Comparative Bioactivity Evaluation of Chemically Characterized Essential Oils Obtained from Different Aerial Parts of Eucalyptus gunnii Hook. f. (Myrtaceae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Yields
2.2. Chemical Composition
2.3. Antibacterial Activity
2.4. Insecticidal and Repellent Activities
3. Material and Methods
3.1. Plant Material and Oils Extraction
3.2. Chemical Analysis
3.3. Bacterial Cultures
3.4. Antibacterial Screening
3.5. Insect Rearing and Sampling
3.6. Contact Toxicity Bioassay
3.7. Fumigant Toxicity Bioassay
3.8. Repellence Bioassay on Filter Paper
3.9. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nicolle, D. A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia, and Eucalyptus—Myrtaceae), with special reference to the obligate seeders. Aust. J. Bot. 2006, 54, 391–407. [Google Scholar] [CrossRef]
- Brooker, M.I.H. A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Aust. Syst. Bot. 2000, 13, 79–148. [Google Scholar] [CrossRef]
- Penín, L.; López, M.; Santos, V.; Alonso, J.L.; Parajó, J.C. Technologies for Eucalyptus wood processing in the scope of biorefineries: A comprehensive review. Bioresour. Technol. 2020, 311, 123528. [Google Scholar] [CrossRef] [PubMed]
- Cooper, E.; von Meller, F. Forest Culture and Eucalyptus Trees; BibioLife LLC Chin Ong. Cubery & Company: San Francisco, CA, USA, 2009; p. 248. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.J.; Potts, B.M. The natural distribution of Eucalyptus species in Tasmania. Tasforests 1996, 8, 39–165. [Google Scholar]
- Varela, C.; Sundstrom, J.; Cuijvers, K.; Jiranek, V.; Borneman, A. Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus Gunnii. Sci. Rep. 2020, 10, 14716. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Chalmers, A.C.; Jyoti Bhuyan, D.; Bowyer, M.C.; Scarlett, C.J. Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chem. Biodivers. 2015, 12, 907–924. [Google Scholar] [CrossRef]
- Amakura, Y.; Umino, Y.; Tsuji, S. Constituents and their antioxidative effects in eucalyptus leaf extract used as a natural food additive. Food Chem. 2002, 77, 47–56. [Google Scholar] [CrossRef]
- Song, A.; Wang, Y.; Liu, Y. Study on the chemical constituents of the essential oil of the leaves of Eucalyptus globulus Labill from China. Asian J. Tradit. Med. 2009, 4, 134–140. [Google Scholar]
- Dhakad, A.K.; Pandey, V.V.; Beg, S.; Rawat, J.M.; Singh, A. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: A review. J. Sci. Food. Agric. 2018, 98, 833–848. [Google Scholar] [CrossRef]
- Forrest, M.; Moore, T. Eucalyptus gunnii: A possible source of bioenergy? Biomass Bioenergy 2008, 32, 978–980. [Google Scholar] [CrossRef]
- Leslie, A.D.; Mencuccini, M.; Perks, M.P. Preliminary growth functions for Eucalyptus gunnii in the UK. Biomass Bioenergy 2018, 108, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, R.; Barros, L.; Carvalho, A.M.; Sousa, M.J.; Morais, J.S.; Ferreira, I.C. Aromatic plants as a source of important phytochemicals: Vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Ind. Crops Prod. 2009, 30, 427–430. [Google Scholar] [CrossRef]
- Bugarin, D.; Grbović, S.; Orčič, D.; Mitić-Ćulafić, D.; Knežević-Vukčević, J.; Mimica-Dukić, N. Essential oil of Eucalyptus gunnii Hook. as a novel source of antioxidant, antimutagenic and antibacterial agents. Molecules 2014, 19, 19007–19020. [Google Scholar] [CrossRef]
- Danna, C.; Cornara, L.; Smeriglio, A.; Trombetta, D.; Amato, G.; Aicardi, P.; De Martino, L.; De Feo, V.; Caputo, L. Eucalyptus gunnii and Eucalyptus pulverulenta ’Baby Blue’ Essential Oils as Potential Natural Herbicides. Molecules 2021, 26, 6749. [Google Scholar] [CrossRef]
- Alzogaray, R.A.; Lucia, A.; Zerba, E.N.; Masuh, H.M. Insecticidal activity of essential oils from eleven Eucalyptus spp. and two hybrids: Lethal and sublethal effects of their major components on Blattella germanica. J. Econ. Entomol. 2011, 104, 595–600. [Google Scholar] [CrossRef]
- Elaissi, A.; Marzouki, H.; Medini, H.; Larbi Khouja, M.; Farhat, F.; Lynene, F.; Harzallah-Skhir, F.; Chemli, R. Variation in volatile leaf oils of 13 Eucalyptus species harvested from Souinet Arboreta (Tunisia). Chem. Biodivers. 2010, 7, 909–921. [Google Scholar] [CrossRef]
- Caputo, L.; Smeriglio, A.; Trombetta, D.; Cornara, L.; Trevena, G.; Valussi, M.; Fratianni, F.; De Feo, V.; Nazzaro, F. Chemical composition and biological activities of the essential oils of Leptospermum petersonii and Eucalyptus gunnii. Front. Microbiol. 2020, 11, 409. [Google Scholar] [CrossRef] [Green Version]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Micr. 2016, 66, 5575–5599. [Google Scholar]
- Czajkowski, R.; Perombelon, M.C.; van Veen, J.A.; van der Wolf, J.M. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathol. 2011, 60, 999–1013. [Google Scholar] [CrossRef]
- Janse, J.D. Prevention and control of bacterial pathogens and diseases. In Phytobacteriology: Principles and Practice; CABI Publishing: Wallingford, UK, 2005; pp. 149–173. [Google Scholar]
- Charkowski, A.O. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 2018, 56, 269–288. [Google Scholar] [CrossRef]
- Li, H.; Madden, J.L.; Potts, B.M. Variation in volatile leaf oils of the Tasmanian Eucalyptus species II. Subgenus Symphyomyrtus. Biochem. Syst. Ecol. 1996, 24, 547–569. [Google Scholar] [CrossRef]
- Zhang, J.; An, M.; Wu, H.; Stanton, R.; Lemerle, D. Chemistry and bioactivity of Eucalyptus essential oils. Allelopathy J. 2010, 25, 313–330. [Google Scholar]
- Barbosa, L.C.A.; Filomeno, C.A.; Teixeira, R.R. Chemical variability and biological activities of Eucalyptus spp. Essential oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, A.; Licastro, S.; Zerba, E.; Audino, P.G.; Masuh, H. Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils. Bioresour. Technol. 2009, 100, 6083–6087. [Google Scholar] [CrossRef] [PubMed]
- Kelen, M.; Tepe, B. Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora. Bioresour. Technol. 2008, 99, 4096–4104. [Google Scholar] [CrossRef] [PubMed]
- Mączka, W.; Duda-Madej, A.; Górny, A.; Grabarczyk, M.; Wińska, K. Can Eucalyptol replace antibiotics? Molecules 2021, 26, 4933. [Google Scholar] [CrossRef]
- Lis-Balchin, M.; Hart, S.L.; Deans, S.G. Pharmacological and antimicrobial studies on different tea-tree oils (Melaleuca alternifolia, Leptospermum scoparium or Manuka and Kunzea ericoides or Kanuka), originating in Australia and New Zealand. Phytother. Res. 2000, 14, 623–629. [Google Scholar] [CrossRef]
- Schollenberger, M.; Gadomska-Gajadhur, A.; Mirzwa-Mróz, E.; Kret, D.; Skutnik, E.; Paduch-Cichal, E.; Gleason, M. The influence of plant essential oils on in vitro growth of Pectobacterium and Dickeya spp. Bacteria. Acta Sci. Pol. Hortorum Cultus 2021, 20, 19–29. [Google Scholar] [CrossRef]
- Hosseini Nezhad, M.; Alamshahi, L.; Panjehkeh, N. Biocontrol efficiency of medicinal plants against Pectobacterium carotovorum, Ralstonia solanacearum, and Escherichia coli. Open Conf. Proc. J. 2012, 3, 46–51. [Google Scholar] [CrossRef]
- Kokoskova, B.; Pavela, R. Effectivity of essential oils against pectinolytic Erwinia chrysanthemi and Pseudomonas marginalis. Biocontrol of Bacterial Plant Diseases, 1st Symposium 2005. Mitt. Biol. Bundesanst. Land- Forstwirtsch. 2006, 408, 72. [Google Scholar]
- Hasslöf, P.; Hedberg, M.; Twetman, S.; Stecksén-Blicks, C. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli-an in vitro study. BMC Oral Health. 2010, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- McDonald, L.L.; Guy, R.H.; Speirs, R.D. Preliminary Evaluation of New Candidate Materials as Toxicants, Repellents and Attractants Against Stored Product Insects; Marketing Research Report No. 882; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1970.
- Srinives, P.; Somta, P.; Somta, C. Genetics and breeding of resistance to bruchids (Callosobruchus spp.) in Vigna crops: A review. NU Sci. J. 2007, 4, 1–17. [Google Scholar]
- Tong, F.; Coats, J.R. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl− uptake in American cockroach ventral nerve cord. Pestic. Biochem. Phys. 2010, 98, 317–324. [Google Scholar] [CrossRef]
- Kanda, D.; Kaur, S.; Koul, O. A comparative study of monoterpenoids and phenylpropanoids from essential oils against stored grain insects: Acute toxins or feeding deterrents. J. Pest Sci. 2017, 90, 531–545. [Google Scholar] [CrossRef]
- Lee, B.H.; Annis, P.C.; Tumaalii, F.A.; Lee, S.E. Fumigant toxicity of Eucalyptus blakely and Melaleuca fulgens essential oils and 1, 8-cineole against different development stages of the rice weevil Sitophilus oryzae. Phytoparasitica 2004, 32, 498–506. [Google Scholar] [CrossRef]
- Tapondjou, A.L.; Adler, C.F.D.A.; Fontem, D.A.; Bouda, H.; Reichmuth, C.H. Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. J. Stored. Prod. Res. 2005, 41, 91–102. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.T.; Feng, Y.X.; Zhang, D.; Guo, S.S.; Pang, X.; Geng, Z.-F.; Xi, C.; Du, S.S. Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind. Crops Prod. 2019, 140, 111640. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; II, C.S., Ed.; Allured Publishing Co.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Kiehlbauch, J.A.; Hannett, G.E.; Salfinger, M.; Archinal, W.; Monserrat, C.; Carlyn, C. Use of the National Committee for Clinical Laboratory Standards guidelines for disk diffusion susceptibility testing in New York state laboratories. J. Clin. Microbiol. 2000, 38, 3341–3348. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Ghavam, M.; Manca, M.L.; Manconi, M.; Bacchetta, G. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. Ex Benth. Sci. Rep. 2020, 10, 15647. [Google Scholar] [CrossRef]
- Tapondjou, L.A.; Adler, C.; Bouda, H.; Fontem, D.A. Bioefficacité des poudres et des huiles essentielles des feuilles de Chenopodium ambrosioides et Eucalyptus saligna à l’égard de la bruche du niébé, Callosobruchus maculatus Fab. (Coleoptera, Bruchidae). Cah. Agric. 2003, 12, 401–407. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Toudert-Taleb, K.; Hedjal-Chebheb, M.; Hami, H.; Kellouche, A.; Debras, J.F. Composition of essential oils extracted from six aromatic plants of Kabylian origin (Algeria) and evaluation of their bioactivity on Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Bruchidae). Afr. Entomol. 2014, 22, 417–427. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: London, UK, 1971; p. 350. [Google Scholar]
No. | RI | RT | Compound | Twigs (%) | Leaves (%) | Fruits (%) |
---|---|---|---|---|---|---|
Monoterpene hydrocarbons (MH) | 11.3 | 4.3 | 4.4 | |||
1 | 929 | 5.0423 | α-thujene | 0.1 | 0.1 | - |
2 | 937 | 5.2172 | α-pinene | 2.9 | 0.9 | 1.1 |
3 | 979 | 6.3057 | β-pinene | 0.1 | Tr | Tr |
4 | 1006 | 7.0926 | α-phellandrene | 0.2 | Tr | Tr |
5 | 1031 | 7.8445 | ortho-cymene | 7.5 | 3.3 | 3.3 |
6 | 1061 | 8.8587 | γ-terpinene | 0.5 | Tr | Tr |
Oxygenated monoterpenes (OM) | 82.2 | 93.7 | 95.5 | |||
7 | 1040 | 8.1243 | 1,8-cineole | 65.6 | 83.3 | 86.1 |
8 | 1113 | 10.8085 | endo-fenchol | 0.1 | 0.1 | Tr |
9 | 1140 | 11.7921 | trans-pinocarveol | 1.3 | 0.8 | Tr |
10 | 1163 | 12.7188 | pinocarvone | 0.5 | 0.2 | Tr |
11 | 1166 | 12.8412 | borneol | 0.1 | Tr | Tr |
12 | 1178 | 13.3309 | terpinen-4-ol | 1.1 | 1.5 | 1.7 |
13 | 1188 | 13.7636 | cis-pinocarveol | 0.8 | 0.7 | - |
14 | 1191 | 13.921 | α-terpineol | 3.6 | 4.6 | 3.5 |
15 | 1228 | 15.3899 | cis-carveol | 0.4 | Tr | Tr |
16 | 1231 | 15.521 | (Z)-ocimenone | 0.3 | Tr | Tr |
17 | 1287 | 17.8948 | thymol | 0.3 | Tr | Tr |
18 | 1301 | 18.533 | carvacrol | 0.3 | Tr | Tr |
19 | 1351 | 20.5439 | α-terpinyl acetate | 7.6 | 2.5 | 4.2 |
20 | 1396 | 22.5024 | (Z)-jasmone | 0.2 | Tr | Tr |
Sesquiterpene hydrocarbons (SH) | 2.5 | 0.6 | Tr | |||
21 | 1581 | 29.7636 | globulol | 2.0 | 0.6 | Tr |
22 | 1588 | 30.0478 | viridiflorol | 0.3 | Tr | Tr |
23 | 1598 | 30.4587 | rosifoliol | 0.2 | Tr | Tr |
Non-identified (other compounds) | 3.5 | 1.1 | Tr | |||
Identified compounds | 96 | 98 | 99.9 |
Inhibition Zone Diameter (IZD) (mm) * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Plant Parts | Twigs EO | Leaves EO | Fruits EO | Ampicillin ** | |||||||
Essential oils Concentrations | 1/2 (V/V) | 1/5 (V/V) | 1/10 (V/V) | 1/2 (V/V) | 1/5 (V/V) | 1/10 (V/V) | 1/2 (V/V) | 1/5 (V/V) | 1/10 (V/V) | 10 μg/disc | |
Bacterial strains | Dickeya dadantii CFBP 3855 | 11.69 ± 1.35 efgh | 11.52 ± 1.13 efghi | 9.14 ± 1.22 hij | 19.84 ± 1.7 c | 12.21 ± 1.27 efg | 8.72 ± 1.56 ij | 10.26 ± 0.87 fghij | 8.67 ± 1.37 ij | 8.01 ± 1.12 j | 31.15 ± 1.5 |
Dickeya solani CFBP 8199 | 27.85 ± 1.97 a | 13.31 ± 1.64 e | 11.8 ± 0.40 efgh | 22.30 ± 1.67 b | 12.88 ± 1.85 ef | 10.40 ± 1.49 fghij | 16.97 ± 2.07 d | 11.80 ± 1.19 efghi | 9.23 ± 1.33 ghij | 30.79 ± 1.3 | |
Pectobacterium carotovorum subsp. carotovorum CFBP 5387 | 10.98 ± 1.43 efghij | 9.9 ± 1.59 ghij | 9.15 ± 0.58 hij | 17.85 ± 2.87 d | 10.01 ± 2.05 ghij | 8.26± 1.20 j | 8.53 ± 1.80 j | 8.35 ± 1.27 j | 8.52 ± 1.5 j | 33.06 ± 1.9 |
Bacterial Strain | MIC (mg/mL) | |
---|---|---|
Fruits EO | Dickeya dadantii CFBP 3855 | >2 |
Dickeya solani CFBP 8199 | ≤2 | |
Pectobacterium carotovorum subsp. carotovorum CFBP 5387 | >2 | |
Twigs EO | Dickeya dadantii CFBP 3855 | >2 |
Dickeya solani CFBP 8199 | ≤2 | |
Pectobacterium carotovorum subsp. carotovorum CFBP 5387 | >2 | |
Leaves EO | Dickeya dadantii CFBP 3855 | >2 |
Dickeya solani CFBP 8199 | >2 | |
Pectobacterium carotovorum subsp. carotovorum CFBP 5387 | >2 |
Plant Parts | LD50 (µL/mL) (Min–Max) | LD95 (µL/mL) (Min–Max) | Fit of Probit Line | LT50 (Hours) (Min–Max) | |||
---|---|---|---|---|---|---|---|
χ2 | p. Value | Intercept | Slope ± SE | ||||
Leaves | 2.153 (0.000–4.580) | 12,647.893 (284.470–α) | 0.134 | 0.05 | 4.854 | 0.436 ± 0.21 | 85.735 (78.244–95.947) |
Twigs | 5.933 (4.421–8.069) | 153.825 (61.455–1075.994) | 3.431 | 0.05 | 4.100 | 1.163 ± 0.218 | 117.401 (101.475–143.982) |
Fruits | 5.986 (3.298–11.685) | 1958.130 (196.815–48,071.760) | 0.046 | 0.05 | 4.491 | 0.654 ± 0.211 | 15.282 (12.755–19.377) |
Plant Parts | LD50 (µL/mL) (Min–Max) | LD95 (µL/mL) (Min–Max) | Fit of Probit Line | LT50 (Hours) (Min–Max) | |||
---|---|---|---|---|---|---|---|
χ2 | p. Value | Intercept | Slope ± SE | ||||
Leaves | 4.444 (2.818–6.275) | 242.906 (73.329–5203.156) | 0.204 | 0.05 | 4.387 | 0.946 ± 0.215 | 90.562 (81.630–103.375) |
Twigs | 1.788 (0.840–2.631) | 45.643 (23.321–198.635) | 0.698 | 0.05 | 4.705 | 1.169 ± 0.233 | 64.197 (59.912–69.142) |
Fruits | 4.089 (2.206–6.082) | 427.538 (94.620–43,364.758) | 2.066 | 0.05 | 4.501 | 0.814 ± 0.213 | 93.971 (85.011–106.729) |
Plant Parts | Concentration (µL/mL) | McDonald Class (Mean ± SD) | |||
---|---|---|---|---|---|
2 | 4 | 8 | 16 | ||
Leaves | 35 ± 19.15 | 45 ± 19.15 | 57.5 ± 17.07 | 65 ± 10 | III (50.62 ± 4.34) |
Twigs | 30 ± 25.81 | 50 ± 11.55 | 60 ± 16.33 | 70 ± 11.55 | III (52.5 ± 6.73) |
Fruits | 25 ± 10 | 30 ± 11.55 | 35 ± 19.15 | 40 ± 0 | II (32.5 ± 7.87) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbaci, H.; Nabti, E.-h.; Al-Bekairi, A.M.; Hagras, S.A.A.; Salem-Bekhit, M.M.; Adjaoud, A.; Alzahrani, H.A.; Bensidhoum, L.; Alenazy, R.; Piras, A.; et al. Comparative Bioactivity Evaluation of Chemically Characterized Essential Oils Obtained from Different Aerial Parts of Eucalyptus gunnii Hook. f. (Myrtaceae). Molecules 2023, 28, 2638. https://doi.org/10.3390/molecules28062638
Abbaci H, Nabti E-h, Al-Bekairi AM, Hagras SAA, Salem-Bekhit MM, Adjaoud A, Alzahrani HA, Bensidhoum L, Alenazy R, Piras A, et al. Comparative Bioactivity Evaluation of Chemically Characterized Essential Oils Obtained from Different Aerial Parts of Eucalyptus gunnii Hook. f. (Myrtaceae). Molecules. 2023; 28(6):2638. https://doi.org/10.3390/molecules28062638
Chicago/Turabian StyleAbbaci, Hocine, El-hafid Nabti, Abdullah M. Al-Bekairi, Soheir A. A. Hagras, Mounir M. Salem-Bekhit, Abdenour Adjaoud, Hayat Ali Alzahrani, Leila Bensidhoum, Rawaf Alenazy, Alessandra Piras, and et al. 2023. "Comparative Bioactivity Evaluation of Chemically Characterized Essential Oils Obtained from Different Aerial Parts of Eucalyptus gunnii Hook. f. (Myrtaceae)" Molecules 28, no. 6: 2638. https://doi.org/10.3390/molecules28062638
APA StyleAbbaci, H., Nabti, E. -h., Al-Bekairi, A. M., Hagras, S. A. A., Salem-Bekhit, M. M., Adjaoud, A., Alzahrani, H. A., Bensidhoum, L., Alenazy, R., Piras, A., Falconieri, D., Porcedda, S., Benguerba, Y., & Houali, K. (2023). Comparative Bioactivity Evaluation of Chemically Characterized Essential Oils Obtained from Different Aerial Parts of Eucalyptus gunnii Hook. f. (Myrtaceae). Molecules, 28(6), 2638. https://doi.org/10.3390/molecules28062638