatty acids [50].
Figure 6a depicts the inhibitory effect of these six peptides on pancreatic CE at a con‑
centration of 1 mg/mL. The inhibitory activity of D–2 was significantly higher than those
of D–3 and D–6. D–2 showed more effective inhibition, and its inhibitory effect on CE
increased as its concentration increased, with an IC50 value of 3.19 mg/mL (2.62 mM)
(Figure 6b). Peptides with pancreatic CE inhibitory activity were obtained and predicted
from camel milk and amaranth protein [2,19,51]. To date, no study has investigated the
CE inhibitory activity of loach peptides in in vitro studies. This study provides a reference
for future researchers regarding the knowledge of loach protein hydrolysates to produce
anti‑hypercholesterolemic peptides.

2.5. Molecular Docking
Nrf2/Keap1 pathway is the key system, regulating expression of antioxidant and cy‑

toprotective genes. The Keap1‑Nrf2‑ARE‑signaling pathway directly regulates various an‑
tioxidant enzymes andGSH synthesis‑related enzymes as well as detoxification enzymes [52].
The inhibition of the Keap1–Nrf2 interaction would activate the downstream oxidation
resistance of this pathway and the expression of genes encoding cytoprotective proteins,
thereby improving the body’s antioxidant capacity [33]. Enhancing Nrf2 activity by dis‑
rupting the Keap2–Nrf1 interaction is one way to develop therapeutic anti‑oxidative stress
drugs [53]. Therefore, we predicted the antioxidant potential of the peptide in vivo by
molecular docking of the peptide with Keap1.
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In our present study, the binding ability of the loach peptide to Keap1 was assessed
through molecular docking. The six peptides, except for D–1, for which docking failed,
were ranked as D–4, D–5, D–6, D–3, and D–2 in terms of docking energy strengths, which
were −9.0, −8.0, −7.4, −7.3, and −6.4 kcal/mol (Table 2), respectively. This indicated
that the five antioxidant peptides could spontaneously bind to Keap1 protein. As shown
in Figure 7, the five loach antioxidant peptides could be embedded in the active cavity
of Keap1. All five ligands formed hydrogen bonds and hydrophobic bonds with Keap1,
thereby forming a stable docking conformation. D–2 generated a total of five hydrogen
bonds, including one bondwithArg483 andArg380 residues of Keap1 [54], and it formed a
hydrophobic bondwithAsn387, Tyr572, Arg415, andAsn487 active residues [55,56]. These
residues are also reported as key residues for the binding of Keap1 to Nrf2. D–3 also forms
three hydrogen bonds with key residues Tyr334, Arg483, and Asn387, which are used to
inhibit the binding of Keap1 to Nrf2 [33,43,44,55]. With Phe577, Tyr572, Ser555, Arg380,
Arg415, Tyr525, and Gln530 [33,43,44,55], D–4 formed a hydrophobic bond. D–4 formed
twohydrogenbondswith eachofAsn387,Arg415, andArg415 residues ofKeap1 [33,43,44,55],
and a hydrophobic bond with the active residues Tyr334, Arg380, Gln530, Tyr525, Arg483,
and Ser508 [33,43,44,55] of Keap1. D–4 produced a total of eight hydrogen bonds, and its
docking energy was considerably higher than that of other peptide segments. The ligand
interacted with the receptor through different intermolecular forces, such as hydrophobic
force, Van der Waals force, hydrogen bond, π bond, and electrostatic interaction, with the
hydrogen bond interaction being the strongest. D–5 formed seven hydrogen bonds with
Keap1, including two with Arg387 and Arg483, and one with Ser508 [33,43,44,55]. These
three residues were also the key for the binding of Keap1 to Nrf2. D–6 formed six hydro‑
gen bonds with Keap1, including with the active residues Ser602 and Arg415 [33,43,44,55]
of Keap1, with the bond lengths of 3.00 Å and 3.09 Å, respectively. These results indicated
that the five peptide fragments might competitively bind to and release Nrf2 from Keap1.
Moreover, they exhibit in vivo antioxidant activity by activating theKeap1‑Nrf2‑AREpath‑
way. Many food‑derived peptides have the potential to activate and release Nrf2 by com‑
petitively binding toKeap1 and inhibitingKeap1‑Nrf2 interactions. Han [57] formed stable
hydrophobic bonds between key amino acid residues of Keap1 protein and the antioxidant
peptides obtained from hydrolysis of tuna roe, which may regulate the Keap1‑NrF2 path‑
way. In the study by Zang [55], the novel antioxidant peptide produced through gastroin‑
testinal digestion in snakehead (Channa argus) soup acted as an antioxidant by activating
the cellular antioxidant Keap1‑Nrf2 signaling pathway.
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Table 2. Peptide docking with Keap1.

Number Docking
Energy

Number of
Hydrogen Bonds Hydrogen Bonds Hydrophobic Interactions

D‑2 −6.4
kcal/mol 5 Asn387 (A), Ser555, Arg380 (A),

His436 (B), Arg483 (B)

Asn382 (B), Tyr334 (B), Pro384 (A), Ser383 (A), Gly386 (A), Phe577 (B),
Gly433 (A), Asn387 (A), Arg380 (B), Asn414 (B), Phe478 (B), Ser508 (B),
Ile461 (B), Tyr525 (B), Gly509 (B), Gly603 (B), Gly364 (B), Ala556 (B),

Tyr572 (B), Asp385 (A), Ser363 (B)

D‑3 −7.3
kcal/mol 3 Tyr334 (B), Asn387 (A), Aeg483 (B)

Phe577 (B), Tyr572 (B), Ser383 (A), Asn382 (B), Ser383 (A), Ser363 (B),
Ser555 (B), Arg414 (B), Arg380 (B), Ala556 (B), Arg415 (B), Gly462 (B),
Ser508 (B), Tyr525 (B), Gln530 (B), Phe478 (B), His436 (B), Ile461 (B),

Gly386 (A), Pro384 (A)

D‑4 −9.0
kcal/mol 8 Pro384 (A), Ser383 (A), Asn387 (A),

Arg415 (B), Tyr572 (B)

Gly509 (B), Ala556 (B), Gly603 (B), Asn382 (B), Tyr334 (B),
Gly386 (A), Arg380 (A), Gln530 (B), Tyr525 (B), Arg483 (B), Ser508 (B),

Phe478 (B), Gly462 (B)

D‑5 −8.0
kcal/mol 7 Asn382 (B), Arg380 (B), Asn387 (B),

Arg483 (B), Ser508 (B)

Gly364 (B), Asn414 (B), Phe577 (B), Tyr334 (B), Tyr572 (B),
Gln530 (B), Gly509 (B), Tyr525 (B), Ser555 (B), Arg415 (B), Ser363 (B),

Ala556 (B), Gly603 (B)

D‑6 −7.4
kcal/mol 5 Ser383 (A), Ser602 (B), Arg415 (B),

Asn414 (B), Pro384 (A)

Asp385 (A), Ser363 (B), Gly364 (B)Ala556 (B), Ser555 (B), Gly509 (B),
Arg483 (B), Tyr525 (B), Ile461 (B), Phe478 (B)His436 (B), Gly433 (A),

Arg380 (B), Gly386 (A), Tyr334 (B)

Note: (A) represents the amino acid on chain A of the receptor molecule, and (B) represents the amino acid on
chain B of the receptor molecule.
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ACE has three active sites (S1, S2, S1,) and Zn(II) [58], which are considered impor‑
tant for its inhibition. Among them, Pocket S1 contains three amino acids (Ala354, Glu384,
and Tyr523), S2 contains five amino acids (Gln281, His353, Lys511, His513, and Tyr520),
and S1, (Glu162) contains one amino acid; these were considered the main active residues
for interaction [45,47,48]. Our results showed that the D–4 peptide had a docking binding
energy of −9.1 kcal/mol with ACE (Table 3), and it formed hydrogen bonds with Tyr523,
a residue of the S1‑binding vesicle with a bond length of 3.12 Å. Moreover, it formed two
hydrogen bonds with Glu411, a Zn(II) ligand (Figure 8b). The peptide has a hydropho‑
bic interaction with Glu384 (S1‑bound vesicle) and His387, a Zn(II) ligand. In addition,
the peptide can directly interact with Zn(II) of ACE. According to the literature, VL–9 and
LL–9 can coordinate with Zn(II) of ACE and can twist the tetrahedral geometry, resulting
in ACE inhibitory activity [45]. The D–2 peptide had a docking energy of −8.8 kcal/mol
and formed a hydrogen bondwith Tyr523 in the S1‑binding pocket. Similarly, D–2 was ob‑
served to interact directlywith Zn(II) and the ligandGlu411 of Zn(II) (Figure 8a). Although
D‑2 producedmore hydrogen bonds than D–4, its docking energy was weaker than that of
D–4. Furthermore, D–2 had fewer sites of interaction with ACE active residues than D–4,
which explained that the ACE inhibitory activity of D–4 was significantly higher than that
of D–2. The two peptides, D–2 and D–4, obtained in this study were considered good ACE
inhibitors. These inhibitors inhibited the ACE enzyme activity by blocking its active site.

Table 3. Peptide docking with ACE.

Number Docking Energy Number of Hydrogen Bonds Hydrogen Bonds Hydrophobic Interactions

D‑2 −8.8 kcal/mol 16

Glu403, Ser516, Aeg522,
Tyr360, Glu123, Arg124,

Tyr62, Asn66, Asn70, Tyr523,
Glu411, Zn701

Ser355, Phe391, His410, Pro407,
Asp358, Trp59, Lys118, Ile88,

Leu139, Val518, Glu143,
Pro519, Trp357

D‑4 −9.1 kcal/mol 7 Glu411, Arg522, Glu403,
Zn701

His387, Glu384, Phe391, Val518,
Asn356, Asn66, Trp357, Asp358,
His410, Tyr360, Trp59, Tyr394
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CE is a bile salt‑activated lipase that hydrolyzes cholesteryl esters, fat‑soluble vita‑
mins, triglycerides, and phospholipids [19], and it belongs to the α/β hydrolase folding
family. The active site of CE contains catalytic triplets, including Ser194, Asp320, and
His435, as well as oxygen anion vacancies (Gly107, Ala108, and Ala195) [19,51], which
form tetrahedral intermediates at the active site of the store; these intermediates are es‑
sential for its catalytic function. The mechanism of peptide inhibition of pancreatic CE
was investigated using an active site‑based molecular docking technique. Pancreatic CE
from humans was inhibited by peptides D–2, D–3, and D–6 with docking energies of−7.4,
−6.9, and −7.0 kcal/mol (Table 4), respectively. As shown in the Figure 9, these three pep‑
tides exhibited hydrogen and hydrophobic interactions. According to the docking results,
peptides D–2 and D–6 formed hydrogen bonds with one of the catalytic triplet residues.
Among them, peptide D‑2 formed hydrogen bonds with Ser194, Gly107, and Ala107, and
D–6 formed one hydrogen bond with Ser194. In addition, D–3 formed a hydrogen bond
with Ala108, as well as a hydrophobic bond with Gly107. The loach protein‑hydrolyzing
peptide could bind to the active site of pancreatic CE and thus inhibit its activity.

Table 4. Peptide docking with CE.

Number Docking
Energy

Number of
Hydrogen Bonds Hydrogen Bonds Hydrophobic Interactions

D‑2 −7.4
kal/mol 10 Phe60, His115, Arg63, Thr75, Gly106,

Ser194, Gly107, Val108, Tyr123

Ile69, Met111, Glu193, His435, Ile439, Gln440, Ile323,
Ala436, Asp437, Tyr125, Leu124, Phe119, Ala117, Asn118,

Gly116, Lys62, Lys61

D‑3 −6.9
kal/mol 6 Arg63, Asn121, Tyr125, Ile69,

Ala108, Asn118

Phe119, Gly116, Gly112, Leu124, Met111, Gly107, Phe324,
Ile323, Met281, Gly106, Glu193, Ile439, Ala117, Asp437,

Ala436, Gln440

D‑6 −7.0
kal/mol 8 Lys445, Tyr125, Ser194, His435,

Gln440, Arg423

Asn121, Phe119, Asn118, Ala117, Gly116, Leu124, Arg63,
Met111, Gly107, Ala108, Ile439, Glu193, Gly106,

Ile323, Ala436
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2.6. The Safety of Bioactive Peptides
The safety of bioactive peptides is an important basis for their application [59]. Bioac‑

tive peptides should be investigated for their allergenicity and toxicity before they were
used in functional foods or pharmaceutical formulations [60]. Maeno et al. [61] reported
that Val‑Pro‑Pro, a bioactive tripeptide derived from cowmilk, has been shown to have no
toxicity to specific target organs. Studies have shown the allergenicity was linked between
the molecular weight of peptides and the amino acid composition [62]. The six peptides
we obtained from the loach were all non‑toxic peptides (Table 1). D–1, D–4, and D–6 were
predicted to be non‑allergens; however, D–2, D–3, and D–6 were predicted to be possible
allergens. Therefore, the further determine their safety by experiments should be carried
out before application.

3. Materials and Methods
3.1. Materials and Chemicals

Loach was purchased from Jinshuiwan Foodstuff Co., Ltd., Lianyungang, China. Af‑
ter washing the loaches with pure water, whole loaches were collected, ground twice in a
meat grinder, preserved in polyethylene bags, transported to the laboratory at 4 ◦C, and
subsequently stored in a −20 ◦C refrigerator until use.

ACE, N‑[3‑(2‑furylacryloyl)]‑1‑phenylalanyl‑glycyl glycine (FAPGG), p‑nitrophenyl
butyrate (pNPB), and pancreatic CE were purchased from Sigma Co., St. Louis, MO, USA.
All other chemicals and reagents are of analytical grade and can bepurchased from the market.

3.2. Preparation of Loach Protein Hydrolysate
Add200 g of crushed loach to the reactor. Then, the alkaline protease (Heshibi Biotech‑

nology Co., Yinchuan, China) was added to the reactor at a ratio of 600 U/g of loach meat.
To this mixture, deionized water was added to ensure the ratio of loach meat to water was
1:20. The mixture was hydrolyzed at 50 ◦C and pH 8.0 for 24 h. Then, the hydrolysate was
soaked in a bath of boiling water for 15 min to inactivate the enzyme. Finally, the sample
was centrifuged at 4 ◦C and 5000× g for 30 min, and the supernatant of the hydrolysate
was filtered for later use [31].

3.3. Membrane Separation
The supernatant of loach hydrolysate (SLH) was fractionated through membranes

with molecular weight cutoffs of 10,000 and 3000 Da, and the intercepted and permeate
solutions from each membrane were collected. The solutions of three fractions with dif‑
ferent molecular weights, namely SLH‑1 (<3000 Da), SLH‑2 (3000–10,000 Da), and SLH‑3
(>10,000 Da), were obtained and lyophilized before storage at room temperature, and the
mass of each lyophilized fraction was weighed.

3.4. Antioxidant Activity
3.4.1. DPPH Scavenging Activity

The sample (0.2 mL) was added to 0.2 mL of 0.1 mM of DPPH solution in absolute
ethanol and then placed in the dark. OD517nm (Thermo Fisher, Waltham, MA, USA) of
the mixture was measured after 30 min [63]. DPPH scavenging activity was calculated
as follows:

DPPH clearance =
(

1 − Ax −Ax0

A0

)
× 100 (1)

where Ax is the absorbance of DPPH reactingwith the peptide, Ax0 is the absorbance of the
reaction between ethanol and the peptide, and A0 is the absorbance of DPPH and water.

3.4.2. Hydroxyl Radical Reduction
The sample (0.1mL)wasmixedwith 0.1mLof 9mMFeSO4, 0.1mLof 9mMof salicylic

acid in absolute ethanol, and 0.1 mL of 0.03% H2O2 and placed in a water bath at 37 ◦C for



Molecules 2023, 28, 2589 14 of 19

15 min. The absorbance value was determined at 510 nm. Ultrapure water was used as a
blank control [64]. The extent of hydroxyl radical reduction was calculated as follows:

Hydroxyl radical clearance =
(

1 − Ax −Ax0

A0

)
× 100 (2)

where Ax is the absorbance of the sample, Ax0 is the absorbance of the blank reagent, and
A0 is the absorbance of the control without the sample.

3.4.3. Superoxide Anion Scavenging Activity
The sample (0.2 mL)wasmixedwith 1mL of Tris–HCl (50mM, pH 8.2) and incubated

at 25 ◦C for 10 min. Then, 30 µL of pyrogallol (6 mM) was immediately added to the mix‑
ture and left at room temperature for 30 min, and OD320nm of the mixture was measured.
Ultrapure water was used as a blank control [65]. Superoxide anion scavenging activity
was measured as follows:

Superoxide anion clearance =
(

1 − Ax −Ax0

A0

)
× 100 (3)

where Ax is absorbance of the sample, Ax0 is the absorbance of the sample without pyro‑
gallol, and A0 is the absorbance of the blank control.

3.4.4. Determination of Reducing Power
The sample (0.1 mL) wasmixedwith 0.1 mL of 0.2M PBS solution (pH 6.6) and 0.1 mL

of 1% (w/v) K3Fe(CN)6. This mixture was incubated at 50 ◦C for 20 min. Then, 0.1 mL of
10% trichloroacetic acidwas added to themixture. Themixturewas centrifuged at 5000× g
for 10 min, and 0.05 mL of the supernatant obtained was mixed with 0.25 mL of distilled
water and 0.01 mL of 0.2% FeCl3. The mixture was then incubated at room temperature
for 10 min, and the absorption was measured at 700 nm [65].

3.5. G25 Chromatographic Purification
To purify the peptide, the SephadexG–25molecular exclusion column (100 cm× 1.6 cm,

Xiamei Shanghai, China) was used for fractionation. The void volume of the column was
15 mL. SLH‑1 (50 mg /mL) was filtered through a 0.22‑filter membrane and loaded into
the column. Deionized water was used for balance. The elution flow rate was 1 mL/min,
and 300 components were collected. The absorbance of each component was measured at
280 nm, and the highest absorbance peaks were selected and combined. At 0.35 mg/mL,
each selected peak was measured to evaluate the hydroxyl radical scavenging activity [39].

3.6. Peptide Identification
Peptide sequences were identified for the highest antioxidant activity component pu‑

rified by G25 chromatographic. The Li [34] approach is slightly modified. The samples
were first subjected to reductive alkylation, and then, the processed samples were ana‑
lyzed through liquid chromatography–tandem mass spectrometry (LC–MS/MS) to obtain
raw files of the raw mass spectrometry results. The capillary high‑performance Liquid
Chromatograph model is Easy–nLC 1200 (Thermo Fisher, Waltham, MA, USA). The cap‑
illary liquid chromatography condition was loaded sample volume: 5 µL; mobile phase:
A: 0.1% formic acid in water, B: 20% 0.1% formic acid in water—80% acetonitrile; total
flow rate: 60 nL/min; LC linear gradient: from 6% to 9% B for 5 min, from 9% to 14% B
for 15 min, from 14% to 30% B for 30 min, from 30% to 40% B for 8 min, and from 40% to
95%. TheQ Exactive™hybrid quadrupole–Orbitrap™Mass Spectrometer (Thermo Fisher,
Waltham, MA, USA) had a spray voltage of 2.2 kV and a capillary temperature of 270 ◦C.
These raw results were analyzed using the software Byonic, which searched databases for
existing peptides and matched them to the results obtained. The secondary structure of
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these peptides was predicted by online sites SOPMA (https://prabi.ibcp.fr/htm/site/web/
app.php/aboutUs/links (accessed on 4 March 2023)).

3.7. Peptide Synthesis
DG peptides Co., Ltd. (Wuhan, China) synthesized the identified peptides using the

solid‑phase method [34]. The sequence of synthesis was from the C–terminal to the N–
terminal of the peptide chain. The synthesized peptides were purified throughHPLC. The
purity and quality of the purified peptides were determined through LC–MS/MS. The pu‑
rity of each synthesized peptide was confirmed to be >98%.

3.8. ACE Inhibitory Activity
The ACE inhibitory activity was determined according to the experimental method

of Hu et al. [66] with slight modification. The sample (100 µL), ACE (50 µL, 0.1 U/mL,
prepared from 80 mM borate buffer pH 8.3), and FAPGG (50 µL, 1 mM) in borate buffer
HEPES (80 mM, pH 8.3) were added to each well of a 96‑well plate. The blank group
was replaced with 100 µL of borate‑buffered HEPES. The absorbance values of blank and
sample groups a1 and b1were initially read at 340 nm (Thermo Fisher,Waltham,MA,USA).
The sample groups were then reacted at 37 ◦C for 30 min. Subsequently, the absorbance
values of blank and sample groups a2 and b2 were again read at 340 nm.

ACE inhibition rate (%) =
A− B
B

× 100 (4)

where A = a1 − a2, B = b1 − b2.

3.9. Pancreatic CE Inhibitory Activity
The pancreatic CE inhibitory activity was determined according to the experimental

method of Mudgil et al. [51] with slight modification. Each sample (50 µL) was incubated
at 37 ◦Cwith pNPB (50 µL, 5mM) and pancreatic CE (50 µL, 5 µg/mL) in sodiumphosphate
buffer (0.1 M, pH = 7.2) for 30 min. In the control group, samples were replaced by PBS.
For the control blank, samples and pancreatic lipase were replaced by PBS. For the sample
blank group, pancreatic CE was replaced by PBS. All absorbance measurements were read
at 405 nm by using a microplate reader (Thermo Fisher, USA).

CE inhibition rate (%) = 1 − C−D
A− B

× 100 (5)

where A represents control, B represents control blank, C represents sample, and D repre‑
sents sample blank.

3.10. Molecular Docking
According to a previous method, the X‑ray crystal structure (PDB code: 4l7B) of hu‑

man Keap1 was obtained from the RCSB protein database (PDB) (https://www.rcsb.org/
(accessed on 10 October 2022 )) through molecular docking prediction of the peptide and
Keap1. The water molecules and original ligands in the receptor molecule were removed
using PyMol 2.5 software and then saved as PDB files. Then, the PyMOL‑treated receptor
molecule was opened for hydrogenation by using Autodock Tools 1.5.6 software (Scripps
Research, USA) and saved as a PDBQT file for later use. The 2D structure of the selected
peptidewas drawnusingChemDraw20.0, while the 3D structurewas drawn using Chem3D
20.0. These structures were optimized for energy minimization. The 3D structure output
was a file in mol2 format. These peptides were defined as ligands. Autodock Vina 1.1.2
was used for docking (center grid box: x =−2.636, y = 3.267, z =−27.433; 40× 40× 40 grid
points and 0.375× spacing). Unless otherwise specified, default values were adopted for
all other parameters. Finally, Ligplot Plus 2.2.5 and PyMol 2.5 were used to visually ana‑
lyze the molecular docking results [43]. Autodock Vina 1.1.2 was also used to dock ACE
(PDB code: 1086; center grid box: x = 43.82, y = 38.31, z = 46.65; 66 × 66 × 66 grid points

https://prabi.ibcp.fr/htm/site/web/app.php/aboutUs/links
https://prabi.ibcp.fr/htm/site/web/app.php/aboutUs/links
https://www.rcsb.org/
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and 0.375× spacing) [67]. It is worth noting that Zn2+ should be retained when the ACE
is treated before docking. The docking parameters of Pandian et al. were used for molec‑
ular docking of peptide with pancreatic CE (PDB code: 1F6W; center grid box: x = 1.581,
y = 8.301, z: = 12.885; 126 × 126 × 124 grid points and 0.375× spacing) [68].

3.11. Study on the Safety of Peptides
The safety of peptides is a key factor that restricts their utilization by humans [69].

The potential toxicity (https://webs.iiitd.edu.in/raghava/toxinpred/design.php/ (accessed
on10 October 2022))and sensitization (http://www.ddg‑pharmfac.net/AllergenFP/ (accessed
on 10 October 2022)).of each synthetic peptide were predicted using online tools. Support
vector machine (SVM) and the default SVM threshold of 0.0 were chosen for ToxinPred
toxicity prediction. Peptides with an SVM score < 0.0 were predicted as non‑toxic [59].

3.12. Statistical Analysis
Each experiment was repeated at least three times, and data were determined using

one‑way analysis of variance (ANOVA) by SPSS (SPSS Statistics version 26, International
Business Machine, Armonk, NY, USA) software. Different letters indicated significant dif‑
ferences among different groups (p < 0.05).

4. Conclusions
In this study, the most potent antioxidant active ingredient F2 was isolated from the

loach hydrolysate through ultrafiltration and G25 chromatographic purification, and its
peptide profilewas characterized throughLC–MS/MS. Six novel antioxidant peptideswere
obtained. All the six peptides displayed good antioxidant activity. More importantly, D–4
(IC50 95.07 µg/mL,0.12 mM) and D–2 exhibited inhibitory effects on ACE, and D–2 (IC50
3.19 mg/mL, 2.62 mM), D–3, and D–6 exhibited inhibitory effects on pancreatic CE. The
molecular docking study revealed that peptides may exert its antioxidant activity by occu‑
pying the active pocket of keap1 protein, and it may inhibit ACE and CE by binding to the
active site. As a natural antioxidant with ACE and CE inhibitory effects, the loach peptide
has a broad application potential in functional food products because of its nutritional and
health effects.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28062589/s1, Figure S1: Mass spectrograms of 6 peptides;
Figure S2: HPLC chromatograms of the 6 Synthetic peptides. (a): D‑1; (b): D‑2; (c): D‑3; (d): D‑4; (e):
D‑5; (f): D‑6; Figure S3: Mass spectrum and structure of the 6 Synthetic peptides. (a): D‑1; (b): D‑2;
(c): D‑3; (d): D‑4; (e): D‑5; (f): D‑6.
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