Antioxidant Activity and Photosynthesis Efficiency in Melissa officinalis Subjected to Heavy Metals Stress
Abstract
:1. Introduction
2. Results
2.1. Plant Cultivation
2.2. Photosynthesis Parameters
2.3. Heavy Metals Uptake
2.4. Total Phenolic Compounds
2.5. Data Analysis
2.6. Electrochemical Oxidation of Plant Extracts
3. Discussion
4. Materials and Methods
4.1. Soil Preparation and Analysis
4.2. Plant Material
4.3. Plant Morphology and Gas Exchange Parameters
4.4. Determination of Heavy Metals in Lemon Balm
4.5. Spectroscopic Determination of Total Phenolic Compounds
4.6. Electrochemical Analysis of Polyphenolic Compounds Extracted from Lemon Balm Plants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Miraj, S.; Rafieian-Kopaei; Kiani, S. Melissa officinalis L: A Review study with an antioxidant prospective. J. Evid. Based Complement. Altern. Med. 2017, 22, 385–394. [Google Scholar] [CrossRef]
- Yunusa, A.K.; Rohin, M.A.K.; Bakar, C.A.A. Free radical scavenging activity of polyphenols. J. Chem. Pharm. Res. 2015, 7, 1975–1980. [Google Scholar]
- Tomova, T.; Petkov, V.; Slavova, I.; Stoyanov, P.; Argirova, M. Naturally present metal ions in plants could interfere with common antioxidant assays. Methods X 2020, 7, 100995. [Google Scholar] [CrossRef]
- Ndhlala, A.R.; Kasiyamhuru, A.; Mupure, C.; Chitindingu, K.; Benhura, M.A.; Muchuweti, M. Phenolic composition of Flacourtia indica, Opuntia megacantha and Sclerocarya birrea. Food Chem. 2007, 103, 82–87. [Google Scholar] [CrossRef]
- Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L.—sA review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 188, 204–228. [Google Scholar] [CrossRef] [PubMed]
- Pljevljakušic, D.; Brkic, S. Cultivation cost-benefit analysis of some important medicinal plants in Serbia. Nat. Med. Mater. 2020, 40, 13–21. [Google Scholar] [CrossRef]
- Department of Agriculture, Forestry and Fisheries, Republic of South Africa. Lemon Balm Production. 2012. Available online: www.dalrrd.gov.za (accessed on 16 December 2022).
- Chrysargyris, A.; Petropoulos, S.A.; Tzortzakis, N. Essential Oil Composition and Bioactive Properties of Lemon Balm Aerial Parts as Affected by Cropping System and Irrigation Regime. Agronomy 2022, 12, 649. [Google Scholar] [CrossRef]
- Polish Herbs. Available online: http://polishherbs.com/produkty/lemon-balm/ (accessed on 12 November 2022).
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Adamczyk-Szabela, D.; Lisowska, K.; Romanowska-Duda, Z.; Wolf, W.M. Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Sci. Rep. 2020, 10, 1675. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.K.; Pena, L.B.; Romero-Puertas, M.C.; Hernández, A.; Inouhe, M.; Sandalio, L.M. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ. 2017, 40, 509–526. [Google Scholar] [CrossRef]
- Mongkhonsin, B.; Nakbanpote, W.; Hokura, A.; Nuengchamnon, N.; Maneechai, S. Phenolic compounds responding to zinc and/or cadmium treatments in Gynura pseudochina (L.) DC. Extracts and biomass. Plant Physiol. Biochem. 2016, 109, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Manquián-Cerda, K.; Escudey, M.; Zúñiga, G.; Arancibia-Miranda, N.; Molina, M.; Cruces, E. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicol. Environ. Saf. 2016, 133, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Benhabiles, K.; Bellout, Y.; Amghar, F. Effect of cadmium stress on the polyphenol content, morphological, physiological, and anatomical parameters of common bean (Phaseolus vulgaris L.). Appl. Ecol. Environ. Res. 2020, 18, 3757–3774. [Google Scholar] [CrossRef]
- Kumar, V.; Okem, A.; Moyo, M.; Gruz, J.; Doležal, K.; Van Staden, J. Effect of zinc on the production of phenolic acids and hypoxoside in micropropagated Hypoxis hemerocallidea. Plant Growth Regul. 2019, 89, 19–24. [Google Scholar] [CrossRef]
- Escarpa, A. Food electroanalysis: Sense and simplicity. Chem. Rec. 2012, 12, 72–91. [Google Scholar] [CrossRef] [PubMed]
- Goodson, D.Z. Mathematical Methods for Physical and Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model Anal. 2011, 2, 21–33. [Google Scholar]
- Kovácik, J.; Klejdus, B.; Hedbavny, J.; Štork, F.; Báckor, M. Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil 2009, 320, 231. [Google Scholar] [CrossRef]
- Mishra, B.; Sangwan, N.S. Amelioration of cadmium stress in Withania somnifera by ROS management: Active participation of primary and secondary metabolism. Plant Growth Reg. 2019, 87, 403–412. [Google Scholar] [CrossRef]
- Mishra, B.; Sangwan, R.S.; Mishra, S.; Jadaun, J.S.; Sabir, F.; Sangwan, N.S. Effect of cadmium stress on inductive enzymatic and nonenzymatic responses of ROS and sugar metabolism in multiple shoot cultures of Ashwagandha (Withania somnifera Dunal). Protoplasma 2014, 251, 1031–1045. [Google Scholar] [CrossRef]
- Güney, S.; Yildiz, G.; Capan, A.; Ozturk, T. Evaluation of the electrochemical properties of 3-hydroxyflavone using voltammetric methods. Electroch. Acta 2010, 55, 3295–3300. [Google Scholar] [CrossRef]
- Younis, M.E.; Tourky, S.M.N.; Elsharkawy, E.A. Element content, growth and metabolic changes in Cu and Cd stressed Phaseolus vulgaris plants. J. Plant Environ. Res. 2018, 3, 9. [Google Scholar]
- Guo, H.; Hong, C.; Chen, X.; Xu, Y.; Liu, Y.; Jiang, D. Different growth and physiological responses to cadmium of the three Miscanthus species. PLoS ONE 2016, 11, e0153475. [Google Scholar] [CrossRef] [Green Version]
- Cherif, J.; Mediouni, C.; Ammar, W.B.; Jemal, F. Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). J. Environ. Sci. 2011, 23, 837–844. [Google Scholar] [CrossRef]
- Dias, M.C.; Monteiro, C.; Moutinho-Pereira, J.; Correia, C.; Gonçalves, B.; Santos, C. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant. 2013, 35, 1281–1289. [Google Scholar] [CrossRef]
- Xue, Z.C.; Gao, H.Y.; Zhang, L.T. Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. Biol. Plant 2013, 57, 587–590. [Google Scholar] [CrossRef]
- Kovácik, J.; Tomko, J.; Backor, M.; Repcak, M. Matricaria chamomilla is not a hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regul. 2006, 50, 239–247. [Google Scholar] [CrossRef]
- Sorrentino, M.C.; Capozzi, F.; Amitrano, C.D.; Tommaso, G.; Arena, C.; Iuliano, M.; Giordano, S.; Spagnuolo, V. Facing metal stress by multiple strategies: Morphophysiological responses of cardoon (Cynara cardunculus L.) grown in hydroponics. Environ. Sci. Pollut. Res. 2021, 28, 37616–37626. [Google Scholar] [CrossRef] [PubMed]
- Rucińska-Sobkowiak, R. Water relations in plants subjected to heavy metal stresses. Acta Physiol. Plant. 2016, 38, 257. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, M.; Das, A.; Subba, P.; Bantawa, P.; Sarkar, B.; Ghosh, P.D.; Mondal, T.K. Structural, physiological and biochemical profiling of tea plants (Camellia sinensis (L.) O. Kuntze) under zinc stress. Biol. Plant. 2013, 57, 474–480. [Google Scholar] [CrossRef]
- Subba, P.; Mukhopadhyay, M.; Mahato, S.K.; Bhutia, K.D.; Mondal, T.K.; Ghosh, S.K. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiol. Mol. Biol. Plants 2014, 20, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Smeets, K.; Cuypers, A.; Lambrechts, A.; Semane, B.; Hoet, P.; Van Laere, A.; Vangronsveld, J. Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol. Biochem. 2005, 43, 437. [Google Scholar] [CrossRef] [PubMed]
- Michalak, A. Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- PN-ISO 10381-4; Soil Quality—Sampling—Part 4: Rules for Procedure during the Research Areas of Natural, Semi-Natural and Cultivated. International Organization for Standardization: Geneva, Switzerland, 2017.
- PN-ISO 10390:1997; Agricultural Chemical Analysis of the Soil. Determination of pH. International Organization for Standardization: Geneva, Switzerland, 1997. Available online: http://sklep.pkn.pl/pn-iso-10390-1997p.html (accessed on 20 April 2019).
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; Environmental Protection Agency: Washington DC, USA, 2002. [Google Scholar]
- Dybczyński, R.; Danko, B.; Kulisa, K.; Maleszewska, E.; Motrenko, H.P.; Samczynski, Z.; Szopa, Z. Preparation and preliminary certification of two new Polish CRMs for inorganic trace analysis. J. Radioanal. Nucl. Chem. 2004, 259, 409–413. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Masek, A.; Chrzescijanska, E.; Kosmalska, A.; Zaborski, M. Characteristics of compounds in hops using cyclic voltammetry, UV-VIS, FTIR and GC-MS analysis. Food Chem. 2014, 156, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Blasco, A.J.; Rogerio, M.C.; González, M.C.; Escarpa, A. “Electrochemical Index” as a screening method to determine ‘‘total polyphenolics” in foods: A proposal. Anal. Chim. Acta. 2005, 539, 237. [Google Scholar] [CrossRef]
- Lino, F.M.A.; Sá, L.Z.; Torres, I.M.S.; Rocha, M.L.; Dinis, T.C.P.; Ghedini, P.C.; Somerest, V.S.; Gil, E.S. Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochim. Acta 2014, 128, 25–31. [Google Scholar] [CrossRef]
Treatments * | Metal Content µg/g | |||||||
---|---|---|---|---|---|---|---|---|
Cd | Zn | Cu | Mn | |||||
Above-Ground Parts | Roots | Above-Ground Parts | Roots | Above-Ground Parts | Roots | Above-Ground Parts | Roots | |
Control | 0.65 ± 0.04 | 6.82 ± 0.58 | 29.4 ± 2.3 | 66.3 ± 5.3 | 4.87 ± 0.41 | 8.35 ± 0.72 | 49.2 ± 4.2 | 46.7 ± 4.0 |
1Cd | 1.87 ± 0.23 | 26.3 ± 2.1 | 19.4 ± 1.8 | 42.3 ± 2.9 | 7.06 ± 0.44 | 9.03 ± 0.85 | 44.6 ± 3.3 | 25.1 ± 1.9 |
6Cd | 3.97 ± 0.31 | 41.5 ± 3.7 | 14.1 ± 1.7 | 54.7 ± 5.0 | 6.18 ± 0.58 | 7.73 ± 0.63 | 33.7 ± 2.9 | 30.4 ± 2.2 |
50 Zn | 0.57 ± 0.04 | 5.74 ± 0.51 | 108 ± 7 | 220 ± 18 | 6.76 ± 0.53 | 10.2 ± 0.88 | 37.9 ± 3.1 | 25.5 ± 1.3 |
300Zn | 0.52 ± 0.04 | 7.07 ± 0.43 | 147 ± 8 | 981 ± 55 | 7.18 ± 0.41 | 12.4 ± 1.1 | 45.3 ± 3.3 | 20.8 ± 1.8 |
1Cd + 50Zn | 4.05 ± 0.51 | 31.3 ± 2.9 | 51.2 ± 4.4 | 112 ± 9 | 7.03 ± 0.58 | 7.82 ± 0.62 | 48.6 ± 3.7 | 16.2 ± 1.3 |
1Cd + 300Zn | 3.05 ± 0.22 | 38.4 ± 3.0 | 186 ± 10 | 427 ± 21 | 6.39 ± 0.48 | 9.43 ± 0.83 | 51.2 ± 4.4 | 48.3 ± 3.6 |
6Cd + 50Zn | 4.11 ± 0.36 | 30.8 ± 2.4 | 65.5 ± 5.8 | 181 ± 9 | 7.11 ± 0.55 | 15.3 ± 1.8 | 48.4 ± 4.1 | 24.2 ± 2.0 |
6Cd + 300Zn | 5.12 ± 0.43 | 39.8 ± 3.4 | 205 ± 22 | 655 ± 38 | 6.15 ± 0.61 | 12.2 ± 1.2 | 40.1 ± 3.7 | 39.3 ± 2.8 |
Extract | EI (µA/V) Based on CV | EI (µA/V) Based on DPV |
---|---|---|
Control | 70.5 | 6.39 |
1Cd | 79.7 | 6.63 |
6Cd | 104 | 43.3 |
50Zn | 94.5 | 11.0 |
300Zn | 119 | 11.4 |
1Cd + 50Zn | 123 | 11.5 |
1Cd + 300Zn | 124 | 18.8 |
6Cd + 50Zn | 153 | 21.5 |
6Cd + 300Zn | 252 | 78.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczyk-Szabela, D.; Chrześcijańska, E.; Zielenkiewicz, P.; Wolf, W.M. Antioxidant Activity and Photosynthesis Efficiency in Melissa officinalis Subjected to Heavy Metals Stress. Molecules 2023, 28, 2642. https://doi.org/10.3390/molecules28062642
Adamczyk-Szabela D, Chrześcijańska E, Zielenkiewicz P, Wolf WM. Antioxidant Activity and Photosynthesis Efficiency in Melissa officinalis Subjected to Heavy Metals Stress. Molecules. 2023; 28(6):2642. https://doi.org/10.3390/molecules28062642
Chicago/Turabian StyleAdamczyk-Szabela, Dorota, Ewa Chrześcijańska, Piotr Zielenkiewicz, and Wojciech M. Wolf. 2023. "Antioxidant Activity and Photosynthesis Efficiency in Melissa officinalis Subjected to Heavy Metals Stress" Molecules 28, no. 6: 2642. https://doi.org/10.3390/molecules28062642
APA StyleAdamczyk-Szabela, D., Chrześcijańska, E., Zielenkiewicz, P., & Wolf, W. M. (2023). Antioxidant Activity and Photosynthesis Efficiency in Melissa officinalis Subjected to Heavy Metals Stress. Molecules, 28(6), 2642. https://doi.org/10.3390/molecules28062642