Dihydroxyacetone: A User Guide for a Challenging Bio-Based Synthon
Abstract
:1. Introduction
2. An Overview of DHA, from Key Metabolite to Sunless Tanning
2.1. A Key Step in the Glycolysis Process
2.2. Discovery of DHA’s Chemical Properties and the Maillard Reaction
2.3. Industrial Production and Further Uses of DHA
3. A Multi-Functional Synthesis Tool: DHA’s Broad Range of Reactivities
3.1. DHA—Gld Interconversion: The Lobry de Bruyn—Alberda van Ekenstein Transformation of Carbohydrates
3.2. DHA—Gld Dimerization and Behavior in Aqueous Solutions
3.3. MGO Formation and Condensation Reactions
3.4. MGO Hydrates and Conversion to Lactic Acid
3.5. Base-Catalyzed Condensation of Trioses
3.6. DHA-Based Innovative Polymers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Angyal, S.J. The Lobry de Bruyn-Alberda van Ekenstein Transformation and Related Reactions. In Glycoscience; Stütz, A.E., Ed.; Topics in Current Chemistry; Springer: Berlin, Heidelberg, 2001; Volume 215, pp. 1–14. ISBN 978-3-540-41383-7. [Google Scholar]
- Dihydroxyacetone Market—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2021–2031; Transparency Market Research, 2021. Available online: https://www.transparencymarketresearch.com/dihydroxyacetone-market.html (accessed on 29 November 2021).
- Green, S.R.; Whalen, E.A.; Molokie, E. Dihydroxyacetone: Production and Uses. J. Biochem. Microbiol. Technol. Eng. 1961, 3, 351–355. [Google Scholar] [CrossRef]
- Braunberger, T.L.; Nahhas, A.F.; Katz, L.M.; Sadrieh, N.; Lim, H.W. Dihydroxyacetone: A Review. J. Drugs Dermatol. 2018, 17, 387–391. [Google Scholar] [PubMed]
- Witzemann, E.J. The Isolation of Crystalline Glyceric Aldehyde from a Syrup Obtained by the Oxidation of Glycerol. J. Am. Chem. Soc. 1914, 36, 2223–2234. [Google Scholar] [CrossRef]
- Sutherland, J.D. The Origin of Life-Out of the Blue. Angew. Chem. Int. Ed. 2016, 55, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Usami, K.; Okamoto, A. Hydroxyapatite: Catalyst for a One-Pot Pentose Formation. Org. Biomol. Chem. 2017, 15, 8888–8893. [Google Scholar] [CrossRef] [PubMed]
- Vreeke, S.; Korzun, T.; Luo, W.; Jensen, R.P.; Peyton, D.H.; Strongin, R.M. Dihydroxyacetone Levels in Electronic Cigarettes: Wick Temperature and Toxin Formation. Aerosol Sci. Technol. 2018, 52, 370–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belfleur, L.; Sonavane, M.; Hernandez, A.; Gassman, N.R.; Migaud, M.E. Solution Chemistry of Dihydroxyacetone and Synthesis of Monomeric Dihydroxyacetone. Chem. Res. Toxicol. 2022, 35, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Global Dihydroxyacetone (DHA) Market Research Report 2021; QY Research Group. 2021, p. 104. Available online: https://www.marketresearch.com/QYResearch-Group-v3531/Global-Dihydroxyacetone-DHA-Research-30291738/ (accessed on 29 November 2021).
- Rumayor, M.; Dominguez-Ramos, A.; Irabien, A. Feasibility Analysis of a CO2 Recycling Plant for the Decarbonization of Formate and Dihydroxyacetone Production. Green Chem. 2021, 23, 4840–4851. [Google Scholar] [CrossRef]
- Enders, D.; Voith, M.; Lenzen, A. The Dihydroxyacetone Unit—A Versatile C3 Building Block in Organic Synthesis. Angew. Chem. Int. Ed. 2005, 44, 1304–1325. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Ilharco, L.M.; Pagliaro, M. Dihydroxyacetone: An Updated Insight into an Important Bioproduct. ChemistryOpen 2018, 7, 233–236. [Google Scholar] [CrossRef]
- Ricapito, N.G.; Ghobril, C.; Zhang, H.; Grinstaff, M.W.; Putnam, D. Synthetic Biomaterials from Metabolically Derived Synthons. Chem. Rev. 2016, 116, 2664–2704. [Google Scholar] [CrossRef]
- Romano, A.H.; Conway, T. Evolution of Carbohydrate Metabolic Pathways. Res. Microbiol. 1996, 147, 448–455. [Google Scholar] [CrossRef]
- Martini, M.-C. Autobronzants et bronzants artificiels. Ann. Dermatol. Venereol. 2017, 144, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Wittgenstein, E.; Berry, H.K. Staining of Skin with Dihydroxyacetone. Science 1960, 132, 894–895. [Google Scholar] [CrossRef] [PubMed]
- Maillard, L. Action of Amino Acids on Sugars. Formation of Melanoidins in a Methodical Way. Compte-Rendu Acad. Sci. 1912, 154, 66–68. [Google Scholar]
- Ellis, G. The Maillard Reaction. In Advances in Carbohydrate Chemistry; Elsevier: Amsterdam, The Netherlands, 1959; Volume 14, pp. 63–134. ISBN 0096-5332. [Google Scholar]
- Ames, J.M. The Maillard Reaction. In Biochemistry of Food Proteins; Springer: Berlin/Heidelberg, Germany, 1992; pp. 99–153. [Google Scholar]
- Nguyen, B.-C.; Kochevar, I.E. Influence of Hydration on Dihydroxyacetone-Induced Pigmentation of Stratum Corneum. J. Investig. Dermatol. 2003, 120, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Wrodnigg, T.M.; Eder, B. The Amadori and Heyns Rearrangements: Landmarks in the History of Carbohydrate Chemistry or Unrecognized Synthetic Opportunities? In Glycoscience; Stütz, A.E., Ed.; Topics in Current Chemistry; Springer: Berlin, Heidelberg, 2001; Volume 215, pp. 115–152. ISBN 978-3-540-41383-7. [Google Scholar]
- Rabinowitch, I. Observations on the Use of Dihydroxyacetone in the Treatment of Diabetes Mellitus:(Preliminary Report). Can. Med. Assoc. J. 1925, 15, 374. [Google Scholar] [PubMed]
- Rabinowitch, I. A Case of Diabetic Coma Treated with Dioxyacetone, with Recovery. Can. Med. Assoc. J. 1925, 15, 520. [Google Scholar] [PubMed]
- Rabinowitch, I.; Frith, A.B.; Bazin, E.V. Blood Sugar Time Curves Following the Ingestion of Dihydroxyacetone. J. Biol. Chem. 1925, 65, 55–58. [Google Scholar] [CrossRef]
- Ricapito, N. Synthesis, Characterization, And Evaluation of Dihydroxyacetone Based Polymers For Use As Rapidly Degrading Functional Biomaterials. Ph.D. Dissertation, Cornell University, Ithaca, NY, USA, 2016. [Google Scholar]
- Asawanonda, P.; Oberlender, S.; Taylor, C. The Use of Dihydroxyacetone for Photoprotection in Variegate Porphyria. Int. J. Dermatol. 1999, 38, 916–918. [Google Scholar] [CrossRef] [PubMed]
- Monfrecola, G.; Prizio, E. Self Tanning. In Comprehensive Series in Photosciences; Elsevier: Amsterdam, The Netherlands, 2001; Volume 3, pp. 487–493. ISBN 978-0-444-50839-3. [Google Scholar]
- Stopiglia, C.D.O.; Vieira, F.J.; Mondadori, A.G.; Oppe, T.P.; Scroferneker, M.L. In Vitro Antifungal Activity of Dihydroxyacetone Against Causative Agents of Dermatomycosis. Mycopathologia 2011, 171, 267–271. [Google Scholar] [CrossRef]
- Alaba, P.A.; Lee, C.S.; Abnisa, F.; Aroua, M.K.; Cognet, P.; Pérès, Y.; Wan Daud, W.M.A. A Review of Recent Progress on Electrocatalysts toward Efficient Glycerol Electrooxidation. Rev. Chem. Eng. 2021, 37, 779–811. [Google Scholar] [CrossRef]
- Taylor, C.R.; Kwangsukstith, C.; Wimberly, J.; Kollias, N.; Anderson, R.R. Turbo-PUVA: Dihydroxyacetone-Enhanced Photochemotherapy for Psoriasis: A Pilot Study. Arch. Dermatol. 1999, 135, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Fesq, H.; Brockow, K.; Strom, K.; Mempel, M.; Ring, J.; Abeck, D. Dihydroxyacetone in a New Formulation—A Powerful Therapeutic Option in Vitiligo. Dermatology 2001, 203, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Goyal, A.; Moholkar, V.S. Microbial Conversion of Glycerol: Present Status and Future Prospects. Crit. Rev. Biotechnol. 2012, 32, 235–262. [Google Scholar] [CrossRef]
- Hekmat, D.; Bauer, R.; Fricke, J. Optimization of the Microbial Synthesis of Dihydroxyacetone from Glycerol with Gluconobacter Oxydans. Bioprocess Biosyst. Eng. 2003, 26, 109–116. [Google Scholar] [CrossRef]
- Deppenmeier, U.; Hoffmeister, M.; Prust, C. Biochemistry and Biotechnological Applications of Gluconobacter Strains. Appl. Microbiol. Biotechnol. 2002, 60, 233–242. [Google Scholar] [PubMed]
- Bagheri, S.; Julkapli, N.M.; Yehye, W.A. Catalytic Conversion of Biodiesel Derived Raw Glycerol to Value Added Products. Renew. Sustain. Energy Rev. 2015, 41, 113–127. [Google Scholar] [CrossRef]
- Quintana, R.P.; Garson, L.R.; Lasslo, A.; Sanders, S.I.; Buckner, J.H.; Couck, H.K.; Gilbert, I.H.; Weidhaas, D.E.; Schreck, C.E. Mosquito-Repellent Dihydroxyacetone Monoesters. J. Econ. Entomol. 1970, 63, 1128–1131. [Google Scholar] [CrossRef]
- Lentini, P.J. Compositions Useful in the Phototherapeutic Treatment of Proliferative Skin Disorders. U.S. Patent US5885557A, 23 March 1999. [Google Scholar]
- Rajatanavin, N.; Suwanachote, S.; Kulkollakarn, S. Dihydroxyacetone: A Safe Camouflaging Option in Vitiligo. Int. J. Dermatol. 2008, 47, 402–406. [Google Scholar] [CrossRef]
- Stanko, R.; Robertson, R.; Galbreath, R.; Reilly, J., Jr.; Greenawalt, K.; Goss, F. Enhanced Leg Exercise Endurance with a High-Carbohydrate Diet and Dihydroxyacetone and Pyruvate. J. Appl. Physiol. 1990, 69, 1651–1656. [Google Scholar] [CrossRef]
- Niknahad, H.; Ghelichkhani, E. Antagonism of Cyanide Poisoning by Dihydroxyacetone. Toxicol. Lett. 2002, 132, 95–100. [Google Scholar] [CrossRef]
- Turner, B.; Hulpieu, H. A Study of the Antidotal Action of Sodium Thiosulphate and Dihydroxyacetone in Cyanide Poisoning, and the Alleged Antidotal Action of Glucose. J. Pharmacol. Exp. Ther. 1933, 48, 445–469. [Google Scholar]
- Usami, K.; Xiao, K.; Okamoto, A. Efficient Ketose Production by a Hydroxyapatite Catalyst in a Continuous Flow Module. ACS Sustain. Chem. Eng. 2019, 7, 3372–3377. [Google Scholar] [CrossRef]
- He, Z.; Ning, X.; Yang, G.; Wang, H.; Cao, Y.; Peng, F.; Yu, H. Selective Oxidation of Glycerol over Supported Noble Metal Catalysts. Catal. Today 2021, 365, 162–171. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, Y.; Yuan, D.; Luo, J.; Li, F.; Xiao, F.; Zhao, N. Selective Oxidation of Glycerol to Dihydroxyacetone over Au/CuxZr1–xOy Catalysts in Base-Free Conditions. ACS Appl. Mater. Interfaces 2019, 11, 44058–44068. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, G.; He, Y.; Feng, J.; Li, D. Identification of the Au/ZnO Interface as the Specific Active Site for the Selective Oxidation of the Secondary Alcohol Group in Glycerol. J. Catal. 2019, 369, 222–232. [Google Scholar] [CrossRef]
- Liu, S.-S.; Sun, K.-Q.; Xu, B.-Q. Specific Selectivity of Au-Catalyzed Oxidation of Glycerol and Other C 3 -Polyols in Water without the Presence of a Base. ACS Catal. 2014, 4, 2226–2230. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Chen, P.; Hou, Z. Selective Oxidation of Glycerol in a Base-Free Aqueous Solution: A Short Review. Chin. J. Catal. 2019, 40, 1020–1034. [Google Scholar] [CrossRef]
- Katryniok, B.; Kimura, H.; Skrzyńska, E.; Girardon, J.-S.; Fongarland, P.; Capron, M.; Ducoulombier, R.; Mimura, N.; Paul, S.; Dumeignil, F. Selective Catalytic Oxidation of Glycerol: Perspectives for High Value Chemicals. Green Chem. 2011, 13, 1960. [Google Scholar] [CrossRef]
- Walgode, P.M.; Faria, R.P.V.; Rodrigues, A.E. A Review of Aerobic Glycerol Oxidation Processes Using Heterogeneous Catalysts: A Sustainable Pathway for the Production of Dihydroxyacetone. Catal. Rev. 2021, 63, 422–511. [Google Scholar] [CrossRef]
- Painter, R.M.; Pearson, D.M.; Waymouth, R.M. Selective Catalytic Oxidation of Glycerol to Dihydroxyacetone. Angew. Chem. Int. Ed. 2010, 49, 9456–9459. [Google Scholar] [CrossRef] [PubMed]
- Lari, G.M.; Mondelli, C.; Pérez-Ramírez, J. Gas-Phase Oxidation of Glycerol to Dihydroxyacetone over Tailored Iron Zeolites. ACS Catal. 2015, 5, 1453–1461. [Google Scholar] [CrossRef]
- Ulgheri, F.; Spanu, P. An Efficient Chemical Conversion of Glycerol to Dihydroxyacetone. ChemistrySelect 2018, 3, 11569–11572. [Google Scholar] [CrossRef]
- Spanu, P.; Ulgheri, F. Method for the Selective Oxidation of Glycerol to Dihydroxyacetone. Patent WO 2014/102840 A1, 3 July 2014. [Google Scholar]
- Särkkä, H.; Bhatnagar, A.; Sillanpää, M. Recent Developments of Electro-Oxidation in Water Treatment—A Review. J. Electroanal. Chem. 2015, 754, 46–56. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef]
- Anglada, A.; Urtiaga, A.; Ortiz, I. Contributions of Electrochemical Oxidation to Waste-Water Treatment: Fundamentals and Review of Applications. J. Chem. Technol. Biotechnol. 2009, 84, 1747–1755. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Ab Rahim, M.H.; Alqahtani, T.M.; Witoon, T.; Lim, J.-W.; Cheng, C.K. A Review on Advances in Green Treatment of Glycerol Waste with a Focus on Electro-Oxidation Pathway. Chemosphere 2021, 276, 130128. [Google Scholar] [CrossRef]
- Simões, M.; Baranton, S.; Coutanceau, C. Electrochemical Valorisation of Glycerol. ChemSusChem 2012, 5, 2106–2124. [Google Scholar] [CrossRef]
- Huang, L.-W.; Vo, T.-G.; Chiang, C.-Y. Converting Glycerol Aqueous Solution to Hydrogen Energy and Dihydroxyacetone by the BiVO4 Photoelectrochemical Cell. Electrochim. Acta 2019, 322, 134725. [Google Scholar] [CrossRef]
- Huang, X.; Zou, Y.; Jiang, J. Electrochemical Oxidation of Glycerol to Dihydroxyacetone in Borate Buffer: Enhancing Activity and Selectivity by Borate–Polyol Coordination Chemistry. ACS Sustain. Chem. Eng. 2021, 9, 14470–14479. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Singh, S.; Cheng, C.K.; Ong, H.R.; Abdullah, H.; Khan, M.R.; Wongsakulphasatch, S. Glycerol Electro-Oxidation to Dihydroxyacetone on Phosphorous-Doped Pd/CNT Nanoparticles in Alkaline Medium. Catal. Commun. 2020, 139, 105964. [Google Scholar] [CrossRef]
- Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Operando Mechanistic Studies of Selective Oxidation of Glycerol to Dihydroxyacetone over Amorphous Cobalt Oxide. Appl. Catal. B Environ. 2022, 300, 120723. [Google Scholar] [CrossRef]
- Tran, G.-S.; Vo, T.-G.; Chiang, C.-Y. Earth-Abundant Manganese Oxide Nanoneedle as Highly Efficient Electrocatalyst for Selective Glycerol Electro-Oxidation to Dihydroxyacetone. J. Catal. 2021, 404, 139–148. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, Y.; Xi, J.; Luo, X. Selective Electro-Oxidation of Glycerol to Dihydroxyacetone by PtAg Skeletons. ACS Appl. Mater. Interfaces 2019, 11, 28953–28959. [Google Scholar] [CrossRef]
- Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C.-Y. Selective Electro-Oxidation of Glycerol to Dihydroxyacetone by a Non-Precious Electrocatalyst–CuO. Appl. Catal. B Environ. 2020, 265, 118543. [Google Scholar] [CrossRef]
- Kwon, Y.; Birdja, Y.; Spanos, I.; Rodriguez, P.; Koper, M.T.M. Highly Selective Electro-Oxidation of Glycerol to Dihydroxyacetone on Platinum in the Presence of Bismuth. ACS Catal. 2012, 2, 759–764. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.J.; Lim, E.J.; Kim, Y.; Noh, Y.; Huber, G.W.; Kim, W.B. Highly Selective Transformation of Glycerol to Dihydroxyacetone without Using Oxidants by a PtSb/C-Catalyzed Electrooxidation Process. Green Chem. 2016, 18, 2877–2887. [Google Scholar] [CrossRef]
- Ripoll, M.; Betancor, L. Opportunities for the Valorization of Industrial Glycerol via Biotransformations. Curr. Opin. Green Sustain. Chem. 2021, 28, 100430. [Google Scholar] [CrossRef]
- Jittjang, S.; Jiratthiticheep, I.; Kajonpradabkul, P.; Tiatongjitman, T.; Siriwatwechakul, W.; Boonyarattanakalin, S. Effect of NaCl Removal from Biodiesel-derived Crude Glycerol by Ion Exchange to Enhance Dihydroxyacetone Production by Gluconobacter thailandicus in Minimal Medium. J. Chem. Technol. Biotechnol. 2020, 95, 281–288. [Google Scholar] [CrossRef]
- Speck, J.C. The Lobry De Bruyn-Alberda Van Ekenstein Transformation. In Advances in Carbohydrate Chemistry; Wolfrom, M.L., Ed.; Academic Press: Cambridge, MA, USA, 1958; Volume 13, pp. 63–103. [Google Scholar]
- De Bruyn, C.A.L.; van Ekenstein, W.A. Action des alcalis sur les sucres, II. Transformation réciproque des uns dans les autres des sucres glucose, fructose et mannose. Recl. Trav. Chim. Pays-Bas 1895, 14, 203–216. [Google Scholar] [CrossRef]
- Wohl, A.; Neuberg, C. Zur Kenntniss des Glycerinaldehyds. Berichte Dtsch. Chem. Ges. 1900, 33, 3095–3110. [Google Scholar] [CrossRef] [Green Version]
- Sowden, J.C.; Schaffer, R. The Isomerization of D-Glucose by Alkali in D2O at 25°. J. Am. Chem. Soc. 1952, 74, 505–507. [Google Scholar] [CrossRef]
- Isbell, H.; Linek, K.; Hepner, K., Jr. Transformations of Sugars in Alkaline Solutions: Part II. Primary Rates of Enolization. Carbohydr. Res. 1971, 19, 319–327. [Google Scholar] [CrossRef]
- Gleason, W.; Barker, R. Evidence for a Hydride Shift in the Alkaline Rearrangements of D-Ribose. Can. J. Chem. 1971, 49, 1433–1440. [Google Scholar] [CrossRef]
- Fredenhagen, H.; Bonhoeffer, K. Hexose Rearrangement in Heavy Water. Z. Phys. Chem A 1938, 181, 392–405. [Google Scholar]
- Sowden, J.C.; Schaffer, R. The Reaction of D-Glucose, D-Mannose and D-Fructose in 0.035 N Sodium Hydroxide at 35°. J. Am. Chem. Soc. 1952, 74, 499–504. [Google Scholar] [CrossRef]
- Yamauchi, T.; Fukushima, K.; Yanagihara, R.; Osanai, S.; Yoshikawa, S. Epimerization and Isomerization of Various Monosaccharides Using Metal-Diamine Systems. Carbohydr. Res. 1990, 204, 233–239. [Google Scholar] [CrossRef]
- Yanagihara, R.; Soeda, K.; Shiina, S.; Osanai, S.; Yoshikawa, S. C-2 Epimerization of Aldoses by Calcium Ion in Basic Solutions. A Simple System to Transform D-Glucose and D-Xylose into D-Mannose and D-Lyxose. Bull. Chem. Soc. Jpn. 1993, 66, 2268–2272. [Google Scholar] [CrossRef]
- Angyal, S.J. A Short Note on the Epimerization of Aldoses. Carbohydr. Res. 1997, 300, 279–281. [Google Scholar] [CrossRef]
- Yaylayan, V.A.; Harty-Majors, S.; Ismail, A.A. Investigation of Dl-Glyceraldehyde–Dihydroxyacetone Interconversion by FTIR Spectroscopy. Carbohydr. Res. 1999, 318, 20–25. [Google Scholar] [CrossRef]
- Fischer, H.O.; Taube, C.; Baer, E. Über Den Krystallisierten Glycerinaldehyd Und Seine Umwandlung in Dioxy-aceton. Berichte Dtsch. Chem. Ges. B Ser. 1927, 60, 479–485. [Google Scholar] [CrossRef]
- Gutsche, C. David.; Redmore, Derek.; Buriks, R.S.; Nowotny, Kurt.; Grassner, Hans.; Armbruster, C.W. Base-Catalyzed Triose Condensations. J. Am. Chem. Soc. 1967, 89, 1235–1245. [Google Scholar] [CrossRef]
- Chen, S.-H.; Hiramatsu, H. Tautomer Structures in Ketose–Aldose Transformation of 1,3-Dihydroxyacetone Studied by Infrared Electroabsorption Spectroscopy. J. Phys. Chem. B 2019, 123, 10663–10671. [Google Scholar] [CrossRef] [PubMed]
- Nagorski, R.W.; Richard, J.P. Mechanistic Imperatives for Enzymatic Catalysis of Aldose−Ketose Isomerization: Isomerization of Glyceraldehyde in Weakly Alkaline Aqueous Solution Occurs with Intramolecular Transfer of a Hydride Ion. J. Am. Chem. Soc. 1996, 118, 7432–7433. [Google Scholar] [CrossRef]
- Dorofeeva, O.V.; Vogt, N.; Vogt, J.; Popik, M.V.; Rykov, A.N.; Vilkov, L.V. Molecular Structure and Conformational Composition of 1,3-Dihydroxyacetone Studied by Combined Analysis of Gas-Phase Electron Diffraction Data, Rotational Constants, and Results of Theoretical Calculations. Ideal Gas Thermodynamic Properties of 1,3-Dihydroxyacetone. J. Phys. Chem. A 2007, 111, 6434–6442. [Google Scholar] [CrossRef]
- Davis, L. The Structure of Dihydroxyacetone in Solution. Bioorg. Chem. 1973, 2, 197–201. [Google Scholar] [CrossRef]
- Strain, H.H.; Dore, W.H. Polymerization of Dihydroxyacetone. J. Am. Chem. Soc. 1934, 56, 2649–2650. [Google Scholar] [CrossRef]
- Spoehr, H.A.; Strain, H.H. The Effect of Weak Alkalies on the Trioses and on Methylglyoxal. J. Biol. Chem. 1930, 89, 503–525. [Google Scholar] [CrossRef]
- Owens, A. The Kinetics of the Dissociation of the Dihydroxyacetone Dimer in Aprotic Media. Master’s Thesis, University of Waikato, Hamilton, New Zealand, 2016. [Google Scholar]
- Rendleman, J.A., Jr.; Hodge, J.E. Complexes of Carbohydrates with Aluminate Ion. Aldose-Ketose Interconversion on Anion-Exchange Resin (Aluminate and Hydroxide Forms). Carbohydr. Res. 1979, 75, 83–99. [Google Scholar] [CrossRef]
- Bell, R.P.; Baughan, E.C. 410. Acid–Base Catalysis in the Depolymerisation of Dimeric Dihydroxyacetone. J. Chem. Soc. 1937, 1947–1953. [Google Scholar] [CrossRef]
- Fedoroňko, M.; Königstein, J. Kinetics of Mutual Isomerization of Trioses and Their Dehydration to Methylglyoxal. Collect. Czechoslov. Chem. Commun. 1969, 34, 3881–3894. [Google Scholar] [CrossRef]
- Owens, A.; Lane, J.R.; Manley-Harris, M.; Marie Jensen, A.; Jørgensen, S. Kinetics of Conversion of Dihydroxyacetone to Methylglyoxal in New Zealand Mānuka Honey: Part V—The Rate Determining Step. Food Chem. 2019, 276, 636–642. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Igarashi, T.; Takahashi, H.; Higasi, K. Infrared and Raman Studies of the Dimeric Structures of 1, 3-Dihydroxyacetone, d (+)-and Dl-Glyceraldehyde. J. Mol. Struct. 1976, 35, 85–99. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Takahashi, H. Conformational Studies of Glycolaldehyde and 1, 3-Dihydroxyacetone in Solution by 1H-NMR. Spectrochim. Acta Part Mol. Spectrosc. 1979, 35, 307–314. [Google Scholar] [CrossRef]
- Slepokura, K.; Lis, T. Crystal Structures of Dihydroxyacetone and Its Derivatives. Carbohydr. Res. 2004, 339, 1995–2007. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.P.; McDougall, A.O. Hydration Equilibria of Some Aldehydes and Ketones. Trans. Faraday Soc. 1960, 56, 1281. [Google Scholar] [CrossRef]
- Anslyn, E.V.; Dougherty, D.A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, USA, 2006; ISBN 1-891389-31-9. [Google Scholar]
- Taylor, P.; Smart, L.E.; Clark, G. Mechanism and Synthesis; Royal Society of Chemistry: London, UK, 2002; Volume 10, ISBN 0-85404-695-X. [Google Scholar]
- Jencks, W.P. Mechanism and Catalysis of Simple Carbonyl Group Reactions. In Progress in Physical Organic Chemistry; Cohen, S.G., Streitwieser, A., Taft, R.W., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 63–128. ISBN 978-0-470-17181-3. [Google Scholar]
- Levene, P.A.; Walti, A. Studies in Polymerization and Condensation. J. Biol. Chem. 1928, 78, 23–33. [Google Scholar] [CrossRef]
- Piloty, O. Ueber eine neue Totalsynthese des Glycerins und des Dioxyacetons. Berichte Dtsch. Chem. Ges. 1897, 30, 3161–3169. [Google Scholar] [CrossRef]
- Kabyemela, B.M.; Adschiri, T.; Malaluan, R.; Arai, K. Degradation Kinetics of Dihydroxyacetone and Glyceraldehyde in Subcritical and Supercritical Water. Ind. Eng. Chem. Res. 1997, 36, 2025–2030. [Google Scholar] [CrossRef]
- Möller, M.; Schröder, U. Hydrothermal Production of Furfural from Xylose and Xylan as Model Compounds for Hemicelluloses. RSC Adv. 2013, 3, 22253. [Google Scholar] [CrossRef]
- Jin, F.; Enomoto, H. Rapid and Highly Selective Conversion of Biomass into Value-Added Products in Hydrothermal Conditions: Chemistry of Acid/Base-Catalysed and Oxidation Reactions. Energy Environ. Sci. 2011, 4, 382–397. [Google Scholar] [CrossRef]
- You, S.J.; Kim, Y.T.; Park, E.D. Liquid-Phase Dehydration of d-Xylose over Silica–Alumina Catalysts with Different Alumina Contents. React. Kinet. Mech. Catal. 2014, 111, 521–534. [Google Scholar] [CrossRef]
- Grainger, M.N.C.; Manley-Harris, M.; Lane, J.R.; Field, R.J. Kinetics of Conversion of Dihydroxyacetone to Methylglyoxal in New Zealand Mānuka Honey: Part I—Honey Systems. Food Chem. 2016, 202, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Grainger, M.N.C.; Manley-Harris, M.; Lane, J.R.; Field, R.J. Kinetics of the Conversion of Dihydroxyacetone to Methylglyoxal in New Zealand Mānuka Honey: Part II—Model Systems. Food Chem. 2016, 202, 492–499. [Google Scholar] [CrossRef]
- Grainger, M.N.C.; Manley-Harris, M.; Lane, J.R.; Field, R.J. Kinetics of Conversion of Dihydroxyacetone to Methylglyoxal in New Zealand Mānuka Honey: Part III—A Model to Simulate the Conversion. Food Chem. 2016, 202, 500–506. [Google Scholar] [CrossRef]
- Grainger, M.N.C.; Owens, A.; Manley-Harris, M.; Lane, J.R.; Field, R.J. Kinetics of Conversion of Dihydroxyacetone to Methylglyoxal in New Zealand Mānuka Honey: Part IV—Formation of HMF. Food Chem. 2017, 232, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.M.; Molan, P.C.; Cursons, R.T. The Controlled in Vitro Susceptibility of Gastrointestinal Pathogens to the Antibacterial Effect of Manuka Honey. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 569–574. [Google Scholar] [CrossRef]
- Strain, H.H.; Spoehr, H.A. The Effect of Amines on the Conversion of Trioses into Methylglyoxal. J. Biol. Chem. 1930, 89, 527–534. [Google Scholar] [CrossRef]
- Königstein, J. Isomerization of Trioses in Acid Solutions Catalysed by Molybdate Ions. Collect. Czechoslov. Chem. Commun. 1978, 43, 1152–1158. [Google Scholar] [CrossRef]
- Riddle, V.; Lorenz, F.W. Nonenzymic, Polyvalent Anion-Catalyzed Formation of Methylglyoxal as an Explanation of Its Presence in Physiological Systems. J. Biol. Chem. 1968, 243, 2718–2724. [Google Scholar] [CrossRef] [PubMed]
- Lookhart, G.L.; Feather, M.S. Acid-Catalyzed Isomerization and Dehydration of Dl-Glyceraldehyde and 1,3-Dihydroxy-2-Propanone. Carbohydr. Res. 1978, 60, 259–265. [Google Scholar] [CrossRef]
- Taarning, E.; Saravanamurugan, S.; Spangsberg Holm, M.; Xiong, J.; West, R.M.; Christensen, C.H. Zeolite-catalyzed Isomerization of Triose Sugars. ChemSusChem 2009, 2, 625–627. [Google Scholar] [CrossRef]
- Rasrendra, C.B.; Fachri, B.A.; Makertihartha, I.G.B.N.; Adisasmito, S.; Heeres, H.J. Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water. ChemSusChem 2011, 4, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Lux, S. Catalytic Conversion of Dihydroxyacetone to Lactic Acid with Brønsted Acids and Multivalent Metal Ions. Chem. Biochem. Eng. Q. 2016, 29, 575–585. [Google Scholar] [CrossRef]
- Jolimaitre, E.; Delcroix, D.; Essayem, N.; Pinel, C.; Besson, M. Dihydroxyacetone Conversion into Lactic Acid in an Aqueous Medium in the Presence of Metal Salts: Influence of the Ionic Thermodynamic Equilibrium on the Reaction Performance. Catal. Sci. Technol. 2018, 8, 1349–1356. [Google Scholar] [CrossRef]
- Thornalley, P.J. Dicarbonyl Intermediates in the Maillard Reaction. Ann. N. Y. Acad. Sci. 2005, 1043, 111–117. [Google Scholar] [CrossRef]
- Theander, O.; Nelson, D.A. Aqueous, High-Temperature Transformation of Carbohydrates Relative to Utilization of Biomass. In Advances in Carbohydrate Chemistry and Biochemistry; Elsevier: Amsterdam, The Netherlands, 1988; Volume 46, pp. 273–326. ISBN 978-0-12-007246-0. [Google Scholar]
- Popoff, T.; Theander, O.; Westerlund, E. Formation of Aromatic Compounds from Carbohydrates. VI. Reaction of Dihydroxyacetone in Slightly Acidic Aqueous Solution. Acta Chem. Scand. B 1978, 32, 1–7. [Google Scholar] [CrossRef]
- Morales, M.; Dapsens, P.Y.; Giovinazzo, I.; Witte, J.; Mondelli, C.; Papadokonstantakis, S.; Hungerbühler, K.; Pérez-Ramírez, J. Environmental and Economic Assessment of Lactic Acid Production from Glycerol Using Cascade Bio- and Chemocatalysis. Energy Environ. Sci. 2015, 8, 558–567. [Google Scholar] [CrossRef] [Green Version]
- European Bioplastics. Report on Bioplastics Market Development Update 2021; European Bioplastics: Berlin, Germany, 2021; Available online: https://docs.european-bioplastics.org/publications/market_data/2021/Report_Bioplastics_Market_Data_2021_short_version.pdf (accessed on 20 March 2022).
- Denis, W. On the Behaviour of Various Aldehydes, Ketones and Alcohols towards Oxidizing Agents. Am. Chem. J. 1907, 38, 561–594. [Google Scholar]
- Innocenti, G.; Papadopoulos, E.; Fornasari, G.; Cavani, F.; Medford, A.J.; Sievers, C. Continuous Liquid-Phase Upgrading of Dihydroxyacetone to Lactic Acid over Metal Phosphate Catalysts. ACS Catal. 2020, 10, 11936–11950. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Tulaphol, S.; Mills, K.; Molley, A.; Hossain, M.A.; Lalvani, S.; Maihom, T.; Crocker, M.; Sathitsuksanoh, N. Aluminum-based Metal-Organic Framework as Water-tolerant Lewis Acid Catalyst for Selective Dihydroxyacetone Isomerization to Lactic Acid. ChemCatChem 2022, 14, e202101756. [Google Scholar] [CrossRef]
- Hossain, M.A.; Mills, K.N.; Molley, A.M.; Rahaman, M.S.; Tulaphol, S.; Lalvani, S.B.; Dong, J.; Sunkara, M.K.; Sathitsuksanoh, N. Catalytic Isomerization of Dihydroxyacetone to Lactic Acid by Heat Treated Zeolites. Appl. Catal. Gen. 2021, 611, 117979. [Google Scholar] [CrossRef]
- Sobuś, N.; Czekaj, I. Comparison of Synthetic and Natural Zeolite Catalysts’ Behavior in the Production of Lactic Acid and Ethyl Lactate from Biomass-Derived Dihydroxyacetone. Catalysts 2021, 11, 1006. [Google Scholar] [CrossRef]
- Takagaki, A.; Goto, H.; Kikuchi, R.; Oyama, S.T. Silica-Supported Chromia-Titania Catalysts for Selective Formation of Lactic Acid from a Triose in Water. Appl. Catal. Gen. 2019, 570, 200–208. [Google Scholar] [CrossRef]
- Feliczak-Guzik, A.; Sprynskyy, M.; Nowak, I.; Buszewski, B. Catalytic Isomerization of Dihydroxyacetone to Lactic Acid and Alkyl Lactates over Hierarchical Zeolites Containing Tin. Catalysts 2018, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Dapsens, P.Y.; Mondelli, C.; Pérez-Ramírez, J. Highly Selective Lewis Acid Sites in Desilicated MFI Zeolites for Dihydroxyacetone Isomerization to Lactic Acid. ChemSusChem 2013, 6, 831–839. [Google Scholar] [CrossRef] [PubMed]
- De Brito Santiago Neto, A.; da Cruz, M.G.A.; Jeanneau, E.; Oliveira, A.C.; Essayem, N.; Mishra, S. Designed Sol–Gel Precursors for Atomically Dispersed Nb and Pb within TiO2 as Catalysts for Dihydroxyacetone Transformation. Dalton Trans. 2021, 50, 1604–1609. [Google Scholar] [CrossRef] [PubMed]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4987-5429-3. [Google Scholar]
- Dapsens, P.Y.; Menart, M.J.; Mondelli, C.; Pérez-Ramírez, J. Production of Bio-Derived Ethyl Lactate on GaUSY Zeolites Prepared by Post-Synthetic Galliation. Green Chem 2014, 16, 589–593. [Google Scholar] [CrossRef] [Green Version]
- Mylin, A.M.; Levytska, S.I.; Sharanda, M.E.; Brei, V.V. Selective Conversion of Dihydroxyacetone–Ethanol Mixture into Ethyl Lactate over Amphoteric ZrO2–TiO2 Catalyst. Catal. Commun. 2014, 47, 36–39. [Google Scholar] [CrossRef]
- Collard, X. High Surface Area Zincosilicates as Efficient Catalysts for the Synthesis of Ethyl Lactate: An In-Depth Structural Investigation. Phys. Chem. Chem. Phys. 2015, 17, 26756. [Google Scholar] [CrossRef] [PubMed]
- Pighin, E.; Díez, V.K.; Di Cosimo, J.I. Synthesis of Ethyl Lactate from Triose Sugars on Sn/Al2O3 Catalysts. Appl. Catal. Gen. 2016, 517, 151–160. [Google Scholar] [CrossRef]
- Godard, N.; Vivian, A.; Fusaro, L.; Cannavicci, L.; Aprile, C.; Debecker, D.P. High-Yield Synthesis of Ethyl Lactate with Mesoporous Tin Silicate Catalysts Prepared by an Aerosol-Assisted Sol–Gel Process. ChemCatChem 2017, 9, 2211–2218. [Google Scholar] [CrossRef]
- Oberhauser, W.; Evangelisti, C.; Caporali, S.; Dal Santo, V.; Bossola, F.; Vizza, F. Ethyl Lactate from Dihydroxyacetone by a Montmorillonite-Supported Pt(II) Diphosphane Complex. J. Catal. 2017, 350, 133–140. [Google Scholar] [CrossRef]
- Pighin, E.; Díez, V.K.; Di Cosimo, J.I. Kinetic Study of the Ethyl Lactate Synthesis from Triose Sugars on Sn/Al2O3 Catalysts. Catal. Today 2017, 289, 29–37. [Google Scholar] [CrossRef]
- Godard, N.; Collard, X.; Vivian, A.; Bivona, L.A.; Fiorilli, S.; Fusaro, L.; Aprile, C. Rapid Room Temperature Synthesis of Tin-Based Mesoporous Solids: Influence of the Particle Size on the Production of Ethyl Lactate. Appl. Catal. Gen. 2018, 556, 73–80. [Google Scholar] [CrossRef]
- Vivian, A.; Fusaro, L.; Debecker, D.P.; Aprile, C. Mesoporous Methyl-Functionalized Sn-Silicates Generated by the Aerosol Process for the Sustainable Production of Ethyl Lactate. ACS Sustain. Chem. Eng. 2018, 6, 14095–14103. [Google Scholar] [CrossRef]
- Kim, K.D.; Wang, Z.; Jiang, Y.; Hunger, M.; Huang, J. The Cooperative Effect of Lewis and Brønsted Acid Sites on Sn-MCM-41 Catalysts for the Conversion of 1,3-Dihydroxyacetone to Ethyl Lactate. Green Chem. 2019, 21, 3383–3393. [Google Scholar] [CrossRef]
- Shi, J.; Li, F.; Zhang, J.; Li, N.; Wang, X.; Zhang, X.; Liu, Y. One-Pot Conversion of Dihydroxyacetone into Ethyl Lactate by Zr-Based Catalysts. RSC Adv. 2021, 11, 10935–10940. [Google Scholar] [CrossRef] [PubMed]
- West, R.M.; Holm, M.S.; Saravanamurugan, S.; Xiong, J.; Beversdorf, Z.; Taarning, E.; Christensen, C.H. Zeolite H-USY for the Production of Lactic Acid and Methyl Lactate from C3-Sugars. J. Catal. 2010, 269, 122–130. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.; Wang, Z.; Bian, J.; Lu, T.; Zhou, L.; Chen, C.; Xu, J. Conversion of Dihydroxyacetone to Methyl Lactate Catalyzed by Highly Active Hierarchical Sn-USY at Room Temperature. Catal. Sci. Technol. 2016, 7, 1757–1763. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, Y.; Xia, C.; Yi, X.; Zhao, Y.; Yuan, J.; Huang, K.; Zhu, B.; Zheng, A.; Lin, M.; et al. Insight into the Effects of Acid Characteristics on the Catalytic Performance of Sn-MFI Zeolites in the Transformation of Dihydroxyacetone to Methyl Lactate. J. Catal. 2020, 391, 386–396. [Google Scholar] [CrossRef]
- Kalberer, M.; Paulsen, D.; Sax, M.; Steinbacher, M.; Dommen, J.; Prevot, A.S.H.; Fisseha, R.; Weingartner, E.; Frankevich, V.; Zenobi, R.; et al. Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science 2004, 303, 1659–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabo, G.; Kertesz, J.C.; Laki, K. Interaction of Methylglyoxal with Poly-L-Lysine. Biomaterials 1980, 1, 27–29. [Google Scholar] [CrossRef]
- Han, Y.; Kawamura, K.; Chen, Q.; Mochida, M. Formation of High-Molecular-Weight Compounds via the Heterogeneous Reactions of Gaseous C8–C10 n-Aldehydes in the Presence of Atmospheric Aerosol Components. Atmos. Environ. 2016, 126, 290–297. [Google Scholar] [CrossRef]
- Yasmeen, F.; Sauret, N.; Gal, J.-F.; Maria, P.-C.; Massi, L.; Maenhaut, W.; Claeys, M. Characterization of Oligomers from Methylglyoxal under Dark Conditions: A Pathway to Produce Secondary Organic Aerosol through Cloud Processing during Nighttime. Atmos. Chem. Phys. 2010, 10, 3803–3812. [Google Scholar] [CrossRef] [Green Version]
- Krizner, H.E.; De Haan, D.O.; Kua, J. Thermodynamics and Kinetics of Methylglyoxal Dimer Formation: A Computational Study. J. Phys. Chem. A 2009, 113, 6994–7001. [Google Scholar] [CrossRef]
- Nemet, I.; Vikić-Topić, D.; Varga-Defterdarović, L. Spectroscopic Studies of Methylglyoxal in Water and Dimethylsulfoxide. Bioorg. Chem. 2004, 32, 560–570. [Google Scholar] [CrossRef]
- Lento, H.G.; Underwood, J.C.; Willits, C.O. Browning of sugar solutions. v. effect of ph on the browning of trioses. J. Food Sci. 1960, 25, 757–763. [Google Scholar] [CrossRef]
- Baudisch, O.; Deuel, H.J. Studies on Acetol. I. A New Test for Carbohydrates. J. Am. Chem. Soc. 1922, 44, 1585–1587. [Google Scholar] [CrossRef] [Green Version]
- Fischer, H.O.; Baer, E. Synthese von D-Fructose Und D-Sorbose Aus D-Glycerinaldehyd, Bzw. Aus D-Glycerinaldehyd Und Dioxy-aceton; Über Aceton-glycerinaldehyd III. Helv. Chim. Acta 1936, 19, 519–532. [Google Scholar] [CrossRef]
- Gutsche, C.D.; Buriks, R.S.; Nowotny, K.; Grassner, H. Tertiary Amine Catalysis of the Aldol Condensation. J. Am. Chem. Soc. 1962, 84, 3775–3777. [Google Scholar] [CrossRef]
- Berl, W.G.; Feazel, C.E. The Kinetics of Hexose Formation from Trioses in Alkaline Solution1. J. Am. Chem. Soc. 1951, 73, 2054–2057. [Google Scholar] [CrossRef]
- Walters, W.; Bonhoeffer, K. Über Die Geschwindigkeit Des Wasserstoffatom-Austausches von Aceton in Verdünnter Wässeriger Natronlauge. Z. Für Phys. Chem. 1938, 182, 265–274. [Google Scholar] [CrossRef]
- Schulz, W.; Meyerhof, O. Über Die Wärmetönung der Aldolkondensation der Hexose-1-Phosphorsäure. Biochem. Z 1936, 289, 87–96. [Google Scholar]
- Popik, O.; Pasternak-Suder, M.; Lesn, K.; Frelek, J.; Mlynarski, J. Amine-Catalyzed Direct Aldol Reactions of Hydroxy- and Dihydroxyacetone: Biomimetic Synthesis of Carbohydrates. J. Org. Chem. 2014, 79, 5728–5739. [Google Scholar] [CrossRef]
- Markert, M.; Mahrwald, R. Total Syntheses of Carbohydrates: Organocatalyzed Aldol Additions of Dihydroxyacetone. Chem. Eur. J. 2008, 14, 40–48. [Google Scholar] [CrossRef]
- Córdova, A.; Notz, W.; Barbas, C.F., III. Direct Organocatalytic Aldol Reactions in Buffered Aqueous Media. Chem. Commun. 2002, 24, 3024–3025. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-S.; Cheng, S.-X.; Zhuo, R.-X. Novel Biodegradable Aliphatic Polycarbonate Based on Ketal Protected Dihydroxyacetone. Macromol. Rapid Commun. 2004, 25, 959–963. [Google Scholar] [CrossRef]
- Tugaut, V.; Pellegrini, S.; Castanet, Y.; Mortreux, A. Cerium (IV) Ammonium Nitrate as an Efficient Catalyst for Oxidation of Alkyl Malonates into Ketomalonates by Dioxygen. J. Mol. Catal. Chem. 1997, 127, 25–32. [Google Scholar] [CrossRef]
- Zelikin, A.N.; Putnam, D. Poly(Carbonate−acetal)s from the Dimer Form of Dihydroxyacetone. Macromolecules 2005, 38, 5532–5537. [Google Scholar] [CrossRef]
- Simon, J.; Olsson, J.V.; Kim, H.; Tenney, I.F.; Waymouth, R.M. Semicrystalline Dihydroxyacetone Copolymers Derived from Glycerol. Macromolecules 2012, 45, 9275–9281. [Google Scholar] [CrossRef]
- Helou, M.; Brusson, J.-M.; Carpentier, J.-F.; Guillaume, S.M. Functionalized Polycarbonates from Dihydroxyacetone: Insights into the Immortal Ring-Opening Polymerization of 2,2-Dimethoxytrimethylene Carbonate. Polym. Chem. 2011, 2, 2789. [Google Scholar] [CrossRef]
- Wang, L.-S.; Cheng, S.-X.; Zhuo, R.-X. Synthesis and Hydrolytic Degradation of Aliphatic Polycarbonate Based on Dihydroxyacetone. Polym. Sci. Ser. B 2013, 55, 604–610. [Google Scholar] [CrossRef]
- Banella, M.B. New Strategies for the Preparation of High-Performance Bio-Based Polymers. Ph.D. Dissertation, Alma Mater Studiorum Università di Bologna, Bologna, Italy, 2018. [Google Scholar]
- Henderson, P.W.; Kadouch, D.J.M.; Singh, S.P.; Zawaneh, P.N.; Weiser, J.; Yazdi, S.; Weinstein, A.; Krotscheck, U.; Wechsler, B.; Putnam, D.; et al. A Rapidly Resorbable Hemostatic Biomaterial Based on Dihydroxyacetone. J. Biomed. Mater. Res. A 2009, 93A, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Zawaneh, P.N.; Doody, A.M.; Zelikin, A.N.; Putnam, D. Diblock Copolymers Based on Dihydroxyacetone and Ethylene Glycol: Synthesis, Characterization, and Nanoparticle Formulation. Biomacromolecules 2006, 7, 3245–3251. [Google Scholar] [CrossRef]
- Ricapito, N.G.; Mares, J.; Petralia, D.; Putnam, D. Insight into the Unexpectedly Rapid Degradation of Dihydroxyacetone-Based Hydrogels. Macromol. Chem. Phys. 2016, 217, 1917–1925. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, S.; Zhuo, R. Syntheses and Properties of Novel Copolymers of Polycaprolactone and Aliphatic Polycarbonate Based on Ketal-Protected Dihydroxyacetone. Polym. Bull. 2014, 71, 47–56. [Google Scholar] [CrossRef]
- Weiser, J.R.; Zawaneh, P.N.; Putnam, D. Poly(Carbonate-Ester)s of Dihydroxyacetone and Lactic Acid as Potential Biomaterials. Biomacromolecules 2011, 12, 977–986. [Google Scholar] [CrossRef]
- Weiser, J.R.; Yueh, A.; Putnam, D. Protein Release from Dihydroxyacetone-Based Poly(Carbonate Ester) Matrices. Acta Biomater. 2013, 9, 8245–8253. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, S.; Zhuo, R. Syntheses and Properties of Novel Copolymers of Polylactide and Aliphatic Polycarbonate Based on Ketal-Protected Dihydroxyacetone. Polym. Plast. Technol. Eng. 2013, 52, 1063–1067. [Google Scholar] [CrossRef]
- Hult, D.; García-Gallego, S.; Ingverud, T.; Andrén, O.C.J.; Malkoch, M. Degradable High Tg Sugar-Derived Polycarbonates from Isosorbide and Dihydroxyacetone. Polym. Chem. 2018, 9, 2238–2246. [Google Scholar] [CrossRef] [Green Version]
- Saxon, D.J.; Luke, A.M.; Sajjad, H.; Tolman, W.B.; Reineke, T.M. Next-Generation Polymers: Isosorbide as a Renewable Alternative. Prog. Polym. Sci. 2020, 101, 101196. [Google Scholar] [CrossRef]
- Dussenne, C.; Delaunay, T.; Wiatz, V.; Wyart, H.; Suisse, I.; Sauthier, M. Synthesis of Isosorbide: An Overview of Challenging Reactions. Green Chem. 2017, 19, 5332–5344. [Google Scholar] [CrossRef]
- Rose, M.; Palkovits, R. Isosorbide as a Renewable Platform Chemical for Versatile Applications—Quo Vadis? ChemSusChem 2012, 5, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-S.; Cheng, S.-X.; Zhuo, R.-X. Syntheses and Properties of Novel Copolymers of Poly(1,4-Dioxane-2-One) and Aliphatic Polycarbonate Based on Ketal-Protected Dihydroxyacetone. Macromol. Chem. Phys. 2013, 214, 458–463. [Google Scholar] [CrossRef]
- Korley, J.N.; Yazdi, S.; McHugh, K.; Kirk, J.; Anderson, J.; Putnam, D. One-Step Synthesis, Biodegradation and Biocompatibility of Polyesters Based on the Metabolic Synthon, Dihydroxyacetone. Biomaterials 2016, 98, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, R.; Zhang, H.; Wang, Y.; Ye, J.; Guo, L.; He, L.; Li, X.; Qiu, T.; Tuo, X. Dual Dynamic Network System Constructed by Waterborne Polyurethane for Improved and Recoverable Performances. Chem. Eng. J. 2022, 442, 136204. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, C.; Hong, Y.; Liu, R.; Zhou, X. Synthesis and Application of Self-Crosslinking and Flame Retardant Waterborne Polyurethane as Fabric Coating Agent. Prog. Org. Coat. 2019, 137, 105323. [Google Scholar] [CrossRef]
- Akar, A.; Talinli, N. Synthesis of a Polyspiroacetal. Makromol. Chem. Rapid Commun. 1989, 10, 127–130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bricotte, L.; Chougrani, K.; Alard, V.; Ladmiral, V.; Caillol, S. Dihydroxyacetone: A User Guide for a Challenging Bio-Based Synthon. Molecules 2023, 28, 2724. https://doi.org/10.3390/molecules28062724
Bricotte L, Chougrani K, Alard V, Ladmiral V, Caillol S. Dihydroxyacetone: A User Guide for a Challenging Bio-Based Synthon. Molecules. 2023; 28(6):2724. https://doi.org/10.3390/molecules28062724
Chicago/Turabian StyleBricotte, Léo, Kamel Chougrani, Valérie Alard, Vincent Ladmiral, and Sylvain Caillol. 2023. "Dihydroxyacetone: A User Guide for a Challenging Bio-Based Synthon" Molecules 28, no. 6: 2724. https://doi.org/10.3390/molecules28062724
APA StyleBricotte, L., Chougrani, K., Alard, V., Ladmiral, V., & Caillol, S. (2023). Dihydroxyacetone: A User Guide for a Challenging Bio-Based Synthon. Molecules, 28(6), 2724. https://doi.org/10.3390/molecules28062724