Synthesis of Cerium Oxide Nanoparticles in a Bacterial Nanocellulose Matrix and the Study of Their Oxidizing and Reducing Properties
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Physicochemical Properties of Cerium Oxide Nanoparticles in a BC Matrix in the Form of a Hydrogel Film and Aerogel Powder
2.2. Reduction and Oxidation Processes under the Action of BC-CeO2 NPs
2.3. The Study of the Effect of BC-CeO2 NPs on the Activity of SOD and Glucose-6-Phosphate Dehydrogenase and on Antioxidant Properties in In Vitro Experiments on Rat Blood
3. Discussion
4. Materials and Methods
4.1. Preparation of BC
4.2. Synthesis of Cerium Oxide Nanoparticles
4.2.1. Synthesis of Cerium Oxide Nanoparticles in Ethylene Glycol
4.2.2. Synthesis of Cerium Oxide Nanoparticles in a BC Matrix
4.3. FTIR Analysis
4.4. UV Analysis
4.5. Powder X-Ray Diffraction Analysis
4.6. SEM Analysis
4.7. Specific Surface Area Analysis
4.8. Chemical Composition of BC
4.9. Evaluation of Epinephrine Auto-Oxidation Inhibition
4.10. Biological Activity
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zheng, L.; Li, S.; Luo, J.; Wang, X. Latest Advances on Bacterial Cellulose-Based Antibacterial Materials as Wound Dressings. Front. Bioeng. Biotechnol. 2020, 8, 593768. [Google Scholar] [CrossRef] [PubMed]
- Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers 2021, 13, 412. [Google Scholar] [CrossRef]
- Liyaskina, E.; Revin, V.; Paramonova, E.; Nazarkina, M.; Pestov, N.; Revina, N.; Kolesnikova, S. Nanomaterials from bacterial cellulose for antimicrobial wound dressing. J. Phys. Conf. Ser. 2017, 784, 012034. [Google Scholar] [CrossRef]
- Beekmann, U.; Zahel, P.; Karl, B.; Schmölz, L.; Börner, F.; Gerstmeier, J.; Werz, O.; Lorkowski, S.; Wiegand, C.; Fischer, D.; et al. Modified Bacterial Cellulose Dressings to Treat Inflammatory Wounds. Nanomaterials 2020, 10, 2508. [Google Scholar] [CrossRef]
- Tudoroiu, E.-E.; Dinu-Pîrvu, C.-E.; Albu Kaya, M.G.; Popa, L.; Anuța, V.; Prisada, R.M.; Ghica, M.V. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals 2021, 14, 1215. [Google Scholar] [CrossRef]
- Nita, L.E.; Ghilan, A.; Rusu, A.G.; Neamtu, I.; Chiriac, A.P. New Trends in Bio-Based Aerogels. Pharmaceutics 2020, 12, 449. [Google Scholar] [CrossRef]
- Revin, V.V.; Nazarova, N.B.; Tsareva, E.E.; Liyaskina, E.V.; Revin, V.D.; Pestov, N.A. Production of Bacterial Cellulose Aerogels with Improved Physico-Mechanical Properties and Antibacterial Effect. Front. Bioeng. Biotechnol. 2020, 8, 603407. [Google Scholar] [CrossRef]
- Vismara, E.; Bernardi, A.; Bongio, C.; Farè, S.; Pappalardo, S.; Serafini, A.; Pollegioni, L.; Rosini, E.; Torri, G. Bacterial Nanocellulose and Its Surface Modification by Glycidyl Methacrylate and Ethylene Glycol Dimethacrylate. Incorporation of Vancomycin and Ciprofloxacin. Nanomaterials 2019, 9, 1668. [Google Scholar] [CrossRef] [Green Version]
- Lazarini, S.C.; De Aquino, R.; Amaral, A.C.; Corbi, F.C.A.; Corbi, P.P.; Barud, H.S.; Lustri, W.R. Characterization of bilayer bacterial cellulose membranes with different fiber densities: A promising system for controlled release of the antibiotic ceftriaxone. Cellulose 2016, 23, 737–748. [Google Scholar] [CrossRef]
- Foresti, M.L.; Vázquez, A.; Boury, B. Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: A review of recent advances. Carbohydr. Polym. 2017, 157, 447–467. [Google Scholar] [CrossRef] [PubMed]
- Oprea, M.; Panaitescu, D.M. Nanocellulose Hybrids with Metal Oxides Nanoparticles for Biomedical Applications. Molecules 2020, 25, 4045. [Google Scholar] [CrossRef] [PubMed]
- Anžlovar, A.; Žagar, E. Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. Nanomaterials 2022, 12, 1837. [Google Scholar] [CrossRef] [PubMed]
- Karimian, A.; Yousefi, B.; Sadeghi, F.; Feizi, F.; Najafzadehvarzi, H.; Parsian, H. Synthesis of biocompatible nanocrystalline cellulose against folate receptors as a novel carrier for targeted delivery of doxorubicin. Chem.-Biol. Interact. 2022, 351, 109731. [Google Scholar] [CrossRef]
- Yusefi, M.; Lee-Kiun, M.S.; Shameli, K.; Teow, S.Y.; Ali, R.R.; Siew, K.K.; Chan, H.Y.; Wong, M.M.T.; Lim, W.L.; Kuča, K. 5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment. Carbohydr. Polym. 2021, 273, 118523. [Google Scholar] [CrossRef]
- Petrova, V.A.; Gofman, I.V.; Golovkin, A.S.; Mishanin, A.I.; Dubashynskaya, N.V.; Khripunov, A.K.; Ivan’kova, E.M.; Vlasova, E.N.; Nikolaeva, A.L.; Baranchikov, A.E.; et al. Bacterial Cellulose Composites with Polysaccharides Filled with Nanosized Cerium Oxide: Characterization and Cytocompatibility Assessment. Polymers 2022, 14, 5001. [Google Scholar] [CrossRef]
- Gofman, I.V.; Nikolaeva, A.L.; Khripunov, A.K.; Ivan’kova, E.M.; Shabunin, A.S.; Yakimansky, A.V.; Romanov, D.P.; Popov, A.L.; Ermakov, A.M.; Solomevich, S.O.; et al. Bacterial Cellulose-Based Nanocomposites Containing Ceria and Their Use in the Process of Stem Cell Proliferation. Polymers 2021, 13, 1999. [Google Scholar] [CrossRef]
- Gofman, I.V.; Nikolaeva, A.L.; Khripunov, A.K.; Yakimansky, A.V.; Ivan’kova, E.M.; Romanov, D.P.; Ivanova, O.S.; Teplonogova, M.A.; Ivanov, V.K. Impact of nano-sized cerium oxide on physico-mechanical characteristics and thermal properties of the bacterial cellulose films. Nanosyst. Phys. Chem. Math. 2018, 9, 754–762. [Google Scholar] [CrossRef]
- Rozhin, P.; Melchionna, M.; Fornasiero, P.; Marchesan, S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. Nanomaterials 2021, 11, 2259. [Google Scholar] [CrossRef]
- Popova, N.R.; Andreeva, V.V.; Khohlov, N.V.; Popov, A.L.; Ivanov, V.K. Fabrication of CeO2 nanoparticles embedded in polysaccharide hydrogel and their application in skin wound healing. Nanosyst. Phys. Chem. Math. 2020, 11, 99–109. [Google Scholar] [CrossRef]
- Kızılkonca, E.; Torlak, E.; Erim, F.B. Preparation and characterization of antibacterial nano cerium oxide/chitosan/hydroxyethylcellulose/polyethylene glycol composite films. Int. J. Biol. Macromol. 2021, 177, 351–359. [Google Scholar] [CrossRef]
- Melchionna, M.; Trovarelli, A.; Fornasiero, P. 2—Synthesis and properties of cerium oxide-based materials. In Cerium Oxide (CeO₂): Synthesis, Properties and Applications. Metal Oxides, 1st ed.; Scirè, S., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 13–43. [Google Scholar] [CrossRef]
- Shcherbakov, A.B.; Zholobak, N.M.; Ivanov, V.K. 8—Biological, biomedical and pharmaceutical applications of cerium oxide. In Cerium Oxide (CeO2): Synthesis, Properties and Applications. Metal Oxides, 1st ed.; Scirè, S., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–358. [Google Scholar] [CrossRef]
- Barker, E.; Shepherd, J.; Asencio, I.O. The Use of Cerium Compounds as Antimicrobials for Biomedical Applications. Molecules 2022, 27, 2678. [Google Scholar] [CrossRef] [PubMed]
- Skorodumova, N.V.; Simak, S.I.; Lundqvist, B.I.; Abrikosov, I.A.; Johansson, B. Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 2002, 89, 166601. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Naik, P. Synthesis and biomedical applications of Cerium oxide nanoparticles—A Review. Biotechnol. Rep. 2018, 17, 1–5. [Google Scholar] [CrossRef]
- Chen, H.-I.; Chang, H.-Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids Surf. A Physicochem. Eng. Asp. 2004, 242, 61–69. [Google Scholar] [CrossRef]
- Karakoti, A.S.; Kuchibhatla, S.V.N.T.; Babu, K.S.; Seal, S. Direct Synthesis of Nanoceria in Aqueous Polyhydroxyl Solutions. J. Phys. Chem. C. 2007, 111, 17232–17240. [Google Scholar] [CrossRef]
- Melnikova, N.; Orekhov, D.; Simagin, A.; Malygina, D.; Korokin, V.; Kosmachova, K.; Al-Azzavi, H.; Solovyeva, A.; Kazantsev, O. Antioxidant Activity of New Copolymer Conjugates of Methoxyoligo(Ethylene Glycol)Methacrylate and Betulin Methacrylate with Cerium Oxide Nanoparticles In Vitro. Molecules 2022, 27, 5894. [Google Scholar] [CrossRef]
- Pur, M.R.; Hosseini, M.; Faridbod, F.; Dezfuli, A.S.; Ganjali, M.R. A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite. Anal. Bioanal. Chem. 2016, 408, 7193–7202. [Google Scholar] [CrossRef]
- Brown, G.C.; Borutaite, V. Regulation of apoptosis by the redox state of cytochrome c. Biochim. Biophys. Acta 2008, 177, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Alleyne, T.; Joseph, J.; Sampson, V. Cytochrome-c detection: A diagnostic marker for myocardial infarction. Appl. Biochem. Biotechnol. 2001, 90, 97–105. [Google Scholar] [CrossRef]
- Smith, D.W.; Williams, R.J.P. The spectra of ferric haems and haemoprotein. In Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 1970; Volume 7, pp. 1–45. [Google Scholar]
- Margoliash, E.; Frohwirt, N. Spectrum of Horse-Heart Cytochrome c. Biochem. J. 1959, 71, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakov, A.B.; Ivanov, V.K.; Sirota, T.V.; Tret’yakov, Y.D. Inhibition of adrenaline autooxidation by nanocrystalline ceria. Dokl. Chem. 2011, 437, 60–62. [Google Scholar] [CrossRef]
- Sirota, T.V. A new approach to the investigation of adrenaline autoxidation and its application for determination of superoxide dismutase activity. Vopr. Meditsinskoi Khimii 1999, 45, 263–272. [Google Scholar]
- Sirota, T.V. A new approach to studying the autoxidation of adrenaline: Possibility of the determination of superoxide dismutase activity and the antioxidant properties of various preparations by polarography. Biomed. Khi. 2012, 58, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Korsvik, C.; Patil, S.; Seal, S.; Self, W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 14, 1056–1058. [Google Scholar] [CrossRef]
- Revin, V.V.; Liyas’kina, E.V.; Sapunova, N.B.; Bogatyreva, A.O. Isolation and characterization of the strains producing bacterial cellulose. Microbiology 2020, 14, 86–95. [Google Scholar] [CrossRef]
- Melnikova, N.; Knyazev, A.; Nikolskiy, V.; Peretyagin, P.; Belyaeva, K.; Nazarova, N.; Liyaskina, E.; Malygina, D.; Revin, V. Wound Healing Composite Materials of Bacterial Cellulose and Zinc Oxide Nanoparticles with Immobilized Betulin Diphosphate. Nanomaterials 2021, 11, 713. [Google Scholar] [CrossRef]
- Mihara, M.; Uchiyama, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [PubMed]
- Khyshiktuev, B.S.; Khyshiktueva, N.A.; Ivanov, V.N. Metody opredeleniia produktov perekisnogo okisleniia lipidov v kondensate vydykhaemogo vozdukha i ikh klinicheskoe znachenie [Methods of measuring lipid peroxidation products in exhaled air condensate and their clinical significance]. Klin. Lab. Diagn. 1996, 3, 13–15. (In Russian) [Google Scholar]
- Kochetov, G.A. Practical Guide to Enzymology, 2nd ed.; Severin, S.E., Ed.; High School: Moscow, Russia, 1980; p. 272. [Google Scholar]
Figure Number | Composition | 2θ, Degree | D, nm | Structure Signal |
---|---|---|---|---|
a | CeO2 NPs | 28.32 | 3.26 | CeO2 |
32.58 | 3.50 | |||
46.82 | 3.02 | |||
56.04 | 2.90 | |||
b | BC 1 | 22.96 | 4.75 | BC |
c | BC(aerogel)-CeO2 NPs | 21.88 | 3.50 | BC |
28.42 | 3.50 | CeO2 | ||
32.24 | 5.00 | |||
47.08 | 3.00 | |||
55.58 | 3.43 | |||
d | BC(hydrogel)-CeO2 NPs | 22.18 | 3.80 | BC |
28.32 | 3.60 | CeO2 | ||
33.58 | 3.00 | |||
46.94 | 3.00 | |||
56.24 | 3.00 |
τ, min | Band | ||||||||
---|---|---|---|---|---|---|---|---|---|
γ | β | α | |||||||
A | ΔA | θ, % | λ, nm | |Δλ|, nm | A | λ, nm | A | λ, nm | |
0 | 0.729 | - | 0 | 408.0 | - | - | - | - | - |
0.5 | 0.828 | 0.099 | 13.6 | 408.5 | 0.5 | 0.165 | 520.5 | 0.161 | 549.0 |
5.0 | 0.829 | 0.100 | 13.7 | 409.0 | 1.0 | 0.165 | 520.5 | 0.168 | 549.5 |
10.0 | 0.826 | 0.097 | 13.3 | 409.0 | 1.0 | 0.166 | 520.5 | 0.172 | 549.5 |
30.0 | 0.811 | 0.082 | 11.2 | 410.5 | 2.5 | 0.163 | 520.0 | 0.181 | 549.5 |
60.0 | 0.739 | 0.010 | 1.4 | 412.0 | 4.0 | 0.133 | 520.0 | 0.160 | 549.0 |
120.0 | 0.681 | −0.048 | N/a * | 412.5 | 4.5 | 0.099 | 520.0 | 0.138 | 549.5 |
240.0 | 0.645 | −0.084 | N/a | 413.0 | 5.0 | 0.084 | 520.0 | 0.122 | 549.5 |
1440.0 | 0.593 | −0.136 | N/a | 411.5 | 3.5 | 0.066 | 520.5 | 0.093 | 549.5 |
Sample | Biochemical Index * | ||||||
---|---|---|---|---|---|---|---|
SOD, inh/min*mg of Protein | G6FDH, NADPH/min*mg of Protein | MDApl, μmol/L | MDAer, μmol/L | DC, Arbitrary Units | TC, Arbitrary Units | SB, Arbitrary Units | |
Control (100%) | 962.14 ± 12.54 | 38.12 ± 3.54 | 1.03 ± 0.04 | 7.26 ± 0.84 | 0.76 ± 0.03 | 0.26 ± 0.01 | 0.14 ± 0.01 |
CeO2NPs | 1229.24 ± 43.98 | 104.53 ± 5.73 | 0.93 ± 0.02 | 6.53 ± 0.22 | 0.68 ± 0.02 | 0.25 ± 0.01 | 0.14 ± 0.01 |
BC-CeO2 NPs | 1198.63 ± 23.09 | 67.88 ± 1.24 | 0.86 ± 0.01 | 7.42 ± 0.67 | 0.65 ± 0.02 | 0.25 ± 0.01 | 0.13 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnikova, N.; Malygina, D.; Korokin, V.; Al-Azzawi, H.; Zdorova, D.; Mokshin, E.; Liyaskina, E.; Kurgaeva, I.; Revin, V. Synthesis of Cerium Oxide Nanoparticles in a Bacterial Nanocellulose Matrix and the Study of Their Oxidizing and Reducing Properties. Molecules 2023, 28, 2604. https://doi.org/10.3390/molecules28062604
Melnikova N, Malygina D, Korokin V, Al-Azzawi H, Zdorova D, Mokshin E, Liyaskina E, Kurgaeva I, Revin V. Synthesis of Cerium Oxide Nanoparticles in a Bacterial Nanocellulose Matrix and the Study of Their Oxidizing and Reducing Properties. Molecules. 2023; 28(6):2604. https://doi.org/10.3390/molecules28062604
Chicago/Turabian StyleMelnikova, Nina, Darina Malygina, Vitaly Korokin, Hayder Al-Azzawi, Daria Zdorova, Evgeniy Mokshin, Elena Liyaskina, Irina Kurgaeva, and Victor Revin. 2023. "Synthesis of Cerium Oxide Nanoparticles in a Bacterial Nanocellulose Matrix and the Study of Their Oxidizing and Reducing Properties" Molecules 28, no. 6: 2604. https://doi.org/10.3390/molecules28062604
APA StyleMelnikova, N., Malygina, D., Korokin, V., Al-Azzawi, H., Zdorova, D., Mokshin, E., Liyaskina, E., Kurgaeva, I., & Revin, V. (2023). Synthesis of Cerium Oxide Nanoparticles in a Bacterial Nanocellulose Matrix and the Study of Their Oxidizing and Reducing Properties. Molecules, 28(6), 2604. https://doi.org/10.3390/molecules28062604