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Abstract: Hydrogen production using polymer membrane electrolyzers is an effective and valuable
way of generating an environmentally friendly energy source. Hydrogen and oxygen generated
by electrolyzers can power drone fuel cells. The thermodynamic analysis of polymer membrane
electrolyzers to identify key losses and optimize their performance is fundamental and necessary. In
this article, the process of the electrolysis of water by a polymer membrane electrolyzer in combination
with a concentrated solar system in order to generate power and hydrogen was studied, and the effect
of radiation intensity, current density, and other functional variables on the hydrogen production
was investigated. It was shown that with an increasing current density, the voltage generation
of the electrolyzer increased, and the energy efficiency and exergy of the electrolyzer decreased.
Additionally, as the temperature rose, the pressure dropped, the thickness of the Nafion membrane
increased, the voltage decreased, and the electrolyzer performed better. By increasing the intensity of
the incoming radiation from 125 W/m2 to 320 W/m2, the hydrogen production increased by 111%,
and the energy efficiency and exergy of the electrolyzer both decreased by 14% due to the higher
ratio of input electric current to output hydrogen. Finally, machine-learning-based predictions were
conducted to forecast the energy efficiency, exergy efficiency, voltage, and hydrogen production rate
in different scenarios. The results proved to be very accurate compared to the analytical results.
Hyperparameter tuning was utilized to adjust the model parameters, and the models’ results showed
an MAE lower than 1.98% and an R2 higher than 0.98.

Keywords: polymer electrolyte membrane; energy efficiency; current density; concentrated solar
system; exergy efficiency; machine learning; artificial neural network

1. Introduction

Unlike the fossil fuels available in nature, hydrogen does not have a natural source and
must be produced by human-made methods [1]. Many renewable energy sources can be
stored, through which hydrogen fuel can be produced. These sources can be solar energy,
wind, and biomass. The method of hydrogen production introduced by Dincer [2] has been
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extensively researched. Other researchers have also investigated methods for hydrogen
production from energy sources [3–7]. Hydrogen production is best carried out with water
when using sustainable sources on a large scale [8]. Due to its renewable, safe, and clean
nature, solar energy is considered one of the best options. As a source of thermal energy
for the high-temperature process, Steinfeld [9] investigated the thermochemical production
of hydrogen using solar radiation. In his study, he demonstrated that the thermochemical
production of hydrogen by the electrolysis of water using electricity generated by the sun
competes with conventional fossil fuel methods, since electrolysis reduces carbon dioxide
production and pollution. The chemical decomposition of water, thermochemical cycles
or the reforming of hydrocarbons, and electrolysis require electricity to decompose water.
Many scientists are interested in combining the water electrolysis process with a renewable
energy system that provides power and heat for hydrogen production [10]. The storage
of oxygen and hydrogen in space for an extended period of time is impractical. Just as
scientists have determined the climatic parameters needed by the body to sustain life on
earth, aerospace scientists have similarly estimated the climatic parameters needed to
sustain life in space. On earth, plants play an important role in removing carbon dioxide
and producing oxygen, but in space, other methods are used to remove carbon dioxide and
produce water and oxygen. In space shuttles, fuel cells produce electricity by combining
hydrogen and oxygen. In a fuel cell, electricity is generated by a chemical reaction similar
to that of a battery. However, the fuel is continuously supplied by oxygen and hydrogen.
As a consequence of this reaction, water is produced, which can be used to make oxygen for
breathing and hydrogen to fuel the electrolyzer. Every electrolyzer cell contains polar plates,
an anode, and a cathode, as well as electrolytes and catalysts in the gas diffusion layer [11].
Electrolyzer technology is divided into four general categories: alkaline electrolyzers,
whose electrolyte is a liquid (such as potassium hydroxide); proton and anion exchange
membrane electrolyzers, both of which have a solid polymer electrolyte; and finally, solid
oxide electrolyzers, which have ceramic membranes. Polymer membrane electrolyzers
have attracted most attention due to their various advantages, including their lack of toxic
material production, better systematic management, pure hydrogen generation, higher
efficiency, lack of pollution generation, and higher current density [12–14]. A polymer
membrane electrolyzer consists of three parts [15]:

1. At a local low current density, when the effects of ohmic losses can be ignored, the
activation voltage drop obtained from the Volmer–Butler equation is the dominant drop.

2. In the middle of the diagram, it is linear, and ohmic drops cause the voltage drop.
3. The dominant drop is the concentration voltage drop at a high current density.

Several researchers have modeled polymer membrane electrolyzers. Koka et al. [16]
investigated the impact of multi-material anode catalysts on the performance of polymer
membrane electrolyzers and the effect of the catalytic layer on various types of membranes.
As a steady-state and variant-temperature model, Harrison et al. [17] used a semiempirical
zero-dimension model. Based on experimental results and a non-linear curve to relate
current to voltage, the authors characterized 20 cells using a polymer membrane elec-
trolyzer stack. Furthermore, Dale et al. [18] developed a semiempirical model of a polymer
membrane electrolyzer based on thermodynamic laws to determine the characteristics of
the electrolyzer. After conducting experimental analyses on commercial polymer mem-
brane electrolyzers, Santarelli et al. used regression to analyze the results. A high-pressure
polymer membrane electrolyzer with various levels of stack flow was investigated in [19]
to determine the effect of different working parameters on the supply voltage. An ex-
perimental study by Chandesris et al. [20] investigated the effects of current density and
temperature on the degradation of a membrane using a one-dimensional numerical model.
As a result of their research, the authors discovered that the greatest amount of membrane
destruction occurred within the container, and that the temperature had a strong influence
on this process.

Other studies have investigated hydrogen production systems using photovoltaic
cells and polymer membrane electrolyzers [21–24]. Scamman et al. [25] investigated the



Molecules 2023, 28, 2649 3 of 21

combination of solar energy systems using photovoltaic cells and polymer membrane
electrolyzers in three weather conditions. Gibson and Kelley [26] investigated the combined
system of photovoltaic cells and a polymer membrane electrolyzer by adjusting the voltage
and maximum power. They optimized the photovoltaic output to the working voltage
of the polymer membrane electrolyzer and photovoltaic cells. This optimization process
raised the hydrogen production efficiency by up to 12% for this system, which provided
enough hydrogen for the fuel cell used in the vehicle. Paul and Andris [27] investigated a
hydrogen renewable energy system to generate power in remote areas. The preliminary
experimental results showed that about 95% of the energy was transformed compared to
the theoretical state. The system was also fully investigated and justified from an economic
point of view.

Although there has been much research on polymer membrane electrolyzers [28–33],
none of the research in this area has involved the energy and exergy analysis of a polymer
membrane electrolyzer system in combination with a solar concentrating system. This
study investigated hydrogen production using a polymer membrane electrolyzer system
that provides power from a concentrated solar system. Hence, it is important to introduce
the system first and then analyze its energy and efficiency by stating the conditions within
the system that govern its operation. Additionally, only a few studies have combined their
results with the multi-disciplinary field of machine learning to propose predictive models.
In this study, we used artificial neural networks to predict four important parameters in
the hydrogen production process, and all models were studied thoroughly to attain the
best results.

2. System Description

Figure 1 presents a schematic view of the investigated system. This system consisted
of four parts: a tower, a solar thermal engine, a generator, and a polymer membrane
electrolyzer. The heliostats and solar tower subsystem consisted of many mirrors arranged
in a circular pattern to reflect solar radiation to a central receiver atop the solar tower. It has
been demonstrated that solar tower technology is effective even at temperatures as high
as 2200 K [34]. As a result of this feature, this technology is suitable for use in conjunction
with other high-temperature systems. The assumptions and numerical values for this part
of the system are presented in Table 1. When the solar radiation is reflected, it is focused
on the central receiver and transferred to the heat engine. The engine consumes some
radiation and turns it into mechanical work. Then, the mechanical work is sent to the
electric generator to produce electricity and power the electrolyzer.
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Table 1. Important parameters used to model the solar tower.

Solar Tower Parameter Value

Heliostat efficiency 70%
Receiver’s efficiency 88%
Heliostat area 6100 m2

The membrane electrolyzer transfers polymer molecules containing water and protons
and decomposes them into oxygen, protons, and electrons. The electrons leave the cell from
an external circuit, combine with protons in the cathode, and release hydrogen [11]. The
reactions in the cathode and anode of the polymer membrane electrolyzer are as follows:

The anode H2O→ 2H+ + 1
2 O2 + 2e−

The cathode 2H+ + 2e− → H2
The whole reaction H2O(l) → H2(g) +

1
2 O2(g)

3. Thermodynamic Analysis

The thermodynamic analysis of the cycle was carried out using Engineering Equation
Solver (EES). When solving the problem, we took into account the following assumptions. Firstly,
potential and kinetic energy changes were not taken into account. The system maintained a
steady state. Chemical exergy was considered only for polymer membrane electrolyzers.

3.1. Solar Tower

Using Equation (1), we could determine the total solar radiation reaching the heliostat [35].

Qh = Ah × I (1)

where Ah is the heliostat field area in m2, and I is the inlet radiation intensity in W/m2. In
terms of the optical efficiency of the heliostat field, the rate of heat reflection to the receiver
was defined as follows:

ηopt =
Qrec

Qh
(2)

where the subscripts rec and h denote the receiver and heliostat. The efficiency of the
receiver could also be determined by comparing the rate of heat absorbed to the rate of
heat reflected.

ηrec =
Qabs
Qrec

(3)

In Equation (3), Qabs is the absorbed heat. The exergy rate in relation to the heat flux
was defined as follows [35].

Exh = Qh

(
1− T0

Tsun

)
(4)

where T0 and Tsun are the standard and solar temperatures. As a consequence, the reflected
radiation’s exergy was expressed as:

Exrec = Qrec

(
1− T0

Trec

)
(5)

Trec is the receiver temperature. The following equation defines the specific exergy of
the fluid in each state [35].

exi = CPi(Ti − T0)− T0

[
CPi ln

(
Ti
T0

)]
(6)
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where Cp is the specific heat. As a result of the absorption of heat, an exergy rate was generated.

Exabs = Qabs

(
1− T0

Trec

)
(7)

The solar towers had the following energy and energy efficiency.

ηsolar =
Qabs
Qh

(8)

solar =
Exabs
Exh

(9)

3.2. Heat Engine

Mechanical work was defined using the following equations [36].

.
W = ηHE

.
Qabs (10)

ηHE = 1− T0

Trec
(11)

In these equations, ηHE is the ideal efficiency of the Carnot cycle combustion engine,
corresponding to the maximum energy received for each heat engine. A heat engine has a
lower energy efficiency than the Carnot cycle, which is around 30 to 50%; thus, its efficiency
is less than the Carnot cycle. In this article, this value was considered 45% [36].

3.3. Electric Generator

As defined in [36], electric generators have a high energy efficiency.

ηGEN =
PE
PM

(12)

In this equation, PE is the electrical work, and PM is the mechanical work. Assuming
that the electrical output and mechanical input remain constant, a generator’s energy
efficiency is similar to that of an electric motor. In an electric generator, the losses include
the core’s iron losses, the armature’s copper losses, and the voltage drop in the diode bridge,
usually 50 to 62% [36]. The core consists of hysteresis losses and losses caused by eddy
currents in the armature core, and copper losses occur due to the current passing through
the armature excitation coils and other coils in the generator. The final expression for the
exergy efficiency of the electric generator is presented below.

ψGEN =
PE
PM

=
VI

τ ×ω
=

VI

τ × 2πrpm
60

(13)

In this equation, τ, ω, V, and I are the torque, revolutions per minute, voltage, and
current, respectively.

3.4. Polymer Membrane Electrolyzer

The fixed parameters used in modeling the polymer membrane electrolyzer are pre-
sented in Table 2 [37]. A polymer membrane electrolyzer exhibits a reversible voltage based
on the Gibbs free energy of the reaction. This voltage corresponds to the ideal electrolyzer
cell in reversible and isothermal conditions.
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Table 2. Fixed parameters for modeling the polymer membrane electrolyzer [37].

Parameter Value

Water pressure (PH2O) 1 bar
Hydrogen pressure (PH2 ) 1 bar
Oxygen pressure (PO2 ) 1 bar
Membrane thickness (L) 183 µm
Electrolyzer temperature (T) 353 K
Lower heating value of hydrogen (LHVH2 ) 224 kJ/mol
The cathode activation energy (Eact,c) 18 kJ/mol
The anode activation energy (Eact,a) 76 kJ/mol

All the electrical energy obtained in an external circuit is available in fuel cells. The
concept for the electrolyzer is that all the driving force produced is available for hydrogen
production without any loss. The remainder of the voltage drops increase the reversible
voltage. The effects of the concentration were considered in terms of the Nernst equation
and the concentration drops, which were omitted in this article due to their small number,
and only ohmic drops and activation were considered. The Gibbs free energy is defined as
shown in Equation (14).

∆G = ∆H − T∆S (14)

where ∆H is the enthalpy change in J/mol, and ∆S is the entropy change. Under ideal
conditions, the heat produced during the reaction is continuously removed from the system,
so the system’s temperature stays constant. The amount of removed heat equals the entropy
change multiplied by the working temperature. Equation (15) was used for calculating the
reversible potential [38]. The open circuit voltage for the polymer membrane electrolyzer
was obtained using the Nernst equation [39].

V0 = −∆G
2F

(15)

V0 = 1.229− 0.9× 10−3(T − 298) +
RT
nF

ln

(
PH2 P0.5

O2

PH2O

)
(16)

In the above relation, T is the electrolyzer temperature; R is the global gas constant,
which is equal to 8.314 J/Kmol; n is the number of exchanged electrons; and F is the Faraday
constant, which is equal to 96,485 C/mol. The single-cell voltage of the electrolyzer was
defined as shown in Equation (17). In Equation (17), Vact is the activation voltage drop in
the anode and cathode, and Vohm is the important voltage drop in volts.

V = V0 + Vact + Vohm (17)

3.4.1. Activation Voltage Drop

An increase in the activation voltage indicates that the electrons are ready to participate
in the electrochemical reaction. During the chemical process, some of the voltage applied
to the electrolyzer is lost as electrons are transferred from the surface of the electrodes to
the electrodes. Using the Volmer–Butler equation, the activation energy was modeled on
both the cathode and anode sides as a function of the activation voltage drop.

Vact,i =
RT
F

sinh−1
(

J
2J0,i

)
(18)

J0,i = Jre f
i EXP

(
−Eact,i

RT

)
i = a, c (19)

where R is the universal gas constant, T is the temperature, F is the Faraday constant, J
is the current density, and Eact is the activation energy. The material type and electrode
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porosity; the concentration, size, and distribution of catalyst particles on the electrodes;
and the working temperature determine the current exchange density. Regarding platinum
catalysts, electrodes with anodes have current exchange densities ranging from 10−8 to
10−5, and electrodes with cathodes have current exchange densities ranging from 10 to
10−1 A/m2 [13]. According to this article, the current exchange density for an anode based
on a platinum catalyst is 10 A/m2, and the current exchange density for a cathode is
10 A/m2 [40].

3.4.2. Activation Voltage Drop

As a result of the flow of electrons, an ohmic voltage drop is created, which equates to
the resistance created by the polymer membrane electrolyzer against the flow of electrons. It
is important to note that the voltage drop is dependent upon the type of polymer membrane
electrolyzer and the type of electrodes. The current density (A/cm2) is linearly related to
the ohmic voltage drop. The ohmic voltage drop is the resistance of the electrolyzer against
the transfer of protons and is defined as follows [11].

Vohm =
L

σmem
J (20)

σmem = (0.005139˘− 0.00326)EXP
[

1263
(

1
303
− 1

T

)]
(21)

where σmem is the ionic conductivity of the Nafion membrane in terms of 1/Ωcm [41].
Due to the fact that proton transfer occurs on the surface of the membrane using water
molecules, the water content is a significant factor in determining the membrane’s ionic
conductivity. ˘ is the water content, which is very important to determine due to the
humidity changes of the membrane in fuel cells. In fuel cells, due to the abundance of
water on the anode and cathode (due to the transfer phenomenon), the entire membrane
can be considered humid. ˘ is usually in the range of 14 to 21; in this research, its value was
considered to be 21 [13]. In order to determine the performance of the system, efficiencies
were utilized.

ηpem =

.
NH2,out × LHVH2

Welec + Qheat,pem
(22)

ψpem =

.
NH2,out × ExH2

Welec + Exheat,pem
(23)

The amount of hydrogen, oxygen, and water output from the electrolyzer was obtained
from Equations (24)–(26) [37].

.
NH2,out =

J
2F

=
.

NH2O,reacted (24)

.
NO2,out =

J
4F

(25)

.
NH2O,out =

.
NH2O,in −

.
NH2O,reacted =

.
NH2O,in −

J
2F

(26)

Welec = JV (27)

The water flow rate to the electrolyzer was 0.005 kg/s, and the hydrogen exergy was
defined as follows:

ExH2 = Exph
H2

+ Exch
H2

(28)

where Exph
H2

is the physical exergy of hydrogen obtained from Equation (6), and Exch
H2

is the
chemical exergy of hydrogen, whose value is 236.09 kJ/kmol [42]. Irreversibility occurs
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in the polymer membrane electrolyzer due to entropy generation. This parameter was
calculated as follows [36].

σ = 2F(Vact,a + Vact,c + Vohm) (29)

If σ ≥ T∆S, the heat produced due to the irreversibility of the system is equal to or
greater than the heat required for decomposition, and no external heat is required for the
polymer membrane electrolyzer. Therefore, Qheat,pem = Exheat,pem = 0. Notably, the excess
produced heat was assumed to be released into the environment through radiation. If
σ < T∆S, the produced heat is less than the required heat, and additional heat is required.
The amount of heat input into the electrolyzer could be measured by Equation (30).

Qheat,pem = [T∆S− σ]NH2O,reacted = [T∆S− σ]
J

2F
(30)

Exheat,pem = Qheat,pem

(
1− T0

T

)
(31)

3.5. Overall Efficiency

After calculating the efficiency of each part of the system, the overall energy efficiency
and exergy of the entire solar hydrogen production system were obtained as follows:

ηenergy = ηsolar × ηHE × ηGEN × ηpem (32)

ψenergy = ψsolar × ψHE × ψGEN × ψpem (33)

4. Results and Discussion
4.1. Electrolyzer Validation

In order to validate the electrolyzer model investigated in this article, our results were
checked against the results of experimental tests [43]. The electrolyte used in the test was
Nafion, with a thickness of 50 µm, and platinum was used for the electrode on the cathode.
Figure 2 shows the polarization diagram of the electrolyzer with the working conditions
listed in Table 3.
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Table 3. Electrolyzer working conditions for validation.

Parameter Value

Hydrogen pressure (PH2 ) 1 bar
Oxygen pressure (PO2 ) 1 bar
Water pressure (PH2O) 1 bar
Electrolyzer temperature (T) 353 K
Membrane thickness (L) 50 µm

The results of this study showed good agreement with the experimental results of [43].
The ohmic voltage drop and anode and cathode activation are shown in Figure 3. The
V0 value was 1.17 in Figure 3. The ohmic voltage drop was very low and increased
continuously with an increasing current density. The reason for this was that the ionic
conductivity of the membrane was high at ˘ = 21 and a working temperature of 353 K.
Although the value of the capacitor activation voltage drop was higher than the ohmic
voltage drop, it was much smaller than the anode activation voltage drop. This was because
of the reaction’s faster kinetics on the cathode’s surface. The current density of less than
1000 A/m2 suddenly increased, and then the current increased uniformly with the increase
in density.
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As is clear from Figure 3, the cathode activation voltage drop had a small value due
to the high speed of the hydrogen formation reaction, and the anode activation voltage
drop had a larger value due to the low speed of the oxygen formation reaction, which
determined the overall voltage drop of the electrolyzer.

4.2. Energy Efficiency and Exergy

Figure 4 shows the energy efficiency and exergy of the polymer membrane electrolyzer
at 350 K. It is well-known that the energy efficiency and exergy curves are very similar. The
input energy and output energy both increased with an increasing current density. This
was because the input energy and output energy both increased. As the current density
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of the low-current generator increased, the electrical energy required rose significantly,
while the input and output thermal energies increased linearly. Since an increase in current
density corresponded to an increase in the input energy (electrical and thermal energy) at a
faster rate than the output energy, i.e., hydrogen production, the flow of energy efficiency
dropped with the rise in density. Due to the low temperature of most polymer membrane
electrolyzers, the only thermal energy required is for heating the inlet water, and the
electrolyzer’s energy and exergy efficiency is entirely dependent on electricity rather than
the electrolyzer’s temperature. Due to the 100% exergy efficiency of electricity, the system’s
energy and exergy efficiency were close, which demonstrated this system’s competency.
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4.3. Effect of Functional Parameters

As shown in Figure 5, augmenting the temperature led to an increase in the energy and
exergy efficiency of the electrolyzer at a 5000 mA/m2 current density. A higher temperature
meant more reactions in the electrodes, leading to a greater current exchange density and
reducing the activation voltage drop, according to Equation (20). The electrolyzer cell
voltage decreased as the temperature increased, according to Equations (20) and (21);
therefore, the electrical input decreased [37].

A polarization diagram of a polymer membrane electrolyzer at various temperatures
and operating pressures is shown in Figures 6 and 7. According to Figure 5, the voltage of
the cell decreased with an increasing temperature, while the open circuit voltage decreased
as the temperature increased. Accordingly, the difference between the Gibbs free energy
and the Nernst voltage revealed the effects of the product and reactant concentrations.
Higher temperatures accelerated the electrolyzer reaction, since the electrolyzer reaction is
endothermic. However, polymer membrane electrolyzers are limited in their design due
to the characteristics of the membrane. When the temperature and pressure increased in
the Nafion membrane, the diffusion coefficient of H+ ions increased, which was directly
related to the membrane’s conductivity. At higher temperatures, the first effect was a
decrease in voltage, followed by a decrease in the power required for the electrolyzer, while
the Nafion membrane’s transmission properties increased. However, as a result of the



Molecules 2023, 28, 2649 11 of 21

opposite movement of H+ ions from the anode to the cathode, the cathode was under a
higher pressure, causing the voltage to increase and the reaction to be problematic.
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Figure 8 shows the voltage of the electrolyzer in terms of the working temperatures
with a current density of 5000 A/m2. As the temperature increased, the cell voltage de-
creased due to the chemical reaction’s acceleration and the increase in the current exchange
density. As a result, the activation and ohmic voltage dropped.
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Figure 9 illustrates the polarization diagram of the polymer membrane electrolyzer
with different membranes. At a current density of less than 1000 A/m2, the change in
membrane thickness had little effect on the electrolyzer voltage, but for higher values
of current density, the effect of the thickness on the electrolyzer voltage increased. With
the increase in the thickness of the membrane, the voltage of the polymer membrane
electrolyzer increased, which was the reason for the augmentation in the ohmic voltage.
The decrease in the thickness of the membrane caused a decrease in the resistance; the
amount of material used; and, therefore, the price. However, if the thickness of the
membrane decreased too much, it could decrease the life of the membrane, and reactive
gases could pass through it.
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4.4. The Effect of the Intensity of Solar Radiation

Figure 10 shows the effect of I on the energy and exergy efficiency of the electrolyzer.
With the augmentation in solar radiation, the efficiencies decreased. This was because
an increase in solar radiation caused more thermal energy to enter the receiver of the
solar tower, and, as a result, more power was provided to the electrolyzer as an input. By
increasing the amount of solar radiation from 125 W/m2 to 320 W/m2, the exergy and
energy efficiencies decreased by 13.7% and 12.6%, respectively.

Figure 11 shows the effect of I on the hydrogen production and the energy efficiency
of the whole system. By increasing the intensity of solar radiation from 125 W/m2 to
320 W/m2, the hydrogen production increased by 111%.

The generated hydrogen was directly related to the power supply of the electrolyzer.
When the input power to the electrolyzer rose, the hydrogen production also increased.
By increasing I from 125 W/m2 to 320 W/m2, the energy efficiency of the entire system
decreased by 14%, which was the reason for the decrease in the efficiency of the electrolyzer.
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5. Artificial Neural Network

Using machine-learning-based algorithms to propose predictive models has recently
become common in engineering problems [44–46]. This is mainly because the capability
of these models in prediction is spectacular [47]. Among all of these models, the artificial
neural network has shown the best results and is the subject of abundant research [48].

In the current research, we used the data from the analyses to propose predictive
models for energy and exergy efficiency, voltage, and H2 production. The input parameters
selected for the models were Pcathode, I, L, J, and T. The data in each output parameter
were split in a 70–30% ratio, i.e., 70% of the data were employed for training, and 30% were
used for testing the models. In order to better optimize the models, we used hyperparameter
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tuning for all the models. This procedure investigated all the available settings adjustments
and selected the best model for the prediction of the output parameter. In the following, an
example of this process is presented for voltage.

One of the most significant parameters of an artificial neural network is the structure
of its hidden layers; thus, in Table 4, the effect of this parameter is studied. It was observed
that, generally, by increasing the number of layers, the accuracy improved and then stopped
at a certain point. This was basically overfitting, where the model was unable to generalize
its predictions on other data and was fully focused on its training dataset. We considered
the best model, which had the lowest error and presumably the highest R2.

Table 4. Hyperparameter tuning for the layer structure.

Model Layer Structure Mean Absolute Error (%) R2

1 (32) 3.14% 0.96
2 (32,64) 2.98% 0.97
3 (32,64,32) 2.86% 0.97
4 (32,64,64,32) 2.61% 0.98
5 (32,64,128,64,32) 2.43% 0.98
6 (32,64,128,128,64,32) 2.21% 0.98

7 * (32,64,128,256,128,64,32) 2.05% 0.98
8 (32,64,128,256,256,128,64,32) 2.09% 0.98
9 (32,64,128,256,512,256,128,64,32) 2.13% 0.98

* is the selected model.

After this, the activation function was considered, and three different alternatives were
employed, as can be seen in Table 5. The best model proved to be ReLU.

Table 5. Hyperparameter tuning for the activation function.

Model Activation Function Mean Absolute Error (%) R2

1 Linear 2.87% 0.97
2 * ReLU 2.05% 0.98
3 Sigmoid 2.46% 0.98

* is the selected model.

Based on the results, the ReLU function seemed to be the best choice for the final
model due to its low MAE and R2. A similar study was conducted on the batch size, which
is presented in Table 6.

Table 6. Hyperparameter tuning for batch size.

Model Batch Size Mean Absolute Error (%) R2

1 2 2.98% 0.97
2 4 2.47% 0.98
3 8 2.36% 0.98
4 16 2.39% 0.98

5 * 32 2.05% 0.98
6 64 2.86% 0.97

* is the selected model.

The results showed that 32 was the best value for the batch size, so this was selected
for the final model. Finally, the number of epochs was investigated to find the best result
for this parameter, as shown in Table 7.
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Table 7. Hyperparameter tuning for epochs.

Model Epochs Mean Absolute Error (%) R2

1 1500 5.21% 0.89
2 2500 4.76% 0.92
3 6000 3.15% 0.96
4 15,000 2.55% 0.98

5 * 25,000 1.98% 0.98
6 35,000 2.05% 0.98
7 45,000 2.08% 0.98
8 55,000 2.09% 0.98

* is the selected model.

Clearly, the selected parameter for the number of epochs was 25,000, because this had
the lowest error and the highest R2. After careful the examination and setting of the right
hyperparameters, the final model is presented in Table 8.

Table 8. The ANN settings for the final model.

Hyperparameter Energy Efficiency Exergy Efficiency Voltage H2 Production

Layer structure (32,64,64,32) (32,64,128,128,64,32) (32,64,128,256,128,64,32) (32,64,128,64,32)
Batch size 32 8 32 16
Epochs 45,000 35,000 25,000 35,000
Activation function ReLU Sigmoid ReLU ReLU

5.1. ANN Model for Energy Efficiency

The results of the model for energy efficiency are presented in Figure 12. This figure
presents a comparative study of the predicted and analytical results. It is clear that the
model captured the problem’s physics and understood the variations in the input param-
eters. The evaluation of the model was carried out using the mean absolute error and
R_squared [49–53]. The model was able to achieve an MAE of 1.98%, and its R2 was 0.98.
Therefore, the model was very accurate, which explains the wide usage of these methods
in different research.
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5.2. ANN Model for Exergy Efficiency

Figure 13 shows the results of the predictions for the exergy efficiency. The results
proved to be more accurate. The MAE of this model was 0.94%, and the R2 was 1. The HL
structure was 32,64,128,128,64,32.
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5.3. ANN Model for Voltage

The predictions for the voltage are presented in Figure 14. The predictive model was
based on the HL structure of 32,64,128,256,128,64,32. The model was able to achieve an
MAE of 1.98%, and the R2 was 0.98. The model was able to understand the physics behind
the system and could predict the testing data satisfactorily.

5.4. ANN Model for H2 Production

The hydrogen gas production was the final outcome of the studied process, so being
able to accurately predict this parameter value could save a lot of time for analytical
modeling. Therefore, the model in Figure 15 was employed for this purpose. The model
had an MAE of 1.14% and an R2 of 0.99. This showed how accurate the model was, and
that it could be used instead of the formulations.
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6. Conclusions

This article described the thermodynamic analysis of a polymer membrane electrolyzer
connected to a solar tower’s concentrated solar system. The cell electrolyzer was modeled
using electrochemical-mechanical equations, and the radiation intensity, current density,
and electrolyzer parameters were investigated to determine how much hydrogen was
produced and how well the electrolyzer performed. As the temperature increased and
the pressure decreased, the electrolyzer’s performance increased. Due to the chemical
reaction’s acceleration and the current exchange’s density, an increase in temperature
increased the efficiency and exergy of the electrolyzer. As a result, the reduction in the
activation and ohmic voltage dropped. Considering different Nafion membranes, it was
found that Nafion 115 performed better than the other membranes due to its lower thickness
and the subsequent decrease in the ohmic voltage drop. With an increase in the intensity
of solar radiation from 125 W/m2 to 320 W/m2, the total energy efficiencies decreased
by 14%, and the amount of hydrogen produced increased by 111%. Increasing the solar
radiation in the same range reduced the energy and exergy efficiencies by 13.7% and 12.6%,
respectively. Finally, the data from the research were gathered and employed to propose
predictive models using a machine learning algorithm. An artificial neural network was
utilized for the prediction of energy efficiency, exergy efficiency, voltage, and H2 production.
Hyperparameter tuning was used for setting the contributing parameters of the models.
The results of the models proved to be very accurate, and, in general, they had an MAE
lower than 1.98% and an R2 higher than 0.98.
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