Recent Developments in Sonochemical Synthesis of Nanoporous Materials
Abstract
:1. Introduction
1.1. What Is Sonochemical Synthesis?
1.2. History of Sonochemistry
1.3. Sonochemical Equipment
1.4. Comparison of Ultrasound-Assisted and Other Mechanochemical Syntheses
1.5. Main Groups of Sonochemically Synthesized Nanoporous Materials
2. Sonochemical Synthesis, Properties, and Applications of Nanoporous Materials
2.1. Silicas and Organosilicas
2.2. Metal Oxides
2.3. Carbons
2.4. Metal—Organic Frameworks and Covalent-Organic Frameworks
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.A.; Jhung, S.H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 2015, 285, 11–23. [Google Scholar] [CrossRef]
- Li, Z.; Dong, J.; Zhang, H.; Zhang, Y.; Wang, H.; Cui, X.; Wang, Z. Sonochemical catalysis as a unique strategy for the fabrication of nano-/micro-structured inorganics. Nanoscale Adv. 2021, 3, 41–72. [Google Scholar] [CrossRef]
- Li, Z.; Dong, J.; Wang, L.; Zhang, Y.; Zhuang, T.; Wang, H.; Cui, X.; Wang, Z. A power-triggered preparation strategy of nano-structured inorganics: Sonosynthesis. Nanoscale Adv. 2021, 3, 2423–2447. [Google Scholar] [CrossRef] [PubMed]
- Skorb, E.V.; Möhwald, H.; Andreeva, D.V. Effect of cavitation bubble collapse on the modification of solids: Crystallization aspects. Langmuir 2016, 32, 11072–11085. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, S.A.; Kwak, M.; Kim, J.; Lee, T.G. Novel surfactant-free water dispersion technique of TiO2 NPs using focused ultrasound system. Nanomaterials 2021, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Chatel, G. Sonochemistry: New Opportunities for Green Chemistry; World Scientific Publishing Company: Singapore, 2016; Chapter 1. [Google Scholar]
- Pokhrel, N.; Vabbina, P.K.; Pala, N. Sonochemistry: Science and engineering. Ultrason. Sonochemistry 2016, 29, 104–128. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.H.; Doraiswamy, L.K. Sonochemistry: Science and engineering. Ind. Eng. Chem. Res. 1999, 38, 1215–1249. [Google Scholar] [CrossRef]
- Bhangu, S.K.; Ashokkumar, M. Theory of sonochemistry. Top. Curr. Chem. 2016, 374, 56. [Google Scholar] [CrossRef]
- Asgharzadehahmadi, S.; Raman, A.A.A.; Parthasarathy, R.; Sajjadi, B. Sonochemical reactors: Review on features, advantages and limitations. Renew. Sustain. Energy Rev. 2016, 63, 302–314. [Google Scholar] [CrossRef]
- Clark, E.J.; Macquarrie, D. Handbook of Green Chemistry and Technology; Blackwell Science Ltd.: Hoboken, NJ, USA, 2002; Chapter 16. [Google Scholar]
- Ley, S.V.; Low, C.M.R. Ultrasound in Synthesis; Springer Science & Business Media: Berlin, Germany, 2012; Chapter 2. [Google Scholar]
- Csoka, L.; Katekhaye, S.N.; Gogate, P.R. Comparison of cavitational activity in different configurations of sonochemical reactors using model reaction supported with theoretical simulations. Chem. Eng. 2011, 178, 384–390. [Google Scholar] [CrossRef]
- International Union of Pure and Applied Chemistry (IUPAC). The IUPAC Compendium of Chemical Terminology; International Union of Pure and Applied Chemistry (IUPAC): Research Triangle Park, NC, USA, 2019. [Google Scholar] [CrossRef]
- Szczęśniak, B.; Borysiuk, S.; Choma, J.; Jaroniec, M. Mechanochemical synthesis of highly porous materials. Mater. Horiz. 2020, 7, 1457–1473. [Google Scholar] [CrossRef]
- Suslick, K.S. Mechanochemistry and sonochemistry: Concluding remarks. Faraday Discuss. 2014, 170, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Boldyrev, V.V. Mechanochemistry and sonochemistry. Ultrason. Sonochemistry 1995, 2, 143–145. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Vetrivel, S.; Chen, C.T.; Kao, H.M. The ultrafast sonochemical synthesis of mesoporous silica MCM-41. New J. Chem. 2010, 34, 2109–2112. [Google Scholar] [CrossRef]
- Jabariyan, S.; Zanjanchi, M.A. A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM-41. Ultrason. Sonochemistry 2012, 19, 1087–1093. [Google Scholar] [CrossRef]
- Palani, A.; Wu, H.Y.; Ting, C.C.; Vetrivel, S.; Shanmugapriya, K.; Chiang, A.S.T.; Kao, H.M. Rapid temperature-assisted sonochemical synthesis of mesoporous silica SBA-15. Microporous Mesoporous Mater. 2010, 131, 385–392. [Google Scholar] [CrossRef]
- El-Fiqi, A.; Bakry, M. Facile and rapid ultrasound-mediated synthesis of spherical mesoporous silica submicron particles with high surface area and worm-like mesoporosity. Mater. Lett. 2020, 281, 128620. [Google Scholar] [CrossRef]
- Fan, J.; Du, P.; Wang, X.; Zheng, P.; Zhao, Z.; Duan, A.; Xu, C.; Li, J. Ultrasound-assisted synthesis of ordered mesoporous silica FDU-12 with a hollow structure. New J. Chem. 2018, 42, 2381–2384. [Google Scholar] [CrossRef]
- Sosa, N.; Chanlek, N.; Wittayakun, J. Facile ultrasound-assisted grafting of silica gel by aminopropyltriethoxysilane for aldol condensation of furfural and acetone. Ultrason. Sonochemistry 2020, 62, 104857. [Google Scholar] [CrossRef] [PubMed]
- Kuvayskaya, A.; Vasiliev, A. Functionalization of silica gel by ultrasound-assisted surface Suzuki coupling. Tetrahedron Lett. 2019, 60, 150937. [Google Scholar] [CrossRef]
- Karimi, B.; Ganji, N.; Pourshiani, O.; Thiel, W.R. Periodic mesoporous organosilicas (PMOs): From synthesis strategies to applications. Prog. Mater. Sci. 2022, 125, 100896. [Google Scholar] [CrossRef]
- Van Der Voort, P.; Esquivel, D.; De Canck, E.; Goethals, F.; Van Driessche, I.; Romero-Salguero, F.J. Periodic mesoporous organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem. Soc. Rev. 2013, 42, 3913–3955. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, P.; Linn, N.M.K.; Landskron, K. Ultrafast sonochemical synthesis of methane and ethane bridged periodic mesoporous organosilicas. Langmuir 2010, 26, 1147–1151. [Google Scholar] [CrossRef]
- Sung, T.L.; Pan, Y.C.; Kumaresan, L.; Vetrivel, S.; Kao, H.M. Ultrasonic mediated synthesis of hexagonal benzene-bridged periodic mesoporous organosilicas. Microporous Mesoporous Mater. 2012, 153, 79–87. [Google Scholar] [CrossRef]
- Deka, J.R.; Vetrivel, S.; Wu, H.Y.; Pan, Y.C.; Ting, C.C.; Tsai, Y.L.; Kao, H.M. Rapid sonochemical synthesis of MCM-41 type benzene-bridged periodic mesoporous organosilicas. Ultrason. Sonochemistry 2014, 21, 387–394. [Google Scholar] [CrossRef]
- Rekha, P.; Muhammad, R.; Mohanty, P. Sonochemical synthesis of cyclophosphazene bridged mesoporous organosilicas and their application in methyl orange, congo red and Cr(VI) removal. RSC Adv. 2015, 5, 67690–67699. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Zhang, Y.; Shi, J.; Stampfl, C.; Hunger, M.; Huang, J. Identification of vicinal silanols and promotion of their formation on mcm-41 via ultrasonic assisted one-step room-temperature synthesis for Beckmann rearrangement. Ind. Eng. Chem. Res. 2018, 57, 5550–5557. [Google Scholar] [CrossRef]
- Tang, X.; Liu, S.; Wang, Y.; Huang, W.; Sominski, E.; Palchik, O.; Koltypin, Y.; Gedanken, A. Rapid synthesis of high quality MCM-41 silica with ultrasound radiation. Chem. Commun. 2000, 21, 2119–2120. [Google Scholar] [CrossRef]
- Jafari, V.; Allahverdi, A.; Vafaei, M. Ultrasound-assisted synthesis of colloidal nanosilica from silica fume: Effect of sonication time on the properties of product. Adv. Powder Technol. 2014, 25, 1571–1577. [Google Scholar] [CrossRef]
- Lim, M.S.W.; Yang, T.C.K.; Tiong, T.J.; Pan, G.T.; Chong, S.; Yap, Y.H. Ultrasound-assisted sequentially precipitated nickel-silica catalysts and its application in the partial hydrogenation of edible oil. Ultrason. Sonochemistry 2021, 73, 105490. [Google Scholar] [CrossRef] [PubMed]
- Dharmarathna, S.; King’ondu, C.K.; Pedrick, W.; Pahalagedara, L.; Suib, S.L. Direct sonochemical synthesis of manganese octahedral molecular sieve (OMS-2) nanomaterials using cosolvent systems, their characterization, and catalytic applications. Chem. Mater. 2012, 24, 705–712. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, J.C. A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity. CChem. Commun. 2003, 6, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, D.N.; Chappel, S.; Palchik, O.; Zaban, A.; Gedanken, A. Sonochemical synthesis of mesoporous tin oxide. Langmuir 2002, 18, 4160–4164. [Google Scholar] [CrossRef]
- Srivastava, D.N.; Perkas, N.; Gedanken, A.; Felner, I. Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J. Phys. Chem. B 2002, 106, 1878–1883. [Google Scholar] [CrossRef]
- Yu, Z.; Zhu, S.; Li, Y.; Liu, Q.; Feng, C.; Zhang, D. Synthesis of SnO2 nanoparticles inside mesoporous carbon via a sonochemical method for highly reversible lithium batteries. Mater. Lett. 2011, 65, 3072–3075. [Google Scholar] [CrossRef]
- Ávila-López, M.A.; Luévano-Hipólito, E.; Torres-Martínez, L.M. CO2 adsorption and its visible-light-driven reduction using CuO synthesized by an eco-friendly sonochemical method. J. Photochem. Photobiol. A 2019, 382, 111933. [Google Scholar] [CrossRef]
- Majhi, A.; Pugazhenthi, G.; Shukla, A. Comparative study of ultrasound stimulation and conventional heating methods on the preparation of nanosized γ-Al2O3. Ind. Eng. Chem. Res. 2010, 49, 4710–4719. [Google Scholar] [CrossRef]
- Zolfaghari, A.; Ataherian, F.; Ghaemi, M.; Gholami, A. Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochim. Acta 2007, 52, 2806–2814. [Google Scholar] [CrossRef]
- Zuo, L.X.; Jiang, L.P.; Abdel-Halim, E.S.; Zhu, J.J. Sonochemical preparation of stable porous MnO2 and its application as an efficient electrocatalyst for oxygen reduction reaction. Ultrason. Sonochemistry 2017, 35, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhao, Y.J.; Wen, L.X.; Chen, J.F.; Lei, Z.G. Ultrasound-microwave-assisted synthesis of MnO2 supercapacitor electrode materials. Ind. Eng. Chem. Res. 2014, 53, 20116–20123. [Google Scholar] [CrossRef]
- Sun, S.; Wang, P.; Wu, Q.; Wang, S.; Fang, S. Template-free synthesis of mesoporous MnO2 under ultrasound irradiation for supercapacitor electrode. Mater. Lett. 2014, 137, 206–209. [Google Scholar] [CrossRef]
- Sankar, S.; Inamdar, A.I.; Im, H.; Lee, S.; Kim, D.Y. Template-free rapid sonochemical synthesis of spherical α-MnO2 nanoparticles for high-energy supercapacitor electrode. Ceram. Int. 2018, 44, 17514–17521. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Luo, H.; Hu, T.; Wang, F.; Liu, W. Ultrasound-assisted preparation of titania-alumina support with high surface area and large pore diameter by modified precipitation method. J. Alloys Compd. 2011, 509, 3430–3434. [Google Scholar] [CrossRef]
- Alammar, T.; Noei, H.; Wang, Y.; Mudring, A.V. Mild yet phase-selective preparation of TiO2 nanoparticles from ionic liquids—A critical study. Nanoscale 2013, 5, 8045–8055. [Google Scholar] [CrossRef]
- Troia, A.; Pavese, M.; Geobaldo, F. Sonochemical preparation of high surface area MgAl2O4 spinel. Ultrason. Sonochemistry 2009, 16, 136–140. [Google Scholar] [CrossRef]
- Stucchi, M.; Elfiad, A.; Rigamonti, M.; Khan, H.; Boffito, D.C. Water treatment: Mn-TiO2 synthesized by ultrasound with increased aromatics adsorption. Ultrason. Sonochemistry 2018, 44, 272–279. [Google Scholar] [CrossRef]
- Alammar, T.; Shekhah, O.; Wohlgemuth, J.; Mudring, A.V. Ultrasound-assisted synthesis of mesoporous β-Ni(OH)2 and NiO nano-sheets using ionic liquids. J. Mater. Chem. A 2012, 22, 18252–18260. [Google Scholar] [CrossRef]
- Cau, C.; Guari, Y.; Chave, T.; Larionova, J.; Nikitenko, S.I. Thermal and sonochemical synthesis of porous (Ce,Zr)O2 mixed oxides from metal β-diketonate precursors and their catalytic activity in wet air oxidation process of formic acid. Ultrason. Sonochemistry 2014, 21, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Zonarsaghar, A.; Mousavi-Kamazani, M.; Zinatloo-Ajabshir, S. Sonochemical synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage. Int. J. Hydrogen Energy 2022, 47, 5403–5417. [Google Scholar] [CrossRef]
- Srivastava, D.N.; Pol, V.G.; Palchik, O.; Zhang, L.; Yu, J.C.; Gedanken, A. Preparation of stable porous nickel and cobalt oxides using simple inorganic precursor, instead of alkoxides, by a sonochemical technique. Ultrason. Sonochemistry 2005, 12, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Shui, A.; Xu, L.; Cheng, X.; Liu, P.; Wang, H. Template-free sonochemical synthesis of hierarchically porous NiO microsphere. Ultrason. Sonochemistry 2014, 21, 1707–1713. [Google Scholar] [CrossRef]
- Mohamed, H.H. Sonochemical synthesis of ZnO hollow microstructure/reduced graphene oxide for enhanced sunlight photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. A 2018, 353, 401–408. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Mousavi-Kamazani, M. Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 2020, 46, 26548–26556. [Google Scholar] [CrossRef]
- Srivastava, D.N.; Perkas, N.; Seisenbaeva, G.A.; Koltypin, Y.; Kessler, V.G.; Gedanken, A. Preparation of porous cobalt and nickel oxides from corresponding alkoxides using a sonochemical technique and its application as a catalyst in the oxidation of hydrocarbons. Ultrason. Sonochemistry 2003, 10, 1–9. [Google Scholar] [CrossRef]
- Krishnan, C.V.; Chen, J.; Burger, C.; Chu, B. Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process. J. Phys. Chem. B 2006, 110, 20182–20188. [Google Scholar] [CrossRef] [PubMed]
- Aslani, A.; Bazmandegan-Shamili, A.; Kaviani, K. Sonochemical synthesis, characterization and optical analysis of some metal oxide nanoparticles (MO-NP; M = Ni, Zn and Mn). Phys. B Condens. Matter 2010, 405, 3972–3976. [Google Scholar] [CrossRef]
- Dhas, N.A.; Koltypin, Y.; Gedanken, A. Sonochemical preparation and characterization of ultrafine chromium oxide and manganese oxide powders. Chem. Mater. 1997, 9, 3159–3163. [Google Scholar] [CrossRef]
- Luévano-Hipólito, E.; Torres-Martínez, L.M. Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation. Mater. Sci. Eng. B 2017, 226, 223–233. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Gedanken, A. A template-free, sonochemical route to porous ZnO nano-disks. Microporous Mesoporous Mater. 2008, 110, 553–559. [Google Scholar] [CrossRef]
- Chen, S.; Kumar, R.V.; Gedanken, A.; Zaban, A. Sonochemical synthesis of crystalline nanoporous zinc oxide spheres and their application in dye-sensitized solar cells. Isr. J. Chem. 2001, 41, 51–54. [Google Scholar] [CrossRef]
- Xie, D.; Yuan, W.; Dong, Z.; Su, Q.; Zhang, J.; Du, G. Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance. Electrochim. Acta 2013, 92, 87–92. [Google Scholar] [CrossRef]
- Xie, D.; Chang, L.; Wang, F.; Du, G.; Xu, B. Ultrasound-assisted synthesis of macro-/mesoporous ZnO double-pyramids and their optical and photocatalytic properties. J. Alloys Compd. 2012, 545, 176–181. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Su, C.; Chen, X.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z. Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection. Sens. Actuators B Chem. 2020, 306, 127536. [Google Scholar] [CrossRef]
- Banerjee, P.; Chakrabarti, S.; Maitra, S.; Dutta, B.K. Zinc oxide nano-particles—Sonochemical synthesis, characterization and application for photo-remediation of heavy metal. Ultrason. Sonochemistry 2012, 19, 85–93. [Google Scholar] [CrossRef]
- Gupta, A.; Srivastava, R. Zinc oxide nanoleaves: A scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application. Ultrason. Sonochemistry 2018, 41, 47–58. [Google Scholar] [CrossRef]
- Gupta, A.; Srivastava, R. Mini submersible pump assisted sonochemical reactors: Large-scale synthesis of zinc oxide nanoparticles and nanoleaves for antibacterial and anti-counterfeiting applications. Ultrason. Sonochemistry 2019, 52, 414–427. [Google Scholar] [CrossRef]
- Altaf, A.R.; Teng, H.; Gang, L.; Adewuyi, Y.G.; Zheng, M. Effect of sonochemical treatment on thermal stability, elemental mercury (Hg0) removal, and regenerable performance of magnetic tea biochar. ACS Omega 2021, 6, 23913–23923. [Google Scholar] [CrossRef]
- Dong, D.; Zhang, Y.; Xiao, Y.; Wang, T.; Wang, J.; Pan, W. Synthesis of O-doped coal-based carbon electrode materials by ultrasound-assisted bimetallic activation for application in supercapacitors. Appl. Surf. Sci. 2020, 529, 147074. [Google Scholar] [CrossRef]
- Teng, Z.; Han, K.; Li, J.; Gao, Y.; Li, M.; Ji, T. Ultrasonic-assisted preparation and characterization of hierarchical porous carbon derived from garlic peel for high-performance supercapacitors. Ultrason. Sonochemistry 2020, 60, 104756. [Google Scholar] [CrossRef] [PubMed]
- Ghani, U.; Iqbal, N.; Aboalhassan, A.A.; Liu, B.; Aftab, T.; Zada, I.; Ullah, F.; Gu, J.; Li, Y.; Zhu, S.; et al. One-step sonochemical fabrication of biomass-derived porous hard carbons; towards tuned-surface anodes of sodium-ion batteries. J. Colloid Interface Sci. 2022, 611, 578–587. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Bai, P.; Xu, L. Ultrasound-assisted transformation from waste biomass to efficient carbon-based metal-free pH-universal oxygen reduction reaction electrocatalysts. Ultrason. Sonochemistry 2020, 65, 105048. [Google Scholar] [CrossRef] [PubMed]
- Pol, V.G.; Shrestha, L.K.; Ariga, K. Tunable, functional carbon spheres derived from rapid synthesis of resorcinol-formaldehyde resins. ACS Appl. Mater. Interfaces 2014, 6, 10649–10655. [Google Scholar] [CrossRef]
- Gao, S.; Ge, L.; Villacorta, B.S.; Rufford, T.E.; Zhu, Z. Carbon monoliths by assembling carbon spheres for gas adsorption. Ind. Eng. Chem. Res. 2019, 58, 4957–4969. [Google Scholar] [CrossRef]
- Liu, W.; Tang, Y.; Sun, Z.; Gao, S.; Ma, J.; Liu, L. A simple approach of constructing sulfur-containing porous carbon nanotubes for high-performance supercapacitors. Carbon 2017, 115, 754–762. [Google Scholar] [CrossRef]
- Skrabalak, S.E. Ultrasound-assisted synthesis of carbon materials. Phys. Chem. Chem. Phys. 2009, 11, 4930–4942. [Google Scholar] [CrossRef]
- Skrabalak, S.E.; Suslick, K.S. Porous carbon powders prepared by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 2006, 128, 12642–12643. [Google Scholar] [CrossRef] [Green Version]
- Bang, J.H.; Han, K.; Skrabalak, S.E.; Kim, H.; Suslick, K.S. Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. J. Phys. Chem. C 2007, 111, 10959–10964. [Google Scholar] [CrossRef]
- Jung, D.S.; Hwang, T.H.; Lee, J.H.; Koo, H.Y.; Shakoor, R.A.; Kahraman, R.; Jo, Y.N.; Park, M.S.; Choi, J.W. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Lett. 2014, 14, 4418–4425. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Tian, Y.; Bai, S.; Zhang, C.; Wu, X. Nitrogen-doped porous carbon nanosheets for high-performance supercapacitors. J. Energy Storage 2021, 44, 103492. [Google Scholar] [CrossRef]
- Amali, A.J.; Sun, J.K.; Xu, Q. From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem. Commun. 2014, 50, 1519–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, Y.S.; Park, M.H.; Hong, S.J.; Lee, M.E.; Park, Y.W.; Jin, H.J. Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3684–3690. [Google Scholar] [CrossRef]
- El-Khodary, S.A.; Abomohraa, A.E.F.; El-Enanyd, G.M.; Aboalhassane, A.A.; Ng, D.H.L.; Wang, S.; Lian, J. Sonochemical assisted fabrication of 3D hierarchical porous carbon for high-performance symmetric supercapacitor. Ultrason. Sonochemistry 2019, 58, 104617. [Google Scholar] [CrossRef]
- Kim, T.W.; Kim, M.J.; Chae, H.J.; Ha, K.S.; Kim, C.U. Ordered mesoporous carbon supported uniform rhodium nanoparticles as catalysts for higher alcohol synthesis from syngas. Fuel 2015, 160, 393–403. [Google Scholar] [CrossRef]
- Jiang, X.; Xia, H.; Zhang, L.; Peng, J.; Cheng, S.; Shu, J.; Li, C.; Zhang, Q. Ultrasound and microwave-assisted synthesis of copper-activated carbon and application to organic dyes removal. Powder Technol. 2018, 338, 857–868. [Google Scholar] [CrossRef]
- Ching, T.W.; Haritos, V.; Tanksale, A. Ultrasound-assisted conversion of cellulose into hydrogel and functional carbon material. Cellulose 2018, 25, 2629–2645. [Google Scholar] [CrossRef]
- Atkinson, J.D.; Fortunato, M.E.; Dastgheib, S.A.; Rostam-Abadi, M.; Rood, M.J.; Suslick, K.S. Synthesis and characterization of iron-impregnated porous carbon spheres prepared by ultrasonic spray pyrolysis. Carbon 2011, 49, 587–598. [Google Scholar] [CrossRef]
- Wang, X.; Mu, P.; Zhang, C.; Chen, Y.; Zeng, J.; Wang, F.; Jiang, J.X. Control synthesis of tubular hyper-cross-linked polymers for highly porous carbon nanotubes. ACS Appl. Mater. Interfaces 2017, 9, 20779–20786. [Google Scholar] [CrossRef]
- Shan, Y.; Yang, W.; Li, Y.; Chen, H.; Liu, Y. Removal of elemental mercury from flue gas using microwave/ultrasound-activated Ce–Fe magnetic porous carbon derived from biomass straw. Energy Fuels 2019, 33, 8394–8402. [Google Scholar] [CrossRef]
- Guo, D.C.; Li, W.C.; Dong, W.; Hao, G.P.; Xu, Y.Y.; Lu, A.H. Rapid synthesis of foam-like mesoporous carbon monolith using an ultrasound-assisted air bubbling strategy. Carbon 2013, 62, 322–329. [Google Scholar] [CrossRef]
- Qiao, H.; Chen, K.; Luo, L.; Fei, Y.; Cui, R.; Wei, Q. Sonochemical synthesis and high lithium storage properties of Sn/CMK-3 nanocomposites. Electrochim. Acta 2015, 165, 149–154. [Google Scholar] [CrossRef]
- Gong, K.; Hu, Q.; Yao, L.; Li, M.; Sun, D.; Shao, Q.; Qiu, B.; Gu, Z. Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr(VI) removal from wastewater. ACS Sustain. Chem. Eng. 2018, 6, 7283–7291. [Google Scholar] [CrossRef]
- Ramya, A.V.; Thomas, R.; Balachandran, M. Mesoporous onion-like carbon nanostructures from natural oil for high-performance supercapacitor and electrochemical sensing applications: Insights into the post-synthesis sonochemical treatment on the electrochemical performance. Ultrason. Sonochemistry 2021, 79, 105767. [Google Scholar] [CrossRef]
- Jung, D.W.; Yang, D.A.; Kim, J.; Kim, J.; Ahn, W.S. Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Trans. 2010, 39, 2883–2887. [Google Scholar] [CrossRef]
- Kim, J.; Yang, S.T.; Choi, S.B.; Sim, J.; Kim, J.; Ahn, W.S. Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J. Mater. Chem. 2011, 21, 3070–3076. [Google Scholar] [CrossRef]
- Yu, K.; Lee, Y.R.; Seo, J.Y.; Baek, K.Y.; Chung, Y.M.; Ahn, W.S. Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: Enhancement in catalytic and adsorption properties. Microporous Mesoporous Mater. 2021, 316, 110985. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Morsali, A. Ultrasonic-assisted linker exchange (USALE): A novel post-synthesis method for controlling the functionality, porosity, and morphology of MOFs. Chem. Eur. J. 2019, 25, 10876–10885. [Google Scholar] [CrossRef]
- Bergaoui, M.; Khalfaoui, M.; Awadallah-F, A.; Al-Muhtaseb, S. A review of the features and applications of ZIF-8 and its derivatives for separating CO2 and isomers of C3- and C4- hydrocarbons. J. Nat. Gas Sci. Eng. 2021, 96, 104289. [Google Scholar] [CrossRef]
- Ho, P.H.; Salles, F.; Di Renzo, F.; Trens, P. One-pot synthesis of 5-FU@ZIF-8 and ibuprofen@ZIF-8 nanoparticles. Inorg. Chim. Acta 2020, 500, 119229. [Google Scholar] [CrossRef]
- Cho, H.Y.; Kim, J.; Kim, S.N.; Ahn, W.S. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater. 2013, 169, 180–184. [Google Scholar] [CrossRef]
- Yao, B.; Lua, S.K.; Lim, H.S.; Zhang, Q.; Cui, X.; White, T.J.; Ting, V.P.; Dong, Z. Rapid ultrasound-assisted synthesis of controllable Zn/Co-based zeolitic imidazolate framework nanoparticles for heterogeneous catalysis. Microporous Mesoporous Mater. 2021, 314, 110777. [Google Scholar] [CrossRef]
- Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal organic frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochemistry 2019, 52, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Safarifard, V.; Morsali, A. Applications of ultrasound to the synthesis of nanoscale metal-organic coordination polymers. Coord. Chem. Rev. 2015, 292, 1–14. [Google Scholar] [CrossRef]
- Yang, S.T.; Kim, J.; Cho, H.Y.; Kim, S.; Ahn, W.S. Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv. 2012, 2, 10179–10181. [Google Scholar] [CrossRef]
- Duan, K.; Wang, J.; Zhang, Y.; Liu, J. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J. Membr. Sci. 2019, 572, 588–595. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; Shao, Y.; Peng, L.; Zhang, Q.; Zhou, T.; Xiang, Y.; Ye, N. Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids. Microchim. Acta 2019, 186, 650. [Google Scholar] [CrossRef]
- Zhao, W.; Yan, P.; Yang, H.; Bahri, M.; James, A.M.; Chen, H.; Liu, L.; Li, B.; Pang, Z.; Clowes, R.; et al. Using sound to synthesize covalent organic frameworks in water. Nat. Synth. 2022, 1, 87–95. [Google Scholar] [CrossRef]
- Szczęśniak, B.; Choma, J.; Jaroniec, M. Development of activated graphene-MOF composites for H2 and CH4 adsorption. Adsorption 2019, 25, 521–528. [Google Scholar] [CrossRef]
- Szczęśniak, B.; Choma, J.; Jaroniec, M. Tailoring surface and structural properties of composite materials by coupling Pt-decorated graphene oxide and ZIF-8-derived carbon. Appl. Surf. Sci. 2018, 459, 760–766. [Google Scholar] [CrossRef]
- Son, W.J.; Kim, J.; Kim, J.; Ahn, W.S. Sonochemical synthesis of MOF-5. Chem. Commun. 2008, 47, 6336–6338. [Google Scholar] [CrossRef] [PubMed]
- Sargazi, G.; Afzali, D.; Daldosso, N.; Kazemian, H.; Chauhan, N.P.S.; Sadeghian, Z.; Tajerian, T.; Ghafarinazari, A.; Mozafari, M. A systematic study on the use of ultrasound energy for the synthesis of nickel–metal organic framework compounds. Ultrason. Sonochemistry 2015, 27, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Yang, S.T.; Kim, J.; Ahn, W.S. Sonochemical synthesis of Cu3(BTC)2 in a deep eutectic mixture of choline chloride/dimethylurea. Bull. Korean Chem. Soc. 2011, 32, 2783–2786. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.A.; Cho, H.Y.; Kim, J.; Yang, S.T.; Ahn, W.S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 2012, 5, 6465–6473. [Google Scholar] [CrossRef]
- Israr, F.; Kim, D.K.; Kim, Y.; Oh, S.J.; Ng, K.C.; Chun, W. Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition. Ultrason. Sonochemistry 2016, 29, 186–193. [Google Scholar] [CrossRef]
- Tran, B.L.; Chin, H.Y.; Chang, B.K.; Chiang, A.S.T. Dye adsorption in ZIF-8: The importance of external surface area. Microporous Mesoporous Mater. 2019, 277, 149–153. [Google Scholar] [CrossRef]
- Lee, Y.R.; Jang, M.S.; Cho, H.Y.; Kwon, H.J.; Kim, S.; Ahn, W.S. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 2015, 271, 276–280. [Google Scholar] [CrossRef]
- Ghorbani, H.; Ghahramaninezhad, M.; Shahrak, M.N. The effect of organic and ionic liquid solvents on structure crystallinity and crystallite size of ZIF-8 for CO2 uptake. J. Solid State Chem. 2020, 289, 121512. [Google Scholar] [CrossRef]
- Burgaz, E.; Erciyes, A.; Andac, M.; Andac, O. Synthesis and characterization of nano-sized metal organic framework-5 (MOF-5) by using consecutive combination of ultrasound and microwave irradiation methods. Inorg. Chim. Acta 2019, 485, 118–124. [Google Scholar] [CrossRef]
- Khan, N.A.; Jhung, S.H. Facile syntheses of metal-organic framework Cu3(BTC)2(H2O)3 under ultrasound. Bull. Korean Chem. Soc. 2009, 30, 2921–2926. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Qiu, L.G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.Y.; Jiang, X. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 2009, 63, 78–80. [Google Scholar] [CrossRef]
- Loera-Serna, S.; Núñez, L.L.; Flores, J.; López-Simeon, R.; Beltrán, H.I. An alkaline one-pot metathesis reaction to give a [Cu3(BTC)2] MOF at r.t., with free Cu coordination sites and enhanced hydrogen uptake properties. RSC Adv. 2013, 3, 10962–10972. [Google Scholar] [CrossRef]
- Khan, N.A.; Haque, M.M.; Jhung, S.H. Accelerated syntheses of porous isostructural lanthanide-benzenetricarboxylates (Ln–BTC) under ultrasound at room temperature. Eur. J. Inorg. Chem. 2010, 2010, 4975–4981. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Masoomi, M.Y.; Morsali, A. Morphology-dependent sensing performance of dihydro-tetrazine functionalized MOF toward Al(III). Ultrason. Sonochemistry 2018, 41, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jin, L.N.; Sun, W.Y. Coordination modulation induced and ultrasonic-assisted synthesis of size-controlled microporous metal-imidazolate framework crystals with enhanced adsorption performance. CrystEngComm 2013, 15, 8250–8254. [Google Scholar] [CrossRef]
- Joharian, M.; Morsali, A. Ultrasound-assisted synthesis of two new fluorinated metal-organic frameworks (F-MOFs) with the high surface area to improve the catalytic activity. J. Solid State Chem. 2019, 270, 135–146. [Google Scholar] [CrossRef]
- Masoomi, M.Y.; Bagheri, M.; Morsali, A. Porosity and dye adsorption enhancement by ultrasonic synthesized Cd(II) based metal-organic framework. Ultrason. Sonochemistry 2017, 37, 244–250. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Rizvandi, M. Influence of the ultrasound-assisted synthesis of Cu-BTC metal-organic frameworks nanoparticles on uptake and release properties of rifampicin. Ultrason. Sonochemistry 2018, 40, 465–471. [Google Scholar] [CrossRef]
- Abazari, R.; Mahjoub, A.R. Ultrasound-assisted synthesis of zinc(II)-based metal organic framework nanoparticles in the presence of modulator for adsorption enhancement of 2,4-dichlorophenol and amoxicillin. Ultrason. Sonochemistry 2018, 42, 577–584. [Google Scholar] [CrossRef]
- Xiao, L.; Yao, S.; Liu, J.; Zou, H.; Xu, Y.; Cao, Y.; Chen, C. Efficient ultrasonic synthesis of Ni-based metal-organic framework for high performance battery-type supercapacitor electrodes. Energy Technol. 2022, 10, 2100350. [Google Scholar] [CrossRef]
- Duan, L.; Wang, C.; Zhang, W.; Ma, B.; Deng, Y.; Li, W.; Zhao, D. Interfacial assembly and applications of functional mesoporous materials. Chem. Rev. 2021, 121, 14349–14429. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Y.; Zeng, L.; Li, X.; Chen, N.; Bai, S.; He, H.; Wang, Q.; Zhang, C. A review on mechanochemistry: Approaching advanced energy materials with greener force. Adv. Mater. 2022, 34, 2108327. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ding, Y.; Yan, D.; Huang, J.; Peng, S. Synthesis of MXene and its application for zinc-ion storage. SusMat 2022, 2, 293–318. [Google Scholar] [CrossRef]
- Liu, H.; Syama, L.; Zhang, L.; Lee, C.; Liu, C.; Dai, Z.; Yan, Q. High-entropy alloys and compounds for electrocatalytic energy conversion applications. SusMat 2021, 1, 482–505. [Google Scholar] [CrossRef]
Sample | SSA [m2/g] | Application | Ultrasound Treatment | Ref. |
---|---|---|---|---|
Silicas | ||||
MCM-41 * | 1662 (1130) | Not reported | 5 min/(200 W)/water | [20] |
spherical mesoporous silica particles * | 1544 (1014) | Not reported | 20 min/(250 W)/methanol | [23] |
MCM-41 | 1325 | Not reported | 30 min/60 °C/ethanol | [21] |
MCM-41 | 1228 | Catalytic cyclohexanone oxime conversion | 30 min/(300 W)/water | [33] |
FDU-12-T | 958 | Not reported | 8 h/(100 W)/hydrochloric acid | [24] |
MCM-41 | 931 | Not reported | 3.5 h/-/water | [34] |
SBA-15 | 717 | Not reported | 1 h/80 °C/hydrochloric acid-water | [22] |
colloidal nanosilica | 369 | Not reported | 60 min/(30 W)/sodium hydroxide | [35] |
nickel-silica catalyst | 289 | Hydrogenation of edible oil | 10 min/-/- | [36] |
manganese octahedral molecular sieve | 267 | Catalytic benzyl alcohol oxidation | 3 h/55 °C/nitric acid-water | [37] |
Organosilicas | ||||
methane bridged PMO | 1390 | Not reported | 30 min/25 °C/ammonia–water | [29] |
benzene-bridged MCM-41 | 1237 | Not reported | 5 min/(200 W)/ammonia | [31] |
ethane bridged PMO | 1201 | Not reported | 30 min/25 °C/ammonia–water | [29] |
benzene bridged PMO | 1097 | Not reported | 1 h/85 °C(200 W)/hydrochloric acid-water | [30] |
cyclophosphazene-bridged PMO | 974 | Adsorption of methyl orange, Congo Red and Cr(VI) | 1 h/(300 W)/sodium hydroxide-water | [32] |
Sample | SSA [m2/g] | Application | Ultrasound Treatment | Ref. |
---|---|---|---|---|
TiO2 | 622 | Photocatalytic degradation of a volatile organic compound | 3 h/-/ethanol-water | [39] |
SnO2 | 433 | Dye-sensitized solar cells | 3 h/(100 W)/ammonia-water | [40] |
SnO2 | 362 | Lithium batteries | 6 h/25 °C/sulfuric acid-ethanol | [42] |
CuO | 351 | CO2 adsorption | 37 min/(100 W)/water | [43] |
MnO2 | 301 | Supercapacitors | 566 min/45 °C/water | [45] |
TiO2–Al2O3 | 296 | Not reported | 4 h/40 °C (100 W)/ammonia | [50] |
TiO2 | 292 | Photocatalytic degradation of methyl orange | 9 h/25 °C (40 W)/water | [51] |
γ-Fe2O3 | 274 | Catalytic conversion of cyclohexane | 3 h/(100 W)/ethanol-ammonia-water | [41] |
MnO2 | 269 | Oxygen reduction reaction | 20 min/(750 W)/water | [46] |
MgAl2O4 | 267 | Not reported | 8 h/(750 W)/water | [52] |
MnO2 | 245 | Supercapacitors | 30 min/40 °C (400 W)/ethanol | [47] |
MnO2 | 192 | Supercapacitors | 1 h/25 °C (400 W)/water-ethanol | [48] |
MnO2 | 168 | Supercapacitors | 30 min/80 °C/water | [49] |
Mn-TiO2 | 162 | Adsorption of aromatics | 3.5 h/80 °C/ethanol-nitric acid | [53] |
NiO | 141 | Supercapacitors | 17 h/25 °C (60 W)/ionic liquid | [54] |
mixed Ce, Zr oxides | 132 | Catalytic oxidation of formic acid | 3 h/200 °C (750 W)/oleylamine | [55] |
CeVO4 | 109 | Electrochemical hydrogen storage | 30 min/200 W/water | [56] |
NiO | 104 | Not reported | 3 h/25 °C/ethanol-water | [57] |
NiO | 103 | Not reported | 80 min/80 °C/water | [58] |
ZnO | 86 | Photocatalytic degradation of organic pollutants | 30 min/50 °C (60 W)/methanol-dimethyl formamide | [59] |
CeO2 | 75 | Electrochemical storage of hydrogen | 15 min/(50 W)/hydrazine | [60] |
Co3O4 | 72 | Catalytic oxidation of hydrocarbons | 3 h/70–80 °C/ethanol-water | [61] |
Co3O4 | 70 | Not reported | 3 h/25 °C/ethanol-water | [57] |
MoO3 | 55 | Not reported | 5 h/70 °C/water | [62] |
MnO | 53 | Not reported | 1 h/(45 W)/ethanol-water | [63] |
Mn2O3 | 48 | Not reported | 3 h/(600 W)/water | [64] |
ZnO | 40 | Not reported | 1 h/(45 W)/ethanol-water | [63] |
NiO | 39 | Catalytic oxidation of hydrocarbons | 3 h/70–80 °C/ethanol-water | [61] |
ZnO | 37 | Photocatalytic H2 generation | 30 min/(150 W)/ethanol-water | [65] |
ZnO | 35 | Not reported | 3 h/-/water-dimethylformamide (DMF) | [66] |
Cr2O3 | 35 | Not reported | 3 h/(600 W)/water | [64] |
ZnO | 34 | Dye-sensitized solar cells | 2 h/-/water–dimethylformamide | [67] |
NiO | 33 | Not reported | 1 h/(45 W)/ethanol-water | [63] |
NiO | 31 | Lithium-storage | 40 min/(100 W)/- | [68] |
ZnO | 25 | Photocatalytic degradation of Rhodamine B and methyl orange | 35 min/25 °C (60 W)/- | [69] |
WO3 | 16 | Triethylamine detection | (I) 1 h/(100 W)/hydrochloric acid- hydrogen peroxide (II) 2.5 h/(80 W)/hydrochloric acid- hydrogen peroxide | [70] |
ZnO | 16 | Photo-remediation of heavy metal | 2 h/25 °C/2-propanol-water | [71] |
ZnO | 15 | Antibacterial applications | 2 h/60 °C (200 W)/sodium hydroxide | [72] |
ZnO | 11 | Antibacterial and anti-counterfeiting applications | 2 h/50 °C (200 W)/sodium hydroxide-water | [73] |
Sample/Description | SSA [m2/g] | Application | Ultrasound Treatment | Ref. |
---|---|---|---|---|
GBPC-6/garlic peel-derived activated carbon | 3887 | Supercapacitors | 30 min/65 °C/potassium hydroxide | [76] |
AC-20/coal-based activated carbon | 2329 | Supercapacitors | 20 min/(400 W)/water | [75] |
NCS-800/anionic polyacrylamide-derived carbon nanosheets | 1962 | Supercapacitors | 10 min/-/water | [86] |
S-ZC-800/ZIF-8-derived carbon | 1955 | Supercapacitors | 2 min/25 °C (100 W)/methanol | [87] |
ANDC-800-10/biochar-derived activated carbon | 1949 | Oxygen reduction reaction | 10 min/(200 W)/water | [78] |
HP-CNS/coffee wastes grounds-derived activated carbon | 1946 | Supercapacitors | -/-/dimethylformamide | [88] |
AC-950/commercial activated carbon-derived activated carbon | 1894 | Supercapacitors | 3 h/-/potassium hydroxide | [89] |
SN-CMK-9/type of ordered mesoporous carbon | 1725 | Catalytic synthesis of higher alcohol from syngas | 20 min/25 °C/ethanol | [90] |
PCNTs-5/sulfonated polydivinylbenzene nanotubes- derived carbon nanotubes | 1700 | Supercapacitors | 30 min/-/potassium hydroxide-water | [81] |
PHC-1/raw chickpea husk-derived activated carbon | 1599 | Sodium-ion batteries | 30 min/70 °C (1260 W)/potassium hydroxide-water | [77] |
ACDCS75/activated carbon discs from carbon spheres and mesophase pitch | 1338 | CO2, CH4 adsorption | 30 min/-/ethanol | [80] |
Cu-AC/copper-activated carbon from spent activated carbon | 1160 | Adsorption of methylene orange and Congo Red | 3 h/(1200 W)/water | [91] |
1.0MCC800/cellulose-derived activated carbon | 917 | Adsorption of methylene blue | 2 h/25 °C/water | [92] |
CS900/resorcinol-formaldehyde resins-derived carbon spheres | 952 | Supercapacitors | 4 min/25 °C/ammonia-ethanol-water | [79] |
SN-CMK-8/type of ordered mesoporous carbon | 919 | Catalytic synthesis of higher alcohol from syngas | 20 min/25 °C/ethanol | [90] |
HPC/sucrose-derived activated carbon | 807 | Lithium−sulfur battery | -/-/water | [85] |
Fe–C/sucrose-derived iron-impregnated carbon spheres | 800 | Catalytic Cr(VI) reduction | -/-/water | [93] |
PC-I/lithium dichloroacetate-derived carbon | 719 | Electrocatalysts for fuel cells | -/-/water | [84] |
PCNT-B/ carbon nanotubes | 718 | Supercapacitors | 2 h/25 °C/1,2-dichloroethane | [94] |
LiDCA/ organic salts-derived activated carbon | 710 | Not reported | -/-/water | [83] |
CeFe6%(3/5)/MSWU700/ biomass straw-derived activated carbon | 686 | Hg0 adsorption | 40 min/40 °C/water | [95] |
FMCM-U/ foam-like carbon monolith | 678 | Supercapacitors | 20 min/90 °C (100 W)/ethanol-water | [96] |
Sn/CMK-3/ type of ordered mesoporous carbon | 624 | Lithium-ion batteries | 2 h/25 °C/water | [97] |
TUF0.46/ waste tea feedstock-derived activated carbon | 196 | Magnetic sorbent for Hg0 removal | 2 h/80 °C/water | [74] |
UMC/ sludge-derived activated carbon | 131 | Magnetic sorbent for Cr(VI) removal | 30 min/(800 W)/- | [98] |
OLCs/ paraffin oil-derived activated carbon | 101 | Supercapacitors | 15 min/60 °C/dimethylformamide | [99] |
Sample | SSA [m2/g] | Application | Ultrasound Treatment | Ref. |
---|---|---|---|---|
Metal-organic frameworks | ||||
MOF-177 | 4898 | CO2 adsorption | 40 min/(300 W)/1-methyl-2-pyrrolidone | [100] |
CuTATB-60 | 3811 | CO2 adsorption | 1 h/(300 W)/N,N-diethylformamide | [101] |
S-MOF-5 | 3208 (Langmuir) | Not reported | 30 min/100 °C/1-methyl-2-pyrrolidone | [118] |
SIRMOF-60 | 2749 | Not reported | 1 h/(300 W)/N,N-diethylformamide | [101] |
S-MOF-525 | 2557 | Catalysis of dimethyl-4-nitrophenyl phosphate (DMNP) and adsorption of bisphenol A | 3 h/(150 W)/dimethylformamide | [102] |
S-MOF-545 | 2248 | Catalysis of dimethyl-4-nitrophenyl phosphate (DMNP) and adsorption of bisphenol A | 30 min/(300 W)/dimethylformamide | [102] |
Ni-MOF | 2021 | Not reported | 38 min/45 °C (200 W)/ethanol | [117] |
ZIF-8 | 1832 | Drug encapsulation | 1 h/30 °C (90 W)methanol | [105] |
S-CuBTC | 1771 | CO2 adsorption | 1 h/145 °C (150 W)/choline chloride-1,3-dimethylurea | [118] |
Mg-MOF-74(S) | 1690 | CO2 adsorption | 1 h/(500 W)/dimethylformamide-ethanol- water | [119] |
ZIF-67 | 1482 | Catalytic Rhodamine B and peroxymonosulfate degradation | 16 min/25 °C/methanol | [107] |
ZIF-8 | 1454 | Knoevenagel condensation reaction | -/(300 W)/dimethylformamide | [106] |
Cu-BTCDMF | 1430 | Not reported | 2 h/(300 W)/dimethylformamide | [120] |
ZIF-8 | 1414 | Catalytic Rhodamine B and peroxymonosulfate degradation | 16 min/25 °C/methanol | [107] |
ZIF-8 | 1285 | Adsorption of Rhodamine B and methyl orange | 10 min/(200 W)/ammonium hydroxide | [121] |
ZIF-8 | 1249 | Knoevenagel condensation reaction | 1 h/(300 W)/dimethylformamide | [122] |
A-ZIF-8 | 1221 | CO2 adsorption | 10 min/40 °C/2-methylimidazole | [123] |
MOF-5 | 1203 | Not reported | 5 min/25 °C/dimethylformamide | [124] |
Cu3(BTC)2(H2O)3 | 1156 | Not reported | 1 min/25 °C/dimethylformamide-ethanol-water | [125] |
Cu3(BTC)2(H2O)3(60) | 1100 | H2 adsorption | 1 h/(60 W)/dimethylformamide-ethanol-water-cupric acetate dihydrate | [126] |
[Cu3(BTC)2] | 891 | H2 adsorption | 20 min/-/ethanol-water | [127] |
USALE-TMU34 | 830 | Catalysis of nitroaldol and adsorption of Congo Red | 160 min/25 °C/dimethylformamide | [103] |
IL-ZIF-8 | 705 | CO2 adsorption | 6 min/40 °C/2-methylimidazole | [123] |
Tb–BTC | 678 | Luminescence | 20 min/25 °C/dimethylformamide | [128] |
TMU-34-F | 560 | Detection of Al(III) | 160 min/(300 W)/dimethylformamide | [129] |
nano-[Cu(1,4-di(1H-imidazol-4-yl)benzene)] | 417 | CO2, CH4, and H2 adsorption | 10 min/25 °C/ethanol-water-ammonia | [130] |
HTMU-55 | 403 | Henry reaction | 60 min/(12 W)/dimethylformamide | [131] |
TMU-55 | 400 | Henry reaction | 60 min/(12 W)/dimethylformamide | [131] |
TMU-7 | 393 | Congo Red adsorption | 90 min/-/dimethylformamide | [132] |
Cu-BTC | 376 | Adsorption of rifampicin | 1 h/(350 W)/ethanol | [133] |
[Zn(TDC)(4-BPMH)]n·n(H2O) | 235 | Adsorption of 2,4-dichlorophenol (24-DCP) and amoxicillin (AMX) | 90 min/50 °C (30 W)/ethanol-water | [134] |
Ni-MOF-2h | 86 | Supercapacitors | 2 h/-/dimethylformamide | [135] |
Covalent-organic frameworks | ||||
COF-5 | 2122 | Not reported | 1 h/114 °C/mesitylene-1,4-dioxane | [110] |
COF-1 | 2059 | Photocatalytic H2 evolution | 1 h/(550 W)/acetic acid | [113] |
COF-2 | 1890 | Photocatalytic H2 evolution | 1 h/(550 W)/acetic acid | [113] |
COF-3 | 1587 | Photocatalytic H2 evolution | 1 h/(550 W)/acetic acid | [113] |
COF-5 | 1746 | Photocatalytic H2 evolution | 1 h/(550 W)/acetic acid | [113] |
COF-4 | 1425 | Photocatalytic H2 evolution | 1 h/(550 W)/acetic acid | [113] |
COF-6 | 1013 | Photocatalytic H2 evolution | 1 h/(550 W)/acetic acid | [113] |
COF-7 | 940 | Photocatalytic H2 evolution | 1 h/(550 W)/acetic acid | [113] |
COF-1 | 732 | Not reported | 1 h/119 °C/mesitylene-1,4-dioxane | [110] |
TpPa-1/ Tp = 1,3,5-triformylphloroglucinol; Pa-1 = 1,4-phenylenediamine | 127 | Chromatography | 1 h 5 min/15–25 °C/ethanol-tetrahydrofuran (THF) | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules 2023, 28, 2639. https://doi.org/10.3390/molecules28062639
Głowniak S, Szczęśniak B, Choma J, Jaroniec M. Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules. 2023; 28(6):2639. https://doi.org/10.3390/molecules28062639
Chicago/Turabian StyleGłowniak, Sylwia, Barbara Szczęśniak, Jerzy Choma, and Mietek Jaroniec. 2023. "Recent Developments in Sonochemical Synthesis of Nanoporous Materials" Molecules 28, no. 6: 2639. https://doi.org/10.3390/molecules28062639
APA StyleGłowniak, S., Szczęśniak, B., Choma, J., & Jaroniec, M. (2023). Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules, 28(6), 2639. https://doi.org/10.3390/molecules28062639