Sea-Cucumber-like Microstructure Polyoxometalate/TiO2 Nanocomposite Electrode for High-Performance Electrochromic Energy Storage Devices
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of Nanocomposites
2.2. Electrochromic Performance of Electrodes
2.3. Capacitive Performance of Electrodes
2.4. Configuration and Performance of EESD
3. Materials and Methods
3.1. Chemicals
3.2. Fabrication of Composite Films
3.3. Assembly of Asymmetric EESD
3.4. Materials Characterizations
3.5. Electrochromic and Energy Storage Performance Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cai, G.F.; Zhu, R.; Liu, S.Y.; Wang, J.H.; Wei, C.Y.; Griffith, K.J.; Jia, Y.; Lee, P.S. Tunable intracrystal cavity in tungsten bronze-like bimetallic oxides for electrochromic energy storage. Adv. Energy Mater. 2022, 12, 2103106. [Google Scholar] [CrossRef]
- Wang, S.C.; Jiang, T.Y.; Meng, Y.; Yang, R.G.; Tan, G.; Long, Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021, 374, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.A.; Wang, F.F.; Cheng, Z.C.; Fang, Y.Y.; Chang, Q.; Zhu, J.X.; Wang, L.; Wang, J.P.; Huang, W.; et al. Full-frame and high-contrast smart windows from halide-exchanged perovskites. Nat. Commun. 2021, 12, 2208178. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, H.Y.; Zhang, J.H.; Zhou, T. Ultra-foldable integrated high-performance in-plane micro-supercapacitors from laser-induced selective metallization. Energy Storage Mater. 2022, 51, 139–148. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Han, Y.Y.; Li, X.Y.; Dai, C.L.; Zhang, X.Q.; Jin, X.T.; Shao, C.X.; Lu, B.; Wang, C.Z.; et al. Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Sci. Adv. 2022, 8, eabn8338. [Google Scholar] [CrossRef]
- Shen, M.H.; Ma, H.L. Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries. Coord. Chem. Rev. 2022, 470, 214715. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, T.; Yang, X.G.; Ge, S.H.; Stanley, N.V.; Rountree, E.S.; Leng, Y.J.; McCarthy, B.D. Fast charging of energy-dense lithium-ion batteries. Nature 2022, 611, 485–490. [Google Scholar] [CrossRef]
- Yang, W.; Han, Q.K.; Li, W.S.; Wu, M.S.; Yao, J.; Zhao, M.; Lu, X.M. Ti3C2Tx MXene as Janus separators for redox-enhanced electrochemical capacitors with reduced self-discharge. Energy Storage Mater. 2022, 52, 29–39. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.P.; Zhao, L.Y.; Chi, F.Y.; Gao, C.; Wang, Y.; Yan, M.D.; Zhou, Q.; Zhao, M.M.; Wang, X.Y.; et al. Aqueous hybrid electrochemical capacitors with ultra-high energy density approaching for thousand-volts alternating current line filtering. Nat. Commun. 2022, 13, 6359. [Google Scholar] [CrossRef]
- Chen, P.; Hu, J.T.; Yu, M.T.; Li, P.C.; Su, R.; Wang, Z.W.; Zhao, L.C.; Li, S.D.; Yang, Y.G.; Zhang, Y.Z.; et al. Refining perovskite heterojunctions for effective light-emitting solar cells. Adv. Mater. 2022, 35, 2208178. [Google Scholar] [CrossRef]
- Ren, Y.M.; Zhang, D.; Suo, J.J.; Cao, Y.M.; Eickemeyer, F.T.; Vlachopoulos, N.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Hydroxamic acid preadsorption raises efficiency of cosensitized solar cells. Nature 2022, 613, 60–65. [Google Scholar] [CrossRef]
- Zhao, L.L.; Chen, Z.M.; Peng, Y.Q.; Yang, L.L.; Ai, J.T.; Zhou, J.H.; Miao, L. High-performance complementary electrochromic energy storage device based on tungsten trioxide and manganese dioxide films. Sustain. Mater. Technol. 2022, 32, e00445. [Google Scholar] [CrossRef]
- Huang, Q.J.; Wang, J.J.; Gong, H.; Zhang, Q.Q.; Wang, M.Y.; Wang, W.W.; Nshimiyimana, J.P.; Diao, X.G. A rechargeable electrochromic energy storage device enabling effective energy recovery. J. Mater. Chem. A 2021, 9, 6451–6459. [Google Scholar] [CrossRef]
- Khan, F. Attaining remarkable switching speed of nickel oxide-based electrode for electrochromic energy storage devices. Surf. Interfaces 2022, 29, 101792. [Google Scholar] [CrossRef]
- Wang, H.; Yao, C.J.; Nie, H.J.; Yang, L.; Mei, S.L.; Zhang, Q.C. Recent progress in integrated functional electrochromic energy storage devices. J. Mater. Chem. C 2020, 8, 15507–15525. [Google Scholar] [CrossRef]
- Lee, Y.H.; Park, J.Y.; Ahn, K.S.; Sung, Y.E. MnO2 nanoparticles advancing electrochemical performance of Ni(OH)2 films for application in electrochromic energy storage devices. J. Alloys Compd. 2022, 923, 166466. [Google Scholar]
- Kim, S.Y.; Jang, Y.J.; Kim, Y.M.; Lee, J.K.; Moon, H.C. Tailoring diffusion dynamics in energy storage ionic conductors for high-performance, multi-Function, single-layer electrochromic supercapacitors. Adv. Funct. Mater. 2022, 32, 44. [Google Scholar] [CrossRef]
- Chiu, C.W.; Huang, C.Y.; Li, J.W.; Li, C.L. Flexible hybrid electronics nanofiber electrodes with excellent stretchability and highly stable electrical conductivity for smart clothing. ACS Appl. Mater. Interfaces 2022, 14, 42441–42453. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, X.; Zhu, G.Q.; Li, M.; Zhang, X.Q.; Yang, H.; Lin, B.P. Twisted ladder-like donor-acceptor polymers as electrode materials for flexible electrochromic supercapacitors. Electrochim. Acta 2020, 333, 135495. [Google Scholar] [CrossRef]
- Liu, L.; Du, K.; He, Z.B.; Wang, T.; Zhong, X.L.; Ma, T.; Yang, J.M.; He, Y.C.; Dong, G.B.; Wang, S.H.; et al. High-temperature adaptive and robust ultra-thin inorganic all-solid-state smart electrochromic energy storage devices. Nano Energy 2019, 62, 46–54. [Google Scholar] [CrossRef]
- Wang, C.J.; Zhang, X.L.; Liu, S.; Zhang, H.L.; Wang, Q.; Zhang, C.L.; Gao, J.H.; Liang, L.Y.; Cao, H.T. Interfacial charge transfer and zinc ion intercalation and deintercalation dynamics in flexible multicolor electrochromic energy storage devices. ACS Appl. Energy Mater. 2021, 5, 88–97. [Google Scholar] [CrossRef]
- Chen, J.W.; Eh, A.L.S.; Ciou, J.H.; Lee, P.S. Pseudocapacitive and dual-functional electrochromic Zn batteries. Mater. Today Energy 2022, 27, 101048. [Google Scholar] [CrossRef]
- Sun, B.L.; Liu, Z.X.; Li, W.; Huang, H.; Xia, Y.; Gan, Y.P.; Liang, C.; Zhang, W.K.; Zhang, J. A high-performance electrochromic battery based on complementary Prussian white/Li4Ti5O12 thin film electrodes. Sol. Energy Mater Sol. Cells 2021, 231, 111314. [Google Scholar] [CrossRef]
- Deng, C.F.; Zhang, K.; Liu, L.; He, Z.B.; Huang, J.L.; Wang, T.; Liu, Y.S.; He, X.S.; Du, K.; Yi, Y. High-performance all-solid-state electrochromic asymmetric Zn-ion supercapacitors for visualizing energy stora. J. Mater. Chem. A 2022, 11, 211–217. [Google Scholar]
- Zhang, Y.C.; Bai, F.Q.; Xie, Y.F.; Zhu, M.H.; Zhao, L.; An, D.Q.; Xue, D.M.; Berda, E.B.; Wang, C.Y.; Lu, G.Y.; et al. A conjugated polymer with electron-withdrawing cyano group enables for flexible asymmetric electrochromic supercapacitors. Chem. Eng. J. 2022, 450, 138386. [Google Scholar] [CrossRef]
- Horn, M.R.; Singh, A.; Alomari, S.; Goberna-Ferrón, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.; MacLeod, J.; Sonar, P.; et al. Polyoxometalates (POMs): From electroactive clusters to energy materials. Energy Environ. Sci. 2021, 14, 1652–1700. [Google Scholar] [CrossRef]
- Win, P.E.P.; Wang, J.X.; Jia, X.Y.; Qi, B.; Chen, W.; He, L.; Song, Y.F. Synergistic effects of polyoxometalate with MoS2 sheets on multiwalled carbon nanotubes backbone for high-performance supercapacito. J. Alloys. Compd. 2020, 844, 156194. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ma, Z.Y.; Duan, S.Q.; Liu, Y.; Jiang, X.Y.; Zhou, Q.P.; Chen, M.; Ni, L.B.; Diao, G.W. Dawson-type polyoxometalate modified separator for anchoring/catalyzing polysulfides in high-performance lithium-sulfur batteries. Electrochim. Acta 2022, 428, 140868. [Google Scholar] [CrossRef]
- Wang, G.N.; Chen, T.T.; Gómez-García, C.J.; Zhang, F.; Zhang, M.Y.; Ma, H.Y.; Pang, H.J.; Wang, X.M.; Tan, L.C. A high-capacity negative electrode for asymmetric supercapacitors based on a PMo12 coordination polymer with novel water-assisted proton channels. Small 2020, 16, 2001626. [Google Scholar] [CrossRef]
- Fan, G.; Deng, L.J.; Gu, Y.Z. Reparation and capacitive properties of a freestanding phosphomolybdic acid heteropoly blue modified reduced graphite oxide composite. Sustain. Energ. Fuels. 2021, 5, 1892–1903. [Google Scholar] [CrossRef]
- Zhang, G.U.; Zhang, J.H.; Qiu, T.; Ning, H.L.; Fang, Z.Q.; Zhong, J.Y.; Yang, Y.X.; Yao, R.H.; Luo, D.X.; Peng, J.B. Fabrication of flexible electrochromic film based on amorphous isopolytungstate by low-temperature inkjet-printed process with a solution crystallization kinetic-controlled strategy. Chem. Eng. J. 2022, 427, 131840. [Google Scholar] [CrossRef]
- Liu, S.P.; Zhang, J.; Song, Y.Y.; Feng, S.Y.; Yang, Y.Y.; Qu, X.S. Bifuntional materials containing preyssler-type polyoxometalates and iron phenanthroline stabilized with poly (allylamine hydrochloride) for electrochromic energy storage devices. Eur. J. Inorg. Chem. 2022, 26, e202200543. [Google Scholar] [CrossRef]
- Chu, D.X.; Qu, X.S.; Zhang, S.F.; Zhang, J.; Yang, Y.Y.; An, W.J. Polyoxotungstate-based nanocomposite films with multi-color change and high volumetric capacitance toward electrochromic energy-storage applications. New J. Chem. 2021, 45, 19977–19985. [Google Scholar] [CrossRef]
- Liu, S.P.; Su, X.W.; Chu, D.X.; Ma, C.; Fu, Y.; Qu, X.S.; Lu, J.H.; Guan, H.N. The effect of electrolytes on the electrochromic performance of nickel-substituted tungstophosphate and TiO2 nanowire composite films. New J. Chem. 2021, 45, 9375–9381. [Google Scholar] [CrossRef]
- Sullivan, J.L.; Saied, S.O.; Bertoti, I. Effect of ion and neutral sputtering on single crystal TiO2. Vacuum 1991, 42, 1203–1208. [Google Scholar] [CrossRef]
- Sullivan, J.L.; Saied, S.O.; Choudhury, T.; Pearce, C.G. A comparison of ion and fast atom beam reduction in TiO2. Vacuum 1988, 38, 917–922. [Google Scholar]
- Charton, P.; Gengembre, L.; Armand, P. TeO2–WO3 glasses: Infrared, XPS and XANES structural characterizations. J. Solid State Chem. 2002, 168, 175–183. [Google Scholar] [CrossRef]
- Wang, S.M.; Hwang, J.; Kim, E. Polyoxometalates as promising materials for electrochromic devices. J. Mater. Chem. C 2019, 7, 7828–7850. [Google Scholar] [CrossRef]
- Sun, P.; Liu, H.G.; Ma, X.K.; Zhao, J.H.; Qiu, J.L.; Wang, Y.F.; Zhang, Z.Q. Hierarchical self-supported TiO2/NC-MoS2 composite as a stable anode for enhanced lithium-ion batteries. Int. J. Electrochem. Sci. 2020, 15, 8171–8180. [Google Scholar] [CrossRef]
- Cheng, W.; He, J.F.; Dettelbach, K.E.; Johnson, N.J.J.; Sherbo, R.S.; Berlinguette, C.P. Photodeposited amorphous oxide films for electrochromic windows. Chem 2018, 4, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Jia, X.T.; Zhu, M.H.; Liu, X.C.; Chao, D.M. Oligoaniline-functionalized polysiloxane/prussian blue composite towards bifunctional electrochromic supercapacitors. New J. Chem. 2020, 44, 8138–8147. [Google Scholar] [CrossRef]
- Liu, S.Q.; Kurth, D.G.; Bredenkötter, B.; Volkmen, D. The structure of self-assembled multilayers with polyoxometalate nanoclusters. J. Am. Chem. Soc. 2002, 124, 12279–12287. [Google Scholar] [CrossRef] [PubMed]
- Ilbeygi, H.; Kim, S.; Kim, I.Y.; Joseph, S.; Kim, M.G.; Vinu, A. Super-reductive mesoporous phosphomolybdate with high crystallinity and its excellent performance for Li-ion battery application. J. Mater. Chem. A 2022, 10, 12132–12140. [Google Scholar] [CrossRef]
- Brown, A.P.; Anson, F.C. Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. J. Anal. Chem. 1977, 49, 1589–1595. [Google Scholar] [CrossRef]
- Liu, Y.B.; Wang, J.X.; Xiao, X.D.; Cai, X.S.; Sheng, G.Z.; Xu, G. Synthesis of high-performance electrochromic thin films by a low-cost method. Ceram. Int. 2021, 47, 7837–7844. [Google Scholar] [CrossRef]
- Harmalker, S.P.; Leparulo, M.A.; Pope, M.T. Mixed-valence chemistry of adjacent vanadium centers in heteropolytungstate anions. I. Synthesis and electronic structures of mono-, di-, and trisubstituted derivatives of α-[P2W18O62] 6-. J. Am. Chem. Soc. 1983, 105, 4286–4292. [Google Scholar] [CrossRef]
- Tong, Z.Q.; Liu, S.K.; Li, X.G.; Mai, L.Q.; Zhao, J.P.; Li, Y. Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart window. Nanoscale 2018, 10, 3254–3261. [Google Scholar] [CrossRef]
- Granadeiro, C.M.; Ferreira, R.A.S.; Soares-Santos, P.C.R.; Carlos, L.D.; Nogueira, H.I.S. Lanthanopolyoxometalates as building blocks for multiwavelength photoluminescent organic–inorganic hybrid materials. Eur. J. Inorg. Chem. 2009, 2009, 5088–5095. [Google Scholar] [CrossRef]
- Wan, R.; Ma, P.T.; Han, M.D.; Zhang, D.D.; Zhang, C.; Niu, J.Y.; Wang, J.P. Discovery and isolation of the trans-isomers of two 1:2-type lanthanide-containing monolacunary Dawson-type tungstophosphates:[LnIII(α2-P2W17O61)2]17− (Ln = La, Ce). Dalton Trans. 2017, 46, 5398–5405. [Google Scholar] [CrossRef]
- Sadakane, M.; Ostuni, A.; Pope, M.T. Formation of 1∶1 and 2∶2 complexes of Ce(III) with the heteropolytungstate anion α2-[P2W17O61]10−, and their interaction with proline. The structure of [Ce2(P2W17O61)2(H2O)8]14−. Dalton Trans. 2002, 63–67. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wang, Y.; Sun, P.; Yang, P.H.; Du, L.H.; Mai, W.J. Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A 2015, 3, 20614–20618. [Google Scholar] [CrossRef]
- Shi, Y.D.; Sun, M.J.; Zhang, Y.; Cui, J.W.; Wang, Y.; Shu, X.; Qin, Y.Q.; Tan, H.H.; Liu, J.Q.; Wu, Y.C. Structure modulated amorphous/crystalline WO3 nanoporous arrays with superior electrochromic energy storage performance. Sol. Energy Mater. Sol. Cells. 2020, 212, 110579. [Google Scholar] [CrossRef]
- Shen, L.X.; Du, L.H.; Tan, S.Z.; Zang, Z.G.; Zhao, C.X.; Mai, W.J. Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chem. Commun. 2016, 52, 6296–6299. [Google Scholar] [CrossRef]
- Prasad, A.K.; Park, J.Y.; Kang, S.H.; Ahn, K.S. Electrochemically co-deposited WO3-V2O5 composites for electrochromic energy storage applications. Electrochim. Acta 2022, 422, 140340. [Google Scholar] [CrossRef]
- Qu, X.S.; Fu, Y.; Ma, C.; Yang, Y.Y.; Shi, D.; Chu, D.X.; Yu, X.Y. Bifunctional electrochromic-energy storage materials with enhanced performance obtained by hybridizing TiO2 nanowires with POMs. New. J. Chem. 2020, 44, 15475–15482. [Google Scholar] [CrossRef]
- Liu, S.P.; Qu, X.S. Construction of nanocomposite film of Dawson-type polyoxometalate and TiO2 nanowires for electrochromic applications. Appl. Surf. Sci. 2017, 412, 189–195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, X.; Zhou, L.; Liu, Z.; Wang, Z.; Wang, J.; Yu, X.; Jin, H.; Yang, Y. Sea-Cucumber-like Microstructure Polyoxometalate/TiO2 Nanocomposite Electrode for High-Performance Electrochromic Energy Storage Devices. Molecules 2023, 28, 2634. https://doi.org/10.3390/molecules28062634
Qu X, Zhou L, Liu Z, Wang Z, Wang J, Yu X, Jin H, Yang Y. Sea-Cucumber-like Microstructure Polyoxometalate/TiO2 Nanocomposite Electrode for High-Performance Electrochromic Energy Storage Devices. Molecules. 2023; 28(6):2634. https://doi.org/10.3390/molecules28062634
Chicago/Turabian StyleQu, Xiaoshu, Lili Zhou, Zefeng Liu, Zeyu Wang, Jilong Wang, Xiaoyang Yu, Hua Jin, and Yanyan Yang. 2023. "Sea-Cucumber-like Microstructure Polyoxometalate/TiO2 Nanocomposite Electrode for High-Performance Electrochromic Energy Storage Devices" Molecules 28, no. 6: 2634. https://doi.org/10.3390/molecules28062634
APA StyleQu, X., Zhou, L., Liu, Z., Wang, Z., Wang, J., Yu, X., Jin, H., & Yang, Y. (2023). Sea-Cucumber-like Microstructure Polyoxometalate/TiO2 Nanocomposite Electrode for High-Performance Electrochromic Energy Storage Devices. Molecules, 28(6), 2634. https://doi.org/10.3390/molecules28062634