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Abstract: Identifying cancer biomarkers is imperative, as upregulated genes offer a better microenvi-
ronment for the tumor; hence, targeted inhibition is preferred. The theme of our study is to predict
molecular interactions between cancer biomarker proteins and selected natural compounds. We
identified an overexpressed potential molecular target (AKT1) and computationally evaluated its
inhibition by four dietary ligands (isoliquiritigenin, shogaol, tehranolide, and theophylline). The
three-dimensional structures of protein and phytochemicals were retrieved from the RCSB PDB
database (4EKL) and NCBI’s PubChem, respectively. Rational structure-based docking studies were
performed using AutoDock. Results were analyzed based primarily on the estimated free binding
energy (kcal/mol), hydrogen bonds, and inhibition constant, Ki, to identify the most effective anti-
cancer phytomolecule. Toxicity and drug-likeliness prediction were performed using OSIRIS and
SwissADME. Amongst the four phytocompounds, tehranolide has better potential to suppress the
expression of AKT1 and could be used for anti-cancer drug development, as inhibition of AKT1 is
directly associated with the inhibition of growth, progression, and metastasis of the tumor. Docking
analyses reveal that tehranolide has the most efficiency in inhibiting AKT1 and has the potential to be
used for the therapeutic management of cancer. Natural compounds targeting cancer biomarkers
offer less rejection, minimal toxicity, and fewer side effects.

Keywords: cancer; biomarkers; AKT1; molecular docking; PI3K/AKT pathway; isoliquiritigenin;
shogaol; tehranolide; theophylline

1. Introduction

Cancer is one of the major causes of morbidity and mortality worldwide, with ap-
proximately 18 million new cancer incidences and 9.6 million fatalities globally based on
GLOBOCAN (https://gco.iarc.fr, accessed on 11 October 2022) [1,2]. Unfortunately, it
is predicted to increase globally due to unhealthy lifestyles, including smoking, being
overweight, and less physical activity. The most common strategies to combat cancer; are
(i) for early detection/diagnosis surgery or radiotherapy and (ii) for late/advanced stage
detection, which is usually when chemotherapy is applied [3]. When cancer is resistant
to radiotherapy and chemotherapy, the prognosis is poor, and side effects severely con-
strain these standard therapies. Hence, alternative therapeutic cancer targets and natural
compounds with higher efficacy and fewer adverse effects need to be explored.

Identifying the overexpressed cancer biomarkers has great potential as it could be
suppressed by targeted inhibition. Transcriptomic studies detected multiple differentially
expressed genes in different cancer types [4–7]. A group of genes work together as networks
and pathways to regulate cellular activities. However, selecting a key target therapeutic
gene is always a challenge. Molecular-targeted therapy for various cancers have been
widely applied against identified targets such as cyclin-dependent kinases (CDKs), es-
trogen receptor (ER), BCR activator of RhoGEF and GTPase (BCR)– ABL protooncogene
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1 nonreceptor tyrosine kinase (ABL), epidermal growth factor receptor (EGFR), human epi-
dermal growth factor receptor-2 (HER2), and vascular endothelium growth factor receptor
(VEGFR), using selective inhibitors such as imatinib, erlotinib, herceptin, gefitinib, erlotinib,
afatinib, and dacomitinib [8–11]. One of the upregulated genes in several cancer types
is AKT serine/threonine kinase 1 (AKT1, also referred to as protein kinase B, PKB). It is
catalytically inactive in serum-starved fibroblasts and activated by platelet-derived growth
factor via phosphoinositide 3-kinase (PI3K) signaling. It is frequently associated with cell
proliferation, growth, survival, angiogenesis, and tumor invasion/metastasis [12,13]. Hy-
peractivation of AKT protein and alteration in the PI3K/AKT signaling pathway aids tumor
progression and promotes chemotherapeutic drug resistance in different cancers [12,13].
Downstream signals of BCR–ABL, EGFR, and HER2 also affect the PI3K/AKT path-
way during carcinogenesis [8]. Hence, AKT is rationally considered a therapeutic target
for cancer.

An activating mutation in AKT1 (SNP c.49G > A, p.Glu17Lys) is also strongly as-
sociated with Proteus syndrome, an overgrowth progressive disorder caused by a rare
genetic mosaicism. The mutation arises during embryonic development and gives rise to
overgrowth in a subset of the individual’s cells leading to disproportionate overgrowth,
bone abnormalities, intellectual disability, seizures, brain malformations, and deep vein
thrombosis, resulting in premature death [14].

Natural phytocompounds, due to their diverse pharmacological effects and the easy
availability of medicinal plants, are frequently employed in drug discovery investigations.
Previous studies reported in vitro apoptotic activity of curcumin, gallic acid, caffeic acid,
and other natural compounds against tumor cells, but with no harmful effect on normal
healthy cells or the immune system [15–18]. Even some modifications in lifestyle can
lower the incidence of certain types of cancers; for example, vegetable and fruit-rich diets
could include chemoprevention in colorectal cancer. Most chemotherapeutic drugs induce
harmful side effects on cytotoxic immune cells, limiting their widespread use in the past.
Alternatively, several synthesized and natural compounds have shown cancer chemo-
prevention potential against cancer targets, including AKT1. Starting with synthesized
ligand ML-9 in the year 2000 and NL-71-101, to phytochemicals such as l-quebrachitol,
perifosine (NSC639966), capivasertib (AZD5363), and ipatasertib, many substances have
been evaluated as AKT inhibitors [19–23]. However, none of these inhibitors passed all the
phases of clinical trials, and there is a need to explore new AKT1 inhibitors.

Licorice (Glycyrrhizae rhizoma) is a well-known medicinal plant with multiple
pharmacological activities, along with anti-cancer effects [2]. Isoliquiritigenin (4,2′,4′-
trihydroxychalcone) extracted from Glycyrrhiza root is one of the most pharmacologically
bioactive compounds that exhibit significant anti-proliferative activity on different cancer
cells [24–26].

Shogaols (6-, 8-, and 10-shogaol) are constituents of ginger (Zingiber officinale Roscoe)
and have anti-cancer, anti-inflammatory, and anti-invasive activities, along with being a
cure for nausea, vomiting, dyspepsia, pain, cold, and diarrhea [27,28]. The constituent
6-shogaol exhibited antitumor activity in breast, prostate, and colorectal cancer by inhibit-
ing MMP-9, NF-κB, and JNK activation [29,30]. Matrix metalloproteinases code for the
endopeptidases responsible for the degradation of the extracellular matrix that enables
tumor invasion and metastasis [31]. This extracellular matrix degradation is one of the
major reasons for the high cancer mortality [32].

Tehranolide, a bioactive compound of the sesquiterpene lactone group, extracted from
Artemisia diffusa, shows a wide range of phytomedicinal activities against malaria, microbes,
migraine, inflammation, infection, ulcers, and cancer [33]. Tehranolides attribute antitumor
effects through the inhibition of proliferation, cell cycle, apoptosis, and alteration of signal
transduction pathways [33–37].

Theophylline, a methylxanthine derivative, exhibits antitumor activities by enhanc-
ing apoptosis, promoting autophagy, inducing PTEN activity and mTOR inhibition [38].
The PI3K/AKT pathway regulates cell growth and survival [39], and PTEN negatively
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regulates the PI3K/Akt pathway [40]. PTEN suppression and PTEN-mediated pathways
have been reported in tumor development [41,42]. mTOR, a member of the PI3K-related
kinases family, forms the mTOR signaling complex that inhibits autophagy and plays
a vital role in cell growth and metabolism [43]. Molecular docking is a structure-based
method to identify and screen novel compounds of therapeutic interest [44]. The in silico
molecular docking-based experiment sorts large compound libraries faster, rationally, and
at a significantly reduced cost compared to the traditional drug screening methods [45].
Structure-based methods depend on the information derived from the three-dimensional
(3D) structure of a target of interest. They rank ligands based on their structural and
electronic complementarity to a given target based on the estimated free energy of bind-
ing, inhibition constant (Ki), and observed bonds. Moreover, with the advancements in
computer science, structural modeling, simulation graphics, and artificial intelligence (AI),
an ever-growing increase has been witnessed with respect to structural, chemical, and
biological data available on therapeutic biomarkers [46,47]. Herein, potential effective
herbal anti-cancer compounds were evaluated using structure-based molecular docking to
predict interactions and suggest a suitable treatment approach as an alternative supplement,
or to complement existing therapies. Therefore, we evaluated the inhibitory properties
of four phytochemicals, isoliquiritigenin, shogaol, tehranolide, and theophylline, against
AKT1, a cancer therapeutic molecular target, using molecular docking.

2. Results
2.1. Identification of AKT1 as a Potential Biomarker

It is evident from the UALCAN database (TCGA) that expression of AKT1 is higher in
cancer as compared to normal samples (Figure 1a). According to GEPIA, significant differ-
ential overexpression of AKT1 was seen in invasive breast carcinoma, cholangiocarcinoma,
lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma, glioblastoma
multiforme, head and neck squamous cell carcinoma, kidney chromophobe, acute myeloid
leukemia, brain lower-grade glioma, ovarian serous cystadenocarcinoma, sarcoma, skin
cutaneous melanoma, and thymoma (Figure 1b). The human protein atlas reports high
consistency amongst antibody staining and AKT1 RNA expression data. Also, moderate to
high cytoplasmic and nuclear staining was observed in malignant melanomas, gliomas,
and breast and prostate cancers, albeit with low tissue and cancer specificity (Figure 1c).
One of the most notably over-activated intracellular pathways in several cancers is the
PI3K/AKT signaling pathway, which acts on multiple downstream target proteins, leading
to carcinogenesis, proliferation, invasion, and metastasis (Figure 2).
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Figure 1. (a) AKT1 expression across different cancers according to UALCAN database (blue is
for normal and red for tumors), (breast invasive carcinoma (BRCA), cholangiocarcinoma (CHOL),
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), glioblas-
toma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe
(KICH), acute myeloid leukaemia (LAML), brain lower-grade glioma (LGG), ovarian serous cystade-
nocarcinoma (OV), sarcoma (SARC), skin cutaneous melanoma (SKCM) and thymoma (THYM));
(b) the gene expression profile (dot plot) across all tumor samples and paired normal tissues accord-
ing to GEPIA; (c) expression of Akt1 in cancer using polyclonal anti-AKT1 antibody HPA002891
(source—Protein Atlas).
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Figure 2. PI3k/AKT signaling pathway. Illustration reproduced courtesy of Cell Signaling Technology
Inc. (www.cellsignal.com, accessed on 30 October 2022).

2.2. Protein Structure Analysis

The PDB 4EKL was selected as the receptor and active site, and other important
residues were enlisted for AKT1. Schrodinger’s protein preparation tool and SiteMap
module were used to identify the potential ligand binding sites. The binding site was
deep, consisting primarily of hydrophobic amino acid residues. The potential binding
site properties and druggability were also predicted using DoGSiteScorer based on the 3D
structure of the protein and splitting them into sub-pockets. A higher score of 0.83 was
predicted, indicating that the pocket is estimated to be druggable. Significant amino acid
residues, primarily hydrophobic, are present in the binding site include Leu156, Gly157,
Lys158, Gly159, Gly162, Val164, Ala177, Thr211, Met227, Glu228, Tyr229, Ala230, Glu234,
Glu278, Met281, Thr291, and Phe438.

2.3. Ligand Selection and Preparation

The selected four ligands were prepared for docking. The 3D structure of the ligand
compounds is shown in Figure 3.

www.cellsignal.com
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2.4. Molecular Docking and Analysis of the Complex

Binding free energy, a sum of all the intermolecular interactions between the ligand
and the target, and inhibition constant (Ki) were calculated by the AutoDock tool. Ki, the
inhibitor constant, is an indication of how potent an inhibitor is; it is the concentration
required to produce half maximum inhibition. The lower the Ki for a particular drug at
a specific receptor, the stronger its binding affinity. This is because the lower Ki means
that the drug can occupy 50% of those receptors even when the drug is present in a lower
concentration. Hence, the smaller the Ki, the greater the binding affinity and the smaller
amount of medication needed in order to inhibit the activity of that enzyme.

In the present case, when we consider all the compounds Ki in same unit nM, then we
observe that the compounds arranged in order of inhibition: tehranolide > isoliquiritigenin
> shogaol > theophylline. AutoDock predicted tehranolide (binding energy−9.22 kcal/mol,
Ki 173.21 nM) forming three hydrogen bonds with Ala230, Glu234, and Glu278 as the best
docking interacting ligand against AKT1, followed by isoliquiritigenin, shogaol, and theo-
phylline (Table 1, Figure 4). No unfavorable interactions were observed. Other interactions
primarily mean hydrophobic interactions, Van der Waals interactions, and sometimes pi–pi
ring stacking and halogen bonding. The drug-binding domain of AKT1 is the hydrophobic
cavity situated at the lower interface between the N- and C-lobes of the kinase domain.

Table 1. Docking results of AutoDock showing binding energy, inhibition constant, and interacting
residues for ligands (tehranolide, shogaol, isoliquiritigenin, theophylline).

Ligands Binding Energy
(kcal/mol)

Inhibition Constant
(Ki)

Interacting Residues

H-Bonds (Distances) Others

Tehranolide
(6711941) −9.22 173.21 nM Ala230 (2.0 Å), Glu234 (2.2 Å),

Glu278 (3.33 Å)
Leu156, Gly157, Val164, Ala177, Met227,

Tyr229, Met281, Thr291, Phe438

Shogaol
(5281794) −8.19 992.48 nM

Lys179 (2.96), Glu228 (3.4 Å),
Ala230 (1.9 Å)

Leu156, Val164, Ala177, Glu198, Met227,
Tyr229, Glu234, Met281, Thr291,

Asp292, Phe438

Isoliquiritigenin
(638278) −8.29 841.68 nM

Glu228 (2.1 Å), Ala230 (1.7 Å),
Glu278 (3.14 Å), Asn279 (1.9 Å),

Thr291 (2.1 Å)

Val164, Ala177, Lys179, Thr211, Met227,
Tyr229, Glu234, Asp292

Theophylline
(2153) −7.26 4.73 µM Glu228 (3.1 Å), Ala230 (1.9 Å),

Thr291 (2.2 Å)
Leu156, Val164, Ala177, Thr211, Tyr229,

Met281, Phe438
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Figure 4. Three-dimensional structure of AKT1 protein (4EKL) with its active site drawn by PyMOL
v2.5.0) and the ligand–protein interaction 2D plot for theophylline (A), tehranolide (B), shogaol (C)
and isoliquiritigenin (D) drawn using Ligplot+ v2.2. H-bonds are designated by dashed lines between
the atoms involved, while hydrophobic interactions are depicted by radiating arc towards the ligand
atoms they contact.

2.5. Analysis of ADMET Properties

OSIRIS, a drug discovery informatics platform, was used for toxicity risk assessment
through cLogP prediction, solubility prediction, fragment-based drug-likeness prediction,
irritant, and overall drug score (Table 2). SwissADME, a tool to evaluate pharmaceutical
properties, was used to compute the ligands’ physical and medicinal chemical properties
(Table 3). The drug score combines drug-likeness, cLogP, logS, molecular weight, and
toxicity risks into one value ranging from 0 to 1, which may help to find the compound’s
overall potential to qualify for a drug.

Table 2. Toxicity risk assessment of ligands (theophylline, tehranolide, shogaol, and isoliquiritigenin)
using OSIRIS platform.

Compound Property Theophylline Tehranolide Shogaol Isoliquiritigenin

cLogP −0.31 1.18 4.33 2.27

Solubility −1.48 −2.81 −3.42 −2.95

Molecular weight 180.0 298.33 276.0 256.0

Drug-likeness 2.51 0.71 −14.4 0.76

Mutagenic High None High High

Tumorigenic High High None None

Irritant None None None Medium

Reproductive effects High None None None

Drug-score 0.2 0.45 0.22 0.359
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Table 3. Computed physical, chemical, pharmacokinetics, and drug-likeness properties of ligands
(theophylline, tehranolide, shogaol, and isoliquiritigenin) using SwissADME.

Compound
Property

Isoliquiritigenin
638278

Shogaol
5281794

Tehranolide
6711941

Theophylline
2153

General Properties

Structure
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Bioavailability radar 

    

Smiles 

C1=CC(=CC=C1C=CC(

=O)C2=C(C=C(C=C2)O

)O)O 

CCCCCC=CC(=O)CCC1

=CC(=C(C=C1)O)OC 

CC1C2CCC3(C(CCC34

CC(C2OC1=O)(OO4)O

)O)C 

CN1C2=C(C(=O)N(C1

=O)C)NC=N2 

Physiochemical Properties 

Formula C15H12O4 C17H24O3 C15H22O6 C7H8N4O2 

Molecular weight 256.25 g/mol 276.37 g/mol 298.33 g/mol 180.16 g/mol 

XLogP3-AA   0.9  

Rotatable bonds 3 9 0 0 

H-bond acceptors 4 3 6 3 
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3. Discussion

Cancer is a devastating disease globally, and causes millions of deaths across the
world despite existing treatments, with frequent resistance to chemotherapy and other
treatment methods. Therefore, researchers are exploring natural phytochemicals with po-
tential anti-cancer activity or providing novel lead pharmacological compounds for better
drug synthesis, as natural resources have provided medical solutions to different diseases
in the past [48]. Cancer is a proliferation disorder and could be regulated by a network
of genes, transcription factors, and signaling pathways. Detecting such molecular targets
and applying anti-cancer compounds/agents could inhibit uncontrolled cell division and
potentially be used for rational tumor therapy [35,48]. The altered expression of kinases
results in many cellular abnormalities that can lead to cancer and are, therefore, thought to
be a suitable therapeutic target. Overexpression of the AKT-activated PI3K/AKT signaling
pathway is a common molecular attribute of several cancers [49]. Hence, targeting AKT
seems a potential therapeutic option, and direct inhibition of AKT kinase activity can atten-
uate cancer growth. A myriad of phytochemicals offers anti-cancer properties by regulating
cell cycle, cell death, angiogenesis, and metastasis. To date, both synthetic and natural
compounds have been explored, and few are presently under preclinical investigations and
clinical development. Different phytochemicals utilize different mechanisms to regulate
the cell cycle, antioxidant stress, apoptosis, and immune system.

We computationally investigated a few phytochemical flavonoids to establish their
mechanism of action and potential to inhibit AKT1, a therapeutic cancer biomarker. All
the four selected compounds were previously known to be anti-carcinogenic and we
chose them to explore their probable efficacy in inhibiting AKT1 specifically. Molecular
docking, a computational method for mimicking and simulating biological interactions,
helped us to determine the best-interacting ligand molecule with the maximum affinity
to the specified AKT1 target. Phytocompounds (isoliquiritigenin, shogaol, tehranolide,
theophylline) that have an antitumor effect with lower toxicity and side effects were
selected and docked with the indicated therapeutic target, AKT1. Hydrophobic residues
line the binding cavity. The displacement of protein-bound water molecules into the
bulk solvent via interactions, particularly H-bonds, increases ligand-binding affinity. The
overexpression of phosphorylated AKT (p-AKT) is a significant flaw in several tumor
types. p-AKT protein can impede apoptosis by inhibiting the function of Bax protein.
Theophylline was initially used as a bronchodilator and has been shown lately to directly
inhibit phosphoinositide-3-kinases, with high potency [50]. Theophylline derivatives can
trigger apoptosis by suppressing AKT phosphorylation [51]. Alternatively, theophylline can
also suppress serine/arginine-rich splicing factors (SRSF3)-p53 pathway and synergistically
act with caffeine to downregulate the amount of wild-type SRSF3. It has the ability to switch
p53 from an α-isoform into a β-isoform mediated through the SRSF3-dependent splicing
pathway [52]. Theophylline has been reported to enhance the toxicity of doxorubicin to
tumor cells and when it is used in combination with gemcitabine or cisplatin, it can induce
apoptosis in a variety of tumor cells [51].

Studies have shown strong antitumor activity of flavonoid (6-shogaol, a component
derived from dry ginger roots) against the skin, ovary, liver, prostate, and breast cancer
without harming healthy cells [49,53–55]. Shogaol suppresses proliferation by inhibiting
the PI3K/AKT/mTOR network by directly inhibiting AKT1 and AKT2. It binds AKT at an
allosteric location at a lower interface amid the N- and C-lobes of the kinase domain [49].
Shogaol shows hydrophobic interactions with several residues more prominently with
Ala177 at 3.9 Å, as identified by PLIP.

Isoliquiritigenin, a flavonoid and phenolic secondary metabolite, is found in several
foods such as licorice (Hibiscus sabbariffa), jicamas (Pachyrhizus erosus), red peppers (Capsicum
annuum), Chinese broccoli (Brassica alboglabra), and squash berries (Viburnum edule) and
has shown antitumor activities [56–58]. Suppression of cyclin D1 and the PI3K/AKT
pathway by isoliquiritigenin exhibits antitumor properties in Hep3B cells, a liver cancer cell
line [57]. In vitro study shows isoliquiritigenin interaction with gamma-aminobutyric acid
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type-B receptor subunit 1 and targeting of miR-301b/LRIG1 signaling pathways causes
suppression of melanoma growth [58]. It was also found to inhibit the angiogenic AKT
signaling in glioma [56].

Tehranolide, a natural sesquiterpene lactone, has been shown to induce the G0/G1
arrest and apoptosis and inhibits proliferation of MCF-7 breast cancer cells through ROS
production, pAKT downregulation, and modulating the PI3K/AKT signaling pathway [35].
Tehranolide was found to inhibit cancer cell growth by PDE1 inhibition of phosphodi-
esterase 1 and activation of cAMP-dependent protein kinase A [34]. A persistent antitumor
immunity against cancer was reported in turmeric mice treated with tehranolide [59]. The
best affinity for AKT1 and inhibition is shown by tehranolide.

cLogP and solubility values are estimated by applying an atom-based increment sys-
tem. The drug score value combines all other predictions into one grand total. Lipophilicity
is depicted as consensus Log Po/w, which is the average of all the five predictions (iLOGP,
XLOGP3, WLOGP, MLOGP, SILICOS-IT). Isoliquiritigenin and shogaol are predicted to
permeate the blood–brain barrier passively. Similar binding site residues were identified
as the co-crystallized ligand in the PDB structure. Investigation of docking results, drug-
likeness properties, and toxicity prediction results indicate that all the selected ligands
show inhibition and bind at the same hydrophobic pocket (Figure 5), all have an optimum
bioavailability score and drug-likeness, and, hence, could be a supplementation option
for cancer therapy. Future perspectives of the therapeutic use of isoliquiritigenin, shogaol,
tehranolide, and theophylline need to be explored further.
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Natural compounds targeting AKT1 can be employed to control pathways with anti-
cancer effects. The present computational study is a prediction for evaluating the specific
interactions between the chosen natural ligands and AKT1, an overexpressed protein in
cancer. This study can potentially aid in developing effective and selective AKT1 inhibitors
to control cancer. In vitro enzyme inhibition assays and in vivo cell-based kinase assays
can be employed for validation of results, while RT-PCR and microarray-based expression
studies can be performed to assess the effect of inhibitors.

4. Materials and Methods
4.1. Identification of Biomarker

We explored ‘The Cancer Genome Atlas’ (TCGA) gene analysis tool in the UAL-
CAN database (http://ualcan.path.uab.edu/analysis.html, accessed on 4 November 2022),
which facilitates tumor subgroup gene expression and shows the percentage of the gene
expression’s rate in cancer versus normal [60]. Gene expression profiling interactive anal-

http://ualcan.path.uab.edu/analysis.html
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ysis (GEPIA) (http://gepia.cancer-pku.cn/index.html, accessed on 4 November 2022)
was also used to explore the TCGA dataset and cross-check our hypothesis regarding
AKT1 overexpression in cancer. Furthermore, to estimate the antibody-based expression
of AKT1 in cancer, we used Protein Atlas (https://www.proteinatlas.org/, accessed on
8 November 2022), which maps all the human proteins by integrating technologies such as
antibody-based imaging, proteomics, transcriptomics, and systems biology [61].

4.2. Selection and Preparation of Protein Target

The 3D molecular structure of AKT1 determined through X-ray crystallography at
2.0 Å was already available in the RCSB’s protein data bank. The AKT1 structure (source:
human) was retrieved in .pdb format (PDB ID: 4EKL), visualized, and further prepared for
the docking process. Receptor grid generation and protein preparation was performed. The
missing side chain residues and missing loops were filled, bond orders were automatically
assigned based on distances, and grid generation was performed based on the reported
binding site residues. Furthermore, the potential binding pocket of the protein was also
identified using a grid-based method, DoGSiteScorer at ProteinsPlus, a structure-based
modeling support server (https://proteins.plus/, accessed on 11 November 2022) [62].

4.3. Ligand Preparation

Potential ligands were selected from the virtual screening method of GLIDE and
confirmed by a search of the literature. Their structures were retrieved from the NCBI’s
PubChem database [Isoliquiritigenin (PubChem CID: 638278), Shogaol (PubChem CID:
5281794), Tehranolide (PubChem CID: 6711941), Theophylline (PubChem CID: 2153)]
in .sdf/.mol2 file format and ligand library preparation were completed using LigPrep.
Ligands were converted into 3D and various tautomers/ionization states/stereoisomers
were generated.

4.4. Molecular Docking and Protein–Ligand Interaction

The molecular docking of ligands into the binding sites of AKT1, a cancer drug
target, was performed using AutoDock. The molecular docking results were analyzed
quantitatively, and the poses of various ligands with low binding scores were filtered out.
The resulting molecular docking scores representing the binding energies in kcal/mol were
enlisted. Docked poses were analyzed, and compounds were ranked as per the estimated
binding free energy. The docked protein–ligand complexes were analyzed via illustrations
of protein–ligand complex prepared using PyMOL Molecular Graphics System, Version
2.5.0 Schrödinger, LLC. For further analysis of the docked protein–ligand interaction using
LigPlot+ v2.2 was used to examine the polar and hydrophobic interactions between the
protein and ligand. Protein–ligand interaction profiler (PLIP) was further used to identify
non-covalent interactions between protein macromolecules and their docked ligands to
obtain detailed information on binding characteristics [63].

4.5. Prediction of ADME and Toxicity

The absorption, distribution, metabolism, and excretion (ADME) parameters, physico-
chemical, and pharmacokinetic properties, and drug-like nature of the particular ligands
were predicted using SwissADME (http://www.swissadme.ch/, accessed on 14 November
2022) [64]. It also indicates compliance and drug propensity based on Lipinski, Ghose,
Veber, Egan, and Muegge filters. Toxicity and other drug-relevant properties were pre-
dicted using OSIRIS Property Explorer (https://www.organic-chemistry.org/prog/peo/,
accessed on 14 November 2022).

5. Conclusions

The primary causes of different malignancies are the interactions among several intrin-
sic and extrinsic variables. Targeting these anomalies could be significant for the diagnosis
and treatment of cancer, as dysregulation of multiple genes and signaling pathways is a

http://gepia.cancer-pku.cn/index.html
https://www.proteinatlas.org/
https://proteins.plus/
http://www.swissadme.ch/
https://www.organic-chemistry.org/prog/peo/
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well-established phenomenon during various malignancies. The AKT1 enzyme has been
found to be overexpressed in various malignancies and, hence, is considered a prospective
target for the development of anti-cancer therapeutics. Long-term phytochemicals-based
chemoprevention can potentially avert, inhibit, or even reverse carcinogenesis, and has
gained prominence, especially in the present times when the use of natural health products
and complementary and alternative medicine are increasing. This study reports four natu-
ral phytocompounds with strong binding affinities and inhibitory effects against AKT1,
indicating their potential as anti-cancer therapeutics. However, further in vitro and in vivo
studies followed by a toxicological study of these molecules in a dose-dependent manner
prior to clinical trials would be required to substantiate their therapeutic and pharmaco-
logical importance. This study can pave the way for kinase-targeted cancer therapies in
the future.
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