Antibody–Biopolymer Conjugates in Oncology: A Review
Abstract
:1. Introduction
2. Antibody–Biopolymer Conjugation Chemistry
3. Current Developmental Status of ABC in Oncology
ABC | Cancer Type | Ref. |
---|---|---|
2C5 antibody conjugated with taxol micelles | Heart tumor | [33,34] |
tamoxifen antibody conjugated with polymeric nanoparticles | Breast cancer | [36] |
CD147 conjugated with α-hederin chitosan | Liver cancer | [37] |
CC52-liposome conjugate | Colon cancer | [38] |
doxorubicin antibody–liposomes | Lung carcinoma | [39] |
Cetuximab conjugate with docetaxel loaded poly (γ-glutamic acid) nanoparticle | Gastric cancer | [40] |
mAb 19–24 conjugated with daunomycin by dextran | fibrosarcoma | [41] |
mAb conjugated with poly (butyl cyanoacrylate) | glioblastoma | [42] |
3.1. Clinical Studies
Alternative Diagnostic Uses
4. Discussion
Pros and Cons of ABC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- WHO International Agency for Research on Cancer. Estimated Number of Deaths in 2020, All Cancers, Both Sexes, All Ages; Cancer Today: Lyon, France, 2020. [Google Scholar]
- Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 2008, 8, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef] [PubMed]
- Prevodnik, V.K.; Lavrenčak, J.; Horvat, M.; Novakovič, B.J. The predictive significance of CD20 expression in B-cell lymphomas. Diagn. Pathol. 2011, 6, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apostolopoulos, V.; McKenzie, I.F.C. Cellular mucins: Targets for immunotherapy. Crit. Rev. Immunol. 2017, 37, 421–437. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, V.; Pietersz, G.A.; McKenzie, I.F.C. MUC1 and breast cancer. Curr. Opin. Mol. Ther. 1999, 1, 98–103. [Google Scholar]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Shefet-Carasso, L.; Benhar, I. Antibody-targeted drugs and drug resistance—Challenges and solutions. Drug Resist. Updates 2015, 18, 36–46. [Google Scholar] [CrossRef]
- Patel, S.S.; Naor, J.; Qudrat, A.; Do, D.V.; Buetelspacher, D.; Iiang, H.; Perlroth, D.V. Phase 1 first-in-human study of KSI-301: A novel anti-VEGF antibody biopolymer conjugate with extended durability. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3670. [Google Scholar]
- Chandrasekaran, P.R.; Madanagopalan, V.G. KSI-301: Antibody biopolymer conjugate in retinal disorders. Ther. Adv. Ophthalmol. 2021, 13, 251584142110277. [Google Scholar] [CrossRef]
- Su, C.; Correa, F.; Liang, H.; Jacobson, R.; Perlroth, V.; Pham, L. Characterization of Antibody Biopolymer Conjugate reveals superior biophysical properties compared to naked antibodies. Investig. Ophthalmol. Vis. Sci. 2020, 61, 4237. [Google Scholar]
- Srivastava, A.; O’Connor, I.B.; Pandit, A.; Wall, J.G. Polymer-antibody fragment conjugates for biomedical applications. Prog. Polym. Sci. 2014, 39, 308–329. [Google Scholar] [CrossRef]
- Olson, R.A.; Korpusik, A.B.; Sumerlin, B.S. Enlightening advances in polymer bioconjugate chemistry: Light-based techniques for grafting to and from biomacromolecules. Chem. Sci. 2020, 11, 5142–5157. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, H.; Yu, H.; Gan, Y.; Wang, L.; Mei, H.; et al. Recent progress in drug delivery. Acta Pharm. Sin. B 2019, 9, 1145–1162. [Google Scholar] [CrossRef]
- Kalia, J.; Raines, R.T. Advances in Bioconjugation. Curr. Org. Chem. 2010, 14, 138–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Graaf, A.J.; Kooijman, M.; Hennink, W.E.; Mastrobattista, E. Nonnatural amino acids for site-specific protein conjugation. Bioconjug. Chem. 2009, 20, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- New, K.; Brechbiel, M.W. Growing Applications of ‘Click Chemistry’ for Bioconjugation in Contemporary Biomedical Research. Cancer Biother. Radiopharm. 2009, 24, 289–302. [Google Scholar]
- Luk, Y.Y.; Tingey, M.L.; Dickson, K.A.; Raines, R.T.; Abbott, N.L. Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals. J. Am. Chem. Soc. 2004, 126, 9024–9032. [Google Scholar] [CrossRef]
- Chalker, J.M.; Bernardes, G.J.L.; Lin, Y.A.; Davis, B.G. Chemical modification of proteins at cysteine: Opportunities in chemistry and biology. Chem. Asian J. 2009, 4, 630–640. [Google Scholar] [CrossRef]
- Kalia, J.; Raines, R.T. Catalysis of imido group hydrolysis in a maleimide conjugate. Bioorg. Med. Chem. Lett. 2007, 17, 6286–6289. [Google Scholar] [CrossRef] [Green Version]
- Alven, S.; Nqoro, X.; Buyana, B.; Aderibigbe, B.A. Polymer-Drug Conjugate, a Potential Therapeutic to Combat Breast and Lung Cancer. Pharmaceutics 2020, 12, 406. [Google Scholar] [CrossRef]
- Suzuki, M.; Kato, C.; Kato, A. Therapeutic antibodies: Their mechanisms of action and the pathological findings they induce in toxicity studies. J. Toxicol. Pathol. 2015, 28, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Chis, A.A.; Arseniu, A.M.; Morgovan, C.; Dobrea, C.M.; Frum, A.; Juncan, A.M.; Butuca, A.; Ghibu, S.; Gligor, F.G.; Rus, L.L. Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022, 14, 1773. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Abbasi, Y.F.; Bera, H.; Yang, M. Biopolymer–drug conjugates as biomaterials. In Tailor-Made and Functionalized Biopolymer Systems; Bera, H., Layek, B., Singh, J., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 253–284. [Google Scholar]
- Ding, H.; Gangalum, P.R.; Galstyan, A.; Fox, I.; Patil, R.; Hubbard, P.; Murali, R.; Ljubimova, J.Y.; Holler, E. HER2-positive breast cancer targeting and treatment by a peptide-conjugated mini nanodrug. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.; Yu, H. Gemcitabine Conjugated Chitosan and Double Antibodies (Abc-GC-Gemcitabine Nanoparticles) Enhanced Cytoplasmic Uptake of Gemcitabine and Inhibit Proliferation and Metastasis in Human SW1990 Pancreatic Cancer Cells. Med. Sci. Monit. 2017, 23, 1613–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escareño, N.; Hassan, N.; Kogan, M.J.; Juárez, J.; Topete, A.; Daneri-Navarro, A. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells. J. Colloid Interface Sci. 2021, 591, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhang, C.; Liu, Y.; Yuan, Z.; Chen, W.; Yang, S.; Li, J.; Zhu, W.; You, B.; Zhang, X. CD147 monoclonal antibody mediated by chitosan nanoparticles loaded with alpha-hederin enhances antineoplastic activity and cellular uptake in liver cancer cells. Sci. Rep. 2015, 5, 17904. [Google Scholar] [CrossRef] [Green Version]
- Goodall, S.; Jones, M.L.; Mahler, S. Monoclonal antibody-targeted polymeric nanoparticles for cancer therapy–future prospects. J. Chem. Technol. Biotechnol. 2015, 90, 1169–1176. [Google Scholar] [CrossRef]
- Chauhan, A.S. Dendrimers for Drug Delivery. Molecules 2018, 23, 938. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, B.; Biswas, S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release Soc. 2021, 332, 127–147. [Google Scholar] [CrossRef]
- Torchilin, V.; Lukyanov, A.; Gao, Z.; Papahadjopoulos-Sternberg, B. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci. USA 2003, 100, 6039–6044. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.F.; Torchilin, V.P. Micelle-like nanoparticles as siRNA and miRNA carriers for cancer therapy. Biomed. Microdevices 2018, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Cox, E.C.; Thornlow, D.N.; Jones, M.A.; Fuller, J.L.; Merritt, J.H.; Paszek, M.J.; Alabi, C.A.; DeLisa, M.P. Antibody-Mediated Endocytosis of Polysialic Acid Enables Intracellular Delivery and Cytotoxicity of a Glycan-Directed Antibody-Drug Conjugate. Cancer Res. 2019, 79, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
- Vivek, R.; Thangam, R.; NipunBabu, V.; Rejeeth, C.; Sivasubramanian, S.; Gunasekaran, P.; Muthuchelian, K.; Kannan, S. Multifunctional HER2-Antibody Conjugated Polymeric Nanocarrier-Based Drug Delivery System for Multi-Drug-Resistant Breast Cancer Therapy. ACS Appl. Mater. Interfaces 2014, 6, 6469–6480. [Google Scholar] [CrossRef]
- Guan, M.; Zhou, Y.; Zhu, Q.L.; Liu, Y.; Bei, Y.Y.; Zhang, X.N.; Zhang, Q. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Kamps, J.; Koning, G.A.; Velinova, M.J.; Morselt, H.W.; Wilkens, M.; Gorter, A.; Donga, J.; Scherphof, G.L. Uptake of Long-Circulating Immunoliposomes, Directed Against Colon Adenocarcinoma Cells, by Liver Metastases of Colon Cancer. J. Drug Target. 2000, 8, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Lukyanov, A.N.; Elbayoumi, T.A.; Chakilam, A.R.; Torchilin, V.P. Tumor-targeted liposomes: Doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J. Control. Release Soc. 2004, 100, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Sreeranganathan, M.; Uthaman, S.; Sarmento, M.; Mohan, C.G.; Park, I.K.; Jayakumar, R. In vivo evaluation of cetuximab-conjugated poly(γ-glutamic acid)-docetaxel nanomedicines in EGFR-overexpressing gastric cancer xenografts. Int. J. Nanomed. 2017, 12, 7165–7182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stastny, J.J.; Das Gupta, T.K. The use of daunomycin-antibody immunoconjugates in managing soft tissue sarcomas: Nude mouse xenograft model. Cancer Res. 1993, 53, 5740–5744. [Google Scholar]
- Hassanzadeganroudsari, M.; Soltani, M.; Heydarinasab, A.; Apostolopoulos, V.; Akbarzadehkhiyavi, A.; Nurgali, K. Targeted nano-drug delivery system for glioblastoma therapy: In vitro and in vivo study. J. Drug Deliv. Sci. Technol. 2022, 60, 102039. [Google Scholar] [CrossRef]
- Hun, X.; Zhang, Z.; Tiao, L. Anti-Her-2 monoclonal antibody conjugated polymer fluorescent nanoparticles probe for ovarian cancer imaging. Anal. Chim. Acta 2008, 625, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Rayhan, M.A.; Hossen, M.S.; Niloy, M.H.; Bhuiyan, S.; Shakil, M.S. Biopolymer and Biomaterial Conjugated Iron Oxide Nanomaterials as Prostate Cancer Theranostic Agents: A Comprehensive Review. Symmetry 2021, 13, 974. [Google Scholar] [CrossRef]
- Shahrabi Farahani, M.; Mohsenzadegan, M.; Taeb, J.; Farajollahi, M.M. In-vitro prostate cancer biomarker detection by directed conjugation of anti-PSCA antibody to super paramagnetic iron oxide nanoparticless. Med. J. Islam. Repub. Iran 2019, 33, 16. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.A.P.; Mansur, H.S.; Soriano-Araújo, A.; Lobato, Z.I.P. Fluorescent Nanohybrids Based on Quantum Dot–Chitosan–Antibody as Potential Cancer Biomarkers. ACS Appl. Mater. Interfaces 2014, 6, 11403–11412. [Google Scholar] [CrossRef]
- Ruso, J.M.; Messina, P.V. (Eds.) Biopolymers for Medical Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Singh, A.; Chatterjee, M.; Singh, G. Antibody delivery for intracellular targets: Emergent therapeutic potential. Bioconjugate Chem. 2019, 30, 1028–1041. [Google Scholar] [CrossRef]
- Li, F.; Mahato, R.I. Bioconjugate Therapeutics: Current Progress and Future Perspective. Mol. Pharm. 2017, 14, 1321–1324. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.K.; Tian, H.R.; Zhang, M.Z.; He, J.L.; Liu, J.; Ni, P.H. Monoclonal antibody-conjugated polyphosphoester-hyd-DOX prodrug nanoparticles for targeted chemotherapy of liver cancer cells. Chin. J. Polym. Sci. 2021, 39, 1392–1402. [Google Scholar] [CrossRef]
- Goncalves, A.G.; Hartzell, E.J.; Sullivan, M.O.; Chen, W. Recombinant protein polymer-antibody conjugates for applications in nanotechnology and biomedicine. Adv. Drug Delivery Rev. 2022, 191, 114570–114584. [Google Scholar] [CrossRef] [PubMed]
- Wadhawan, A.; Chatterjee, M.; Singh, G. Present scenario of bioconjugates in cancer therapy: A review. Int. J. Mol. Sci. 2019, 20, 5243. [Google Scholar] [CrossRef] [Green Version]
Conjugate | Antibody | Biopolymer | Type of Cancer | Molecular Design | Ref. |
---|---|---|---|---|---|
Trastuzumab-polymalic acid | Anti-p185HER2/neu peptide (trastuzumab-mimetic 12-merpeptide) | Poly (β-L-malic acid) | Breast cancer | Conjugates were prepared by covalently incorporating anti-HER2/neu peptide | [26] |
Abc-GC-Gemcitabine | Gemcitabine, anti-EGFR antibody | Glycol chitosan | Pancreatic cancer | Bioconjugation using NHS and EDC | [27] |
Transtuzumab-chitosan | Transtuzumab | Doxorubicin-loaded poly lactic-co-glycolic acid (PLGA)/Chitosan | Breast cancer | Covalent derivatization using sNHS and EDC | [28] |
α-Hed-CS-CD147-NPs | CD147 | Chitosan | Liver cancer | Amide linkage formed between CD147 and α-Hed-CS-NPs using NHS and EDC | [29] |
Other Id | Study Design | Condition | Number Enrolled | NCT Number |
---|---|---|---|---|
CC1 | Single group Assignment, Primary Purpose: Treatment | Solid Tumors | 26 | NCT01702129 |
SAKK 24/14 | Single group Assignment, Primary Purpose: Treatment | Breast cancer | 48 | NCT02833766 |
2018-01160; me17Kasenda2 | Single group Assignment, Primary Purpose: Basic Science | Glioblastoma | 9 | NCT03603379 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavda, V.P.; Balar, P.C.; Teli, D.; Davidson, M.; Bojarska, J.; Apostolopoulos, V. Antibody–Biopolymer Conjugates in Oncology: A Review. Molecules 2023, 28, 2605. https://doi.org/10.3390/molecules28062605
Chavda VP, Balar PC, Teli D, Davidson M, Bojarska J, Apostolopoulos V. Antibody–Biopolymer Conjugates in Oncology: A Review. Molecules. 2023; 28(6):2605. https://doi.org/10.3390/molecules28062605
Chicago/Turabian StyleChavda, Vivek P., Pankti C. Balar, Divya Teli, Majid Davidson, Joanna Bojarska, and Vasso Apostolopoulos. 2023. "Antibody–Biopolymer Conjugates in Oncology: A Review" Molecules 28, no. 6: 2605. https://doi.org/10.3390/molecules28062605
APA StyleChavda, V. P., Balar, P. C., Teli, D., Davidson, M., Bojarska, J., & Apostolopoulos, V. (2023). Antibody–Biopolymer Conjugates in Oncology: A Review. Molecules, 28(6), 2605. https://doi.org/10.3390/molecules28062605