NRF2 Activation by Nitrogen Heterocycles: A Review
Abstract
:1. Introduction
2. Nitrogen Heterocycles as Modulators of the NRF2 Pathway
2.1. Five-Membered Nitrogen Heterocycles and NRF2 Activation
2.1.1. Pyrrolidine/Pyrroline Analogues
2.1.2. Pyrazoles
2.1.3. Imidazolidine/Imidazole Analogues
2.1.4. Triazoles
2.2. Six-Membered N-Heterocyclic Rings and NRF2 Activation
2.2.1. Piperidines
2.2.2. Pyridine Analogues
2.2.3. Pyrimidine and Pyrazine Analogues
2.2.4. Triazines
S/N | Molecule/Structure | Effective concentration(s) | NRF2 Target Genes | Disease of Interest | Study Model | Biological Activity of Interest | Reference(s) |
---|---|---|---|---|---|---|---|
1 | Pyrrolidine core Pyrrolidine-1-carbodithioic acid | 20 mg/kg | HO-1, NQO1, GCLM, GCLC | AD, Oxidative stress | Mice, Astrocytes | Antioxidant | [36] |
100 mg/kg | Infertility | Rats | Antioxidant, Anti-inflammatory | [37] | |||
50 mg/kg | GPx1, GPx4 | Inflammation bowel disease (IBD) | Mice | Antioxidant, Anti-inflammatory | [38] | ||
100 µM | NQO1, GCLM | Oxidative stress | HepG2 Cells | GCL induction, NRF2 localization | [39] | ||
1–10 µM | HO-1, NQO1, GCLM, GCLC | AD, Aβ toxicity | Mice | Antioxidant, neurogenesis | [40] | ||
2 | Pyrroline core (Z)-Methyl-4-(3,4-dihydroxybenzylidene)-2-methyl-5-oxo-1-phenethyl-4,5-dihydro-1H-pyrrolin-3-carboxylate. | 1 µM | HO-1, NQO1 | Neurodegenerative diseases | SH-SY5Y Cells | Antioxidant | [41] |
3 | Pyrazole core 1H-Pyrazole | 150 mg/kg | HO-1, GST | Liver injury, Oxidative stress | Mice | Antioxidant | [49] |
150 mg/kg | HO-1 | Oxidative stress | Mice | Antioxidant | [50] | ||
4 | 6-amino-3-methyl-4-(2-nitrophenyl) -2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile | 0.3–30 µM | HO-1, NQO1 | AD, Oxidative stress | AREc32 Cells | Antioxidant, Anti-inflammatory | [51] |
5 | 4-(3,5-bis((E)-4-hydroxy-3-methoxystyryl)-1H-pyrazol-1-yl)benzonitrile | 1.25–5µM | GPx | Oxidative stress | PC12 Cells | Antioxidant | [52] |
6 | Imidazole core (4aR,6aS,12aS,12bS,14bR)-8a-(1H-imidazole-1-carbonyl)-4,4,6a,11,11,14b-hexamethyl-3,13-dioxo-3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicene-2-carbonitrile | 50–200 mg/kg | HO-1, NQO1 | Lung cancer | Mice, RAW 264.7 Cells | Antioxidant, Anti-inflammatory | [59] |
30 µmol/kg | HO-1, NQO1, GCLC | Acute Kidney Injury | Mice | Antioxidant, Anti-inflammatory | [60] | ||
2 mg/kg | HO-1, NQO1, GCLC | Intestinal ischemia/reperfusion | Mice | Antioxidant, Anti-inflammatory | [61] | ||
7 | 1-((2’-(2H-tetrazol-5-yl)-[1,1’-biphenyl]-4-yl)methyl)-4-hydroxy-2-propyl-1H-imidazole-5-carboxylic acid | 10 mg/kg | GPx | Chronic nephrotoxicity | Rats | Antioxidant, Anti-inflammatory | [64] |
8 | Triazole core 4-(3-nitrophenyl)-1-(m-tolyl)-1H-1,2,3-triazole | 10 µM | HO-1, NQO1 | Oxidative stress | HEK293 Cells, FP and NQO1 Assay | Antioxidant | [70] |
9 | 1-(3-iodophenyl)-4-(3-nitrophenyl)-1H-1,2,3-triazole | 10 µM | HO-1, NQO1 | Oxidative stress | HEK293 Cells, FP and NQO1 Assay | Antioxidant | [70] |
10 | 2-(1-(3,5-dimethylphenyl)-5-(2-hydroxyphenyl)-1H-1,2,4-triazol-3-yl)-5-(trifluoromethyl)phenol | <400 mg/kg | HO-1, NQO1 | Ischemia stroke | Rats | Antioxidants | [72] |
11 | 2-(5-(2-hydroxyphenyl)-1-(2,2,2-trifluoroethyl)-1H-1,2,4-triazol-3-yl)-5-(trifluoromethyl)phenol | <1000 mg/kg | HO-1, NQO1 | Cerebral ischemic injury | Rats | Antioxidants | [71] |
12 | 4-(3-(2-hydroxy-4-methoxyphenyl)-5-(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl)benzenesulfonamide | 2.5–10 µM | GPx, SOD | Ischemic stroke | PC12 Cells | Antioxidant | [73] |
13 | Piperidine core (2E,4E)-5-(2-methoxyphenyl)-1-(piperidin-1-yl)penta-2,4-dien-1-one | 100 mg/kg | HO-1, NQO1 | PD | PC12 Cells | Antioxiodant | [76] |
14 | N-(4-pentylphenyl)-1-(3-phenylpropyl)piperidine-4-carboxamide | E1/E2/E2 enzymes | Gastric cancer | MIGC803 Cells | Anticancer | [80] | |
15 | Pyridine core (+)-4,6-Anhydrooxysporidinone | 2.5 and 5 µM | HO-1 | Oxidative stress, apoptosis | HT22 cells | Antioxidant | [87] |
16 | (E)-3-chloro-2-(2-((2-chlorophenyl)sulfonyl)vinyl)pyridine | 30 mg/kg | HO-1, GCLC, GCLM, SOD-1 | PD | Mice | Antioxidant, anti-inflammatory | [88] |
17 | Pyrimidine core 1-(tert-butyl)-6-methoxy-N-(4-methoxybenzyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine | 30 mg/kg | HO-1, NQO1, GCLM, | PD | Mice | Antioxidant, anti-inflammatory | [94] |
18 | 1-benzyl-6-(methylthio)-N-(1-phenylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine | 2000 mg/kg | HO-1, NQO1, GCLM, GCLC | PD | Mice | Antioxidant, anti-inflammatory | [95] |
19 | 1-((3-(4-amino-3-methyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)ethynyl)cyclohexanol | 20 µM | HO-1, NQO1 | Ischemia reperfusion injury | Mice | Antioxidant, anti-inflammatory | [96] |
20 | Pyrazine core tetramethyl pyrazine | 20 mg/kg | GCLC | PD | Mice | Antioxidant | [97] |
21 | Triazine core 3-(methylthio)-5,6-diphenyl-1,2,4-triazine | 10 µM | HO-1, GPx1 | AD | PC12 Cells | Antioxidant | [103] |
22 | 5,6-bis(4-chlorophenyl)-3-(methylthio)-1,2,4-triazine | 10 µM | HO-1, GPx1 | AD | PC12 Cells | Antioxidant | [103] |
23 | 5,6-bis(4-methoxyphenyl)-3-(methylthio)-1,2,4-triazine | 5–20 µ | HO-1, GPx1 | AD | PC12 Cells | Antioxidant, anti-inflammatory | [104] |
2.3. Fused/Condensed Nitrogen Heterocyclic Compounds
2.3.1. Indoles
2.3.2. Quinazolines
2.3.3. Isoquinolines
S/N | Molecule/Structure | Effective Concentration(s) | NRF2 Target Genes | Disease of Interest | Study Model | Biological Activity of Interest | Reference(s) |
---|---|---|---|---|---|---|---|
24 | Indole core (1H-indol-3-yl)methanol | 20mg/kg | NQO1 | Prostate cancer | Mice | Antioxidant | [114] |
25 | 3,3′-diindolylmethane | 25–100 µM | NQO1, HO-1 | Oxidative stress | NIH3T3 Cells | Antioxidant | [115] |
5 µM | NQO1 | Prostate cancer | TRAMP mice, C1 Cells | Antioxidant, Anticancer | [116] | ||
26 | (3R,6S,12aR,13aR)-3-isopropyl-12a-methoxy-13a-methyl-6-(2-methylprop-1-en-1-yl)-2,3,13,13a-tetrahydro-1H-pyrazino[1’,2’:3,4]pyrimido[1,6-a]indole-1,4,12(6H,12aH)-trione | 10–50 µM | NQO1 | Oxidative stress | SH-SY5Y Cells | Antioxidant | [117] |
27 | 2-hydroxy-3-(1H-indol-3-yl)propanoic acid | 0.1–10 mM | NQO1, SOD-2, GPX-2 | Intestinal inflammation | Gut epithelial cells | Antioxidant, Anti-inflammatory | [118] |
28 | 2,3-dihydrocyclopenta[b]indol-1(4H)-one | 0.1 µM | NQO1 | PD | SH-SY5Y | Antioxidant | [119] |
29 | 1-((4-methoxyphenyl)sulfonyl)-5-(((4-methoxyphenyl)sulfonyl)methyl)-2-methyl-N’-phenyl-1H-benzo[g]indole-3-carbohydrazide | 4–100 µM | NQO1 | Oxidative stress | MEF Cells, HepG2 Cells | Antioxidant | [120] |
30 | 5-(3-(((3-methoxybenzyl)amino)methyl)indolin-1-yl)thiophene-2-carboxylic acid | 5 µM | NQO1 | Oxidative stress | HeLa Cells | Antioxidant | [121] |
31 | Quinazoline core 2-(4-bromophenyl)quinazolin-4(1H)-one | 15, 30 mg/kg | NQO1, HO-1 | Liver carcinogenesis | Rat | Antioxidant, Anticancer | [131] |
32 | indolo[2,1-b]quinazoline-6,12-dione | 1 µM | HO-1, GCLC | Oxidative stress | HepG2 Cells | Antioxidant | [132] |
33 | Isoquinoline core (Z)-3-(2-(3-fluorophenyl)-2-oxoethylidene)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one | 10 µM | NQO1 | Oxidative stress | HepG2-ARE-C8 Cells | Antioxidant | [141] |
34 | (Z)-3-(2-oxo-2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one | 10 µM | NQO1 | Oxidative stress | HepG2-ARE-C8 Cells | Antioxidant | [141] |
35 | 7-fluoro-1,3-diphenylisoquinolin-1-amine | 10, 25 mg/kg | HO-1 | Amnesia, Oxidative stress | Mice | Anti-amnesic, Antioxidant | [142] |
36 | 9,10-dimethoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinolin-7-ium | 50 mg/kg | NQO1, HO-1, SOD-1, CAT, GPx | Gouty arthritis | Rats | Antioxidant, anti-inflammatory | [143] |
37 | 2-(4-methoxy-N-(4-(4-methoxy-N-(2,2,2-trifluoroethyl)phenylsulfonamido)isoquinolin-1-yl)phenylsulfonamido)acetic acid | 15 µM | NQO1 | Hepatic injury | U2OS Cells | Antioxidant, Hepatocellular protection | [144,145] |
3. Pharmacological Profile of NRF2-Activating Nitrogen Heterocyclic Molecules
4. Structure–Activity Relationship of NRF2-Activating Nitrogen Heterocyclic Molecules
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Adv. 2020, 10, 44247–44311. [Google Scholar] [CrossRef]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Singh, A.K.; Singh, H.; Vijayan, V.; Kumar, D.; Naik, J.; Thareja, S.; Yadav, J.P.; Pathak, P.; Grishina, M.; et al. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals 2023, 16, 299. [Google Scholar] [CrossRef]
- Egbujor, M.C.; Egu, S.A.; Okonkwo, V.I.; Jacob, A.D.; Egwuatu, P.I.; Amasiatu, I.S. Antioxidant Drug Design: Historical and Recent Developments. J. Pharm. Res. Int. 2021, 32, 36–56. [Google Scholar] [CrossRef]
- Egbujor, M.C.; Garrido, J.; Borges, F.; Saso, L. Sulfonamide a Valid Scaffold for Antioxidant Drug Development. Mini-Reviews Org. Chem. 2022, 20, 190–209. [Google Scholar] [CrossRef]
- Egbujor, M.C.; Buttari, B.; Profumo, E.; Telkoparan-Akillilar, P.; Saso, L. An Overview of NRF2-Activating Compounds Bearing α,β-Unsaturated Moiety and Their Antioxidant Effects. Int. J. Mol. Sci. 2022, 23, 8466. [Google Scholar] [CrossRef]
- Cores, Á.; Piquero, M.; Villacampa, M.; León, R.; Menéndez, J.C. NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules 2020, 10, 904. [Google Scholar] [CrossRef]
- Egbujor, M.C.; Saha, S.; Buttari, B.; Profumo, E.; Saso, L. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: A therapeutic road map for oxidative stress. Expert Rev. Clin. Pharmacol. 2021, 14, 465–480. [Google Scholar] [CrossRef]
- Sun, Z.; Chin, Y.E.; Zhang, D.D. Acetylation of Nrf2 by p300/CBP Augments Promoter-Specific DNA Binding of Nrf2 during the Antioxidant Response. Mol. Cell. Biol. 2009, 29, 2658–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodore, M.; Kawai, Y.; Yang, J.; Kleshchenko, Y.; Reddy, S.P.; Villalta, F.; Arinze, I.J. Multiple Nuclear Localization Signals Function in the Nuclear Import of the Transcription Factor Nrf2. J. Biol. Chem. 2008, 283, 8984–8994, Erratum in: J. Biol. Chem. 2008, 283, 14176. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, M.C.; Zhang, D.D. The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev. 2013, 27, 2179–2191. [Google Scholar] [CrossRef] [Green Version]
- Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.-L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013, 1, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Nioi, P.; Nguyen, T.; Sherratt, P.J.; Pickett, C.B. The Carboxy-Terminal Neh3 Domain of Nrf2 Is Required for Transcriptional Activation. Mol. Cell. Biol. 2005, 25, 10895–10906. [Google Scholar] [CrossRef] [Green Version]
- Katoh, Y.; Itoh, K.; Yoshida, E.; Miyagishi, M.; Fukamizu, A.; Yamamoto, M. Two Domains of Nrf2 Cooperatively Bind CBP, a CREB Binding Protein, and Synergistically Activate Transcription. Genes Cells 2001, 6, 857–868. [Google Scholar] [CrossRef]
- Rada, P.; Rojo, A.I.; Evrard-Todeschi, N.; Innamorato, N.G.; Cotte, A.; Jaworski, T.; Tobón-Velasco, J.C.; Devijver, H.; García-Mayoral, M.F.; Van Leuven, F.; et al. Structural and Functional Characterization of Nrf2 Degradation by the Glycogen Synthase Kinase 3/β-TrCP Axis. Mol. Cell. Biol. 2012, 32, 3486–3499. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, K.; Geng, M.; Gao, P.; Wu, X.; Hai, Y.; Li, Y.; Li, Y.; Luo, L.; Hayes, J.D.; et al. RXRα Inhibits the NRF2-ARE Signaling Pathway through a Direct Interaction with the Neh7 Domain of NRF2. Cancer Res. 2013, 73, 3097–3108. [Google Scholar] [CrossRef] [Green Version]
- Cullinan, S.B.; Gordan, J.D.; Jin, J.; Harper, J.W.; Diehl, J.A. The Keap1-BTB Protein Is an Adaptor That Bridges Nrf2 to a Cul3-Based E3 Ligase: Oxidative Stress Sensing by a Cul3-Keap1 Ligase. Mol. Cell. Biol. 2004, 24, 8477–8486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egbujor, M.C.; Petrosino, M.; Zuhra, K.; Saso, L. The Role of Organosulfur Compounds as Nrf2 Activators and Their Antioxidant Effects. Antioxidants 2022, 11, 1255. [Google Scholar] [CrossRef]
- Cuadrado, A.; Rojo, A.I.; Wells, G.; Hayes, J.D.; Cousin, S.P.; Rumsey, W.L.; Attucks, O.C.; Franklin, S.; Levonen, A.-L.; Kensler, T.W.; et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 2019, 18, 295–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalbandian, M.; Radak, Z.; Takeda, M. N-acetyl-L-cysteine prevents lactate-mediated PGC1-alpha expression in C2C12 myotubes. Biology 2019, 8, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degendorfer, G.; Chuang, C.Y.; Hammer, A.; Malle, E.; Davies, M.J. Peroxynitrous acid induces structural and functional modifications to basement membranes and its key component, laminin. Free. Radic. Biol. Med. 2015, 89, 721–733. [Google Scholar] [CrossRef]
- Kerch, G. Tissue Integrity and COVID-19. Encyclopedia 2021, 1, 206–219. [Google Scholar] [CrossRef]
- Zhang, H.; Davies, K.J.; Forman, H.J. Oxidative stress response and Nrf2 signaling in aging. Free. Radic. Biol. Med. 2015, 88, 314–336. [Google Scholar] [CrossRef] [Green Version]
- Wardyn, J.D.; Ponsford, A.H.; Sanderson, C.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 2015, 43, 621–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Studer, A. Recent Advances in the Synthesis of Nitrogen Heterocycles via Radical Cascade Reactions Using Isonitriles as Radical Acceptors. Chem. Soc. Rev. 2015, 44, 3505–3521. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett. 2015, 56, 3075–3081. [Google Scholar] [CrossRef]
- Gordon, E.M.; Barrett, R.W.; Dower, W.J.; Fodor, S.P.A.; Gallop, M.A. Applications of Combinatorial Technologies to Drug Discovery. 2. Combinatorial Organic Synthesis, Library Screening Strategies, and Future Directions. J. Med. Chem. 1994, 37, 1385–1401. [Google Scholar] [CrossRef]
- Ismail, F.M.; Levitsky, D.O.; Dembitsky, V.M. Aziridine alkaloids as potential therapeutic agents. Eur. J. Med. Chem. 2009, 44, 3373–3387. [Google Scholar] [CrossRef]
- Fürmeier, S.; Metzger, J.O. Fat-Derived Aziridines and Their N-Substituted Derivatives: Biologically Active Compounds Based on Renewable Raw Materials. Eur. J. Org. Chem. 2003, 2003, 649–659. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.-M.; Na, J.-M.; Hahn, H.-G.; Cho, S.-W.; Yang, S.-J. Protective effect of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on hypoxia-induced toxicity by suppressing microglial activation in BV-2 cells. BMB Rep. 2016, 49, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Baumann, M.; Baxendale, I.; Ley, S.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem. 2011, 7, 442–495. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, R.; Li, J.; Huang, Q.; Liu, S.; He, J. Pyrrole-2-Carbaldehydes with Neuroprotective Activities from Moringa Oleifera Seeds. Phytochemistry 2022, 204, 113451. [Google Scholar] [CrossRef]
- Łowicki, D.; Przybylski, P. Tandem construction of biological relevant aliphatic 5-membered N-heterocycles. Eur. J. Med. Chem. 2022, 235, 114303. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Shida, N.; Atobe, M. Synthesis of piperidine and pyrrolidine derivatives by electroreductive cyclization of imine with terminal dihaloalkanes in a flow microreactor. Beilstein J. Org. Chem. 2022, 18, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Bhat, C.; Tilve, S.G. Recent advances in the synthesis of naturally occurring pyrrolidines, pyrrolizidines and indolizidine alkaloids using proline as a unique chiral synthon. RSC Adv. 2014, 4, 5405–5452. [Google Scholar] [CrossRef]
- Liddell, J.R.; Lehtonen, S.; Duncan, C.; Keksa-Goldsteine, V.; Levonen, A.-L.; Goldsteins, G.; Malm, T.; White, A.R.; Koistinaho, J.; Kanninen, K.M. Pyrrolidine Dithiocarbamate Activates the Nrf2 Pathway in Astrocytes. J. Neuroinflammation 2016, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Delen, O.; Uz, Y.H. Protective effect of pyrrolidine dithiocarbamate against methotrexate-induced testicular damage. Hum. Exp. Toxicol. 2021, 40, S164–S177. [Google Scholar] [CrossRef]
- Yin, J.; Wu, M.; Duan, J.; Liu, G.; Cui, Z.; Zheng, J.; Chen, S.; Ren, W.; Deng, J.; Tan, X.; et al. Pyrrolidine Dithiocarbamate Inhibits NF-KappaB Activation and Upregulates the Expression of Gpx1, Gpx4, Occludin, and ZO-1 in DSS-Induced Colitis. Appl. Biochem. Biotechnol. 2015, 177, 1716–1728. [Google Scholar] [CrossRef]
- Zipper, L.M. Erk Activation Is Required for Nrf2 Nuclear Localization during Pyrrolidine Dithiocarbamate Induction of Glutamate Cysteine Ligase Modulatory Gene Expression in HepG2 Cells. Toxicol. Sci. 2003, 73, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Kärkkäinen, V.; Pomeshchik, Y.; Savchenko, E.; Dhungana, H.; Kurronen, A.; Lehtonen, S.; Naumenko, N.; Tavi, P.; Levonen, A.-L.; Yamamoto, M.; et al. Nrf2 Regulates Neurogenesis and Protects Neural Progenitor Cells Against Aβ Toxicity. STEM CELLS 2014, 32, 1904–1916. [Google Scholar] [CrossRef]
- Cores, A.; Abril, S.; Michalska, P.; Duarte, P.; Olives, A.; Martín, M.; Villacampa, M.; León, R.; Menéndez, J. Bisavenathramide Analogues as Nrf2 Inductors and Neuroprotectors in In Vitro Models of Oxidative Stress and Hyperphosphorylation. Antioxidants 2021, 10, 941. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, G.; Lynch, P.M.; Phillips, R.K.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; et al. The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor, in Familial Adenomatous Polyposis. N. Engl. J. Med. 2000, 342, 1946–1952. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, G.; Rose, T.; Rissler, K. Determination of Lonazolac and Its Hydroxy and O-Sulfated Metabolites by on-Line Sample Preparation Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 766, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Hampp, C.; Hartzema, A.G.; Kauf, T.L. Cost-Utility Analysis of Rimonabant in the Treatment of Obesity. Value Health 2008, 11, 389–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, A.; Dreger, A. Recent Advances in the Chemistry of Pyrazoles. Properties, Biological Activities, and Syntheses. Curr. Org. Chem. 2011, 15, 1423–1463. [Google Scholar] [CrossRef]
- Zora, M.; Kivrak, A.; Yazici, C. Synthesis of Pyrazoles via Electrophilic Cyclization. J. Org. Chem. 2011, 76, 6726–6742. [Google Scholar] [CrossRef]
- Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman. Review: Biologically active pyrazole derivatives. New J. Chem. 2017, 41, 16–41. [Google Scholar] [CrossRef]
- Lu, Y.; Gong, P.; Cederbaum, A.I. Pyrazole Induced Oxidative Liver Injury Independent of CYP2E1/2A5 Induction Due to Nrf2 Deficiency. Toxicology 2008, 252, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Cederbaum, A. Nrf2 and antioxidant defense against CYP2E1 toxicity. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1223–1244. [Google Scholar] [CrossRef]
- Gameiro, I.; Michalska, P.; Tenti, G.; Cores, Á.; Buendia, I.; Rojo, A.I.; Georgakopoulos, N.D.; Hernández-Guijo, J.M.; Ramos, M.T.; Wells, G.; et al. Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer’s disease. Sci. Rep. 2017, 7, 45701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, L.; Shi, J.; Jiang, C.; Zhang, L.; Feng, L.; Liu, J.; Zhang, J. Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem. Int. 2019, 125, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Ferm, R.J.; Riebsomer, J.L. The Chemistry of the 2-Imidazolines and Imidazolidines. Chem. Rev. 1954, 54, 593–613. [Google Scholar] [CrossRef]
- Fang, S.; Yu, H.; Yang, X.; Li, J.; Shao, L. Nickel-Catalyzed Construction of 2,4-Disubstituted Imidazoles via C–C Coupling and C−N Condensation Cascade Reactions. Adv. Synth. Catal. 2019, 361, 3312–3317. [Google Scholar] [CrossRef]
- Shabalin, D.A.; Camp, J.E. Recent advances in the synthesis of imidazoles. Org. Biomol. Chem. 2020, 18, 3950–3964. [Google Scholar] [CrossRef]
- Siwach, A.; Verma, P.K. Synthesis and therapeutic potential of imidazole containing compounds. BMC Chem. 2021, 15, 1–69. [Google Scholar] [CrossRef]
- Kieć-Kononowicz, K.; Robak, J. Evaluation of Mercaptoalkyl Derivatives of Imidazolidine-4-One as Potential Antioxidants and Free Radical Scavengers. Farmaco 1996, 51, 819–824. [Google Scholar] [CrossRef]
- Meng, X.; Waddington, J.C.; Tailor, A.; Lister, A.; Hamlett, J.; Berry, N.G.; Park, B.K.; Sporn, M.B. CDDO-imidazolide Targets Multiple Amino Acid Residues on the Nrf2 Adaptor, Keap1. J. Med. Chem. 2020, 63, 9965–9976. [Google Scholar] [CrossRef]
- To, C.; Ringelberg, C.S.; Royce, D.B.; Williams, C.R.; Risingsong, R.; Sporn, M.B.; Liby, K.T. Dimethyl Fumarate and the Oleanane Triterpenoids, CDDO-Imidazolide and CDDO-Methyl Ester, Both Activate the Nrf2 Pathway but Have Opposite Effects in the A/J Model of Lung Carcinogenesis. Carcinogenesis 2015, 36, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Reddy, N.M.; Higbee, E.M.; Potteti, H.R.; Noel, S.; Racusen, L.; Kensler, T.W.; Sporn, M.B.; Reddy, S.P.; Rabb, H. The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia–reperfusion injury in mice. Kidney Int. 2014, 85, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ye, M.; Wang, C.; Wang, Z.; Zhou, W. Protective effect of CDDO-imidazolide against intestinal ischemia/reperfusion injury in mice. Eur. J. Inflamm. 2018, 16, 2058739218802681. [Google Scholar] [CrossRef] [Green Version]
- Sussan, T.E.; Rangasamy, T.; Blake, D.J.; Malhotra, D.; El-Haddad, H.; Bedja, D.; Yates, M.S.; Kombairaju, P.; Yamamoto, M.; Liby, K.T.; et al. Targeting Nrf2 with the triterpenoid CDDO- imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc. Natl. Acad. Sci. USA 2009, 106, 250–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vardanyan, R.S.; Hruby, V.J. Synthesis of Best-Seller Drugs; Elsevier/AP: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-411492-0. [Google Scholar]
- Gounder, V.K.; Arumugam, S.; Arozal, W.; Thandavarayan, R.A.; Pitchaimani, V.; Harima, M.; Suzuki, K.; Nomoto, M.; Watanabe, K. Olmesartan protects against oxidative stress possibly through the Nrf2 signaling pathway and inhibits inflammation in daunorubicin-induced nephrotoxicity in rats. Int. Immunopharmacol. 2014, 18, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Kuang, C.; Jiang, Y.; Yang, Q. The Use of Calcium Carbide in the Synthesis of 1-Monosubstituted Aryl 1,2,3-Triazole via Click Chemistry. Synlett 2009, 2009, 3163–3166. [Google Scholar] [CrossRef]
- Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. [Google Scholar] [CrossRef]
- Dixit, D.; Verma, P.K.; Marwaha, R.K. A review on ‘triazoles’: Their chemistry, synthesis and pharmacological potentials. J. Iran. Chem. Soc. 2021, 18, 2535–2565. [Google Scholar] [CrossRef]
- Paprocka, R.; Wiese, M.; Eljaszewicz, A.; Helmin-Basa, A.; Gzella, A.; Modzelewska, B.; Michalkiewicz, J. Synthesis and anti-inflammatory activity of new 1,2,4-triazole derivatives. Bioorganic Med. Chem. Lett. 2015, 25, 2664–2667. [Google Scholar] [CrossRef]
- Pachuta-Stec, A. Antioxidant Activity of 1,2,4-Triazole and its Derivatives: A Mini-Review. Mini-Reviews Med. Chem. 2022, 22, 1081–1094. [Google Scholar] [CrossRef]
- Bertrand, H.C.; Schaap, M.; Baird, L.; Georgakopoulos, N.D.; Fowkes, A.; Thiollier, C.; Kachi, H.; Dinkova-Kostova, A.T.; Wells, G. Design, Synthesis, and Evaluation of Triazole Derivatives That Induce Nrf2 Dependent Gene Products and Inhibit the Keap1–Nrf2 Protein–Protein Interaction. J. Med. Chem. 2015, 58, 7186–7194. [Google Scholar] [CrossRef]
- Lao, Y.; Huang, P.; Chen, J.; Wang, Y.; Su, R.; Shao, W.; Hu, W.; Zhang, J. Discovery of 1,2,4-triazole derivatives as novel neuroprotectants against cerebral ischemic injury by activating antioxidant response element. Bioorganic Chem. 2022, 128, 106096. [Google Scholar] [CrossRef]
- Lao, Y.; Wang, Y.; Chen, J.; Huang, P.; Su, R.; Shi, J.; Jiang, C.; Zhang, J. Synthesis and biological evaluation of 1,2,4-triazole derivatives as potential Nrf2 activators for the treatment of cerebral ischemic injury. Eur. J. Med. Chem. 2022, 236, 114315. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Jiang, C.; Chen, J.; Shi, J.; Li, X.; Wang, Y.; Wen, J.; Zhou, S.; Liang, J.; Lao, Y.; et al. Synthesis and biological evaluation of 1,2,4-triazole derivatives as potential neuroprotectant against ischemic brain injury. Eur. J. Med. Chem. 2020, 190, 112114. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Molvi, K.I.; Nazim, S.; Baig, I.; Memon, T.; Rahil, M. The Importance of Six Membered Saturated Nitrogen Containing Ring in Psychological Disorders. J. Chem. Pharm. Res. 2012, 4, 872. [Google Scholar]
- Kaur, N. Metal- and Nonmetal-Assisted Synthesis of Six-Membered Heterocycles; Elsevier: Amsterdam, The Netherland; Cambridge, MA, USA, 2020; ISBN 978-0-12-820282-1. [Google Scholar]
- Wang, L.; Cai, X.; Shi, M.; Xue, L.; Kuang, S.; Xu, R.; Qi, W.; Li, Y.; Ma, X.; Zhang, R.; et al. Identification and Optimization of Piperine Analogues as Neuroprotective Agents for the Treatment of Parkinson’s Disease via the Activation of Nrf2/Keap1 Pathway. Eur. J. Med. Chem. 2020, 199, 112385. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Xu, J.; Cao, L.; Liang, C.; Cheng, R.; Yao, X.; Sun, M.; Ye, J. Rapid Synthesis of α-Chiral Piperidines via a Highly Diastereoselective Continuous Flow Protocol. Org. Lett. 2022, 24, 3205–3210. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-Q.; Opatz, T. Chapter two-Recent Advances in the Synthesis of Piperidines: Functionalization of Preexisting Ring Systems, Heterocyclic Chemistry; Academic Press: Cambridge, MA, USA, 2018; Volume 125, pp. 107–234. [Google Scholar]
- Abdelshaheed, M.M.; Fawzy, I.M.; El-Subbagh, H.I.; Youssef, K.M. Piperidine nucleus in the field of drug discovery. Futur. J. Pharm. Sci. 2021, 7, 188. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Q.-H.; Li, X.-J.; Wang, S.-Q.; Chen, X.-B.; Yu, B.; Liu, H.-M. Discovery of a cinnamyl piperidine derivative as new neddylation inhibitor for gastric cancer treatment. Eur. J. Med. Chem. 2021, 226, 113896. [Google Scholar] [CrossRef]
- Shimizu, S.; Watanabe, N.; Kataoka, T.; Shoji, T.; Abe, N.; Morishita, S.; Ichimura, H. Pyridine and Pyridine Derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2000; ISBN 978-3-527-30385-4. [Google Scholar]
- Tarr, J.B.; Arditti, J. Niacin Biosynthesis in Seedlings of Zea mays. Plant Physiol. 1982, 69, 553–556. [Google Scholar] [CrossRef] [Green Version]
- Kröhnke, F.; Zecher, W.; Curtze, J.; Drechsler, D.; Pfleghar, K.; Schnalke, K.E.; Weis, W. Syntheses using the michael adddition of phridinium salts. Angew. Chem. Int. Ed. Engl. 1962, 1, 626–632. [Google Scholar] [CrossRef]
- Kumar, S.L.; Tabassum, S.; Sagar, K.S.; Govindaraju, S. A Mini Review on the Multicomponent Synthesis of Pyridine Derivatives. Chemistryselect 2022, 7, e202203668. [Google Scholar] [CrossRef]
- Kotb, E.R.; Soliman, H.; Morsy, E.M.H.; Abdelwahed, N.A.M. New Pyridine and Triazolopyridine Derivatives: Synthesis, Antimicrobial and Antioxidant Evaluation. Acta Pol. Pharm. Drug Res. 2017, 74, 861–872. [Google Scholar]
- Chaban, T.; Matiychuk, V.; Chulovska, Z.; Myrko, I.; Drapak, I.; Sogujko, R.; Chaban, I.; Ogurtsov, V.; Nektegaev, I. Synthesis and Evaluation of Anti-Inflammatory Activity of Some Thiazolo [4, 5-b] Pyridines. Biointerface Res. Appl. Chem. 2021, 12, 7226–7238. [Google Scholar]
- Lee, D.; Choi, H.G.; Hwang, J.H.; Shim, S.H.; Kang, K.S. Neuroprotective Effect of Tricyclic Pyridine Alkaloids from Fusarium lateritium SSF2, against Glutamate-Induced Oxidative Stress and Apoptosis in the HT22 Hippocampal Neuronal Cell Line. Antioxidants 2020, 9, 1115. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Kim, S.; Yoo, J.S.; Kim, H.J.; Kim, B.E.; Lee, E.H.; Lee, Y.S.; Park, J.-H.; Park, K.D. Development and optimization of halogenated vinyl sulfones as Nrf2 activators for the treatment of Parkinson’s disease. Eur. J. Med. Chem. 2020, 212, 113103. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, S.D.; Singh, A. Oxidative Annulations Involving DMSO and Formamide: K2S2O8 Mediated Syntheses of Quinolines and Pyrimidines. Org. Lett. 2017, 19, 5673–5676. [Google Scholar] [CrossRef]
- Su, L.; Sun, K.; Pan, N.; Liu, L.; Sun, M.; Dong, J.; Yin, S.F. Cyclization of ketones with nitriles under base: A general and economical synthesis of pyrimidines. Org. Lett. 2018, 20, 3399–3402. [Google Scholar] [CrossRef]
- Merugu, R.; Garimella, S.; Balla, D.; Sambaru, K. ChemInform Abstract: Synthesis and Biological Activities of Pyrimidines: A Review. Cheminform 2016, 47, 88–93. [Google Scholar] [CrossRef]
- Nair, N.; Majeed, J.; Pandey, P.K.; Sweety, R.; Thakur, R. Antioxidant Potential of Pyrimidine Derivatives against Oxidative Stress. Indian J. Pharm. Sci. 2021, 84, 14–26. [Google Scholar] [CrossRef]
- Rashid, H.U.; Martines, M.A.U.; Duarte, A.P.; Jorge, J.; Rasool, S.; Muhammad, R.; Ahmad, N.; Umar, M.N. Research developments in the syntheses, anti-inflammatory activities and structure–activity relationships of pyrimidines. RSC Adv. 2021, 11, 6060–6098. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Kwon, Y.-W.; Kim, H.R.; Shin, N.; Son, H.J.; Cheong, C.S.; Kim, D.J.; Hwang, O. A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects. Mol. Cells 2022, 45, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Kim, H.R.; Son, H.J.; Shin, N.; Han, S.H.; Chung, C.S.; Kim, D.J.; Hwang, O. A Novel Pyrazolo[3,4-d]pyrimidine KKC080106, activates the Nrf2 pathway and protetects nigral dopaminergic neurons. Exp. Neurol. 2020, 332, 113387. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Lee, E.; Yang, X.; Bae, E.J.; Jeon, R.; Park, B.-H. Targeting p21-activated kinase 4 (PAK4) with pyrazolo[3,4-d]pyrimidine derivative SPA7012 attenuates hepatic ischaemia-reperfusion injury in mice. J. Enzym. Inhib. Med. Chem. 2022, 37, 2133–2146. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Diao, R.; Zhang, J.; Cao, M.; Gao, H.; Tang, B. Tetramethyl pyrazine exerts anti-apoptotic and antioxidant effects in a mouse model of MPTP-induced Parkinson’s disease via regulation of the expressions of Bax, Bcl-2, Nrf2 and GCLC. Trop. J. Pharm. Res. 2021, 20, 893–898. [Google Scholar] [CrossRef]
- Stumer, C.; Hassner, A.; Baldwin, J.E.; Williams, R.M. Organic Syntheses Based on Name Reactions, 2nd ed.; Pergamon: Amsterdam, The Netherlands; Boston, MA, USA, 2002; ISBN 978-0-08-043259-5. [Google Scholar]
- Herrera, A.; Riano, A.; Moreno, R.; Caso, B.; Pardo, Z.D.; Fernandez, I.; Martinez-Alvarez, R. One-pot synthesis of 1, 3, 5-triazine derivatives via controlled cross-cyclotrimerization of nitriles: A mechanism approach. J. Org. Chem. 2014, 79, 7012–7024. [Google Scholar] [CrossRef]
- Hashem, H.E. A Short Review on the Synthesis of 1,2,4-Triazine Derivatives as Bioactive Compounds. Mini-Reviews Org. Chem. 2021, 18, 1127–1133. [Google Scholar] [CrossRef]
- Reddy, M.; Rao, K.; Anusha, G.; Kumar, G.; Damu, A.; Reddy, K.R.; Shetti, N.P.; Aminabhavi, T.M.; Reddy, P.V.G. In-vitro evaluation of antioxidant and anticholinesterase activities of novel pyridine, quinoxaline and s-triazine derivatives. Environ. Res. 2021, 199, 111320. [Google Scholar] [CrossRef]
- Marín-Ocampo, L.; Veloza, L.A.; Abonia, R.; Sepúlveda-Arias, J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem. 2019, 162, 435–447. [Google Scholar] [CrossRef]
- Khodagholi, F.; Ansari, N.; Amini, M.; Tusi, S.K. Involvement of Molecular Chaperones and the Transcription Factor Nrf2 in Neuroprotection Mediated by Para-Substituted-4,5-Diaryl-3-Thiomethyl-1,2,4-Triazines. Cell Stress Chaperones 2012, 17, 409–422. [Google Scholar] [CrossRef] [Green Version]
- Tusi, S.K.; Ansari, N.; Amini, M.; Amirabad, A.D.; Shafiee, A.; Khodagholi, F. Attenuation of NF-κB and activation of Nrf2 signaling by 1,2,4-triazine derivatives, protects neuron-like PC12 cells against apoptosis. Apoptosis 2010, 15, 738–751. [Google Scholar] [CrossRef]
- Tran, T.N.; Henary, M. Synthesis and Applications of Nitrogen-Containing Heterocycles as Antiviral Agents. Molecules. 2022, 27, 2700. [Google Scholar] [CrossRef]
- Matamoros, E.; Light, M.E.; Cintas, P.; Palacios, J.C. Schiff Bases and Stereocontrolled Formation of Fused 1,3-Oxazolidines from 1-Amino-2-Indanol: A Systematic Study on Structure and Mechanism. Molecules 2023, 28, 1670. [Google Scholar] [CrossRef] [PubMed]
- Griffith, R.; Bremner, J.B. Computational Evaluation of N-Based Transannular Interactions in Some Model Fused Medium-Sized Heterocyclic Systems and Implications for Drug Design. Molecules 2023, 28, 1631. [Google Scholar] [CrossRef] [PubMed]
- Saucier, M.A.; Smith, C.; Kruse, N.A.; Hammer, N.I.; Delcamp, J.H. Acid-Triggered Switchable Near-Infrared/Shortwave Infrared Absorption and Emission of Indolizine-BODIPY Dyes. Molecules 2023, 28, 1287. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Lu, H.; He, Y.; Zheng, Z.; Wu, J.; Wei, H. Rapid syntheses of N-fused heterocycles via acyl-transfer in heteroaryl ketones. Nat. Commun. 2022, 13, 3337. [Google Scholar] [CrossRef] [PubMed]
- Pathania, A.; Kumar, P. Naturally Available Nitrogen-Containing Fused Heterocyclics as Prospective Lead Molecules in Medicinal Chemistry. Curr. Tradit. Med. 2021, 7, 5–27. [Google Scholar] [CrossRef]
- Collin, G.; Höke, H. Indole. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley Sons, Ltd.: Hoboken, NJ, USA, 2000; ISBN 978-3-527-30673-2. [Google Scholar]
- Sundberg, R.J.; Laurino, J.P. Cyclization of 2-[N-(methylsulfonyl)anilino]acetaldehyde diethyl acetals to indoles. Evidence for stereoelectronic effects in intramolecular electrophilic aromatic substitution. J. Org. Chem. 1984, 49, 249–254. [Google Scholar] [CrossRef]
- Taber, D.F.; Tirunahari, P.K. Indole synthesis: A review and proposed classification. Tetrahedron 2011, 67, 7195–7210. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-Y.; Saw, C.L.-L.; Khor, T.O.; Pung, D.; Boyanapalli, S.S.; Kong, A.-N.T. In vivo pharmacodynamics of indole-3-carbinol in the inhibition of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: Involvement of Nrf2 and cell cycle/apoptosis signaling pathways. Mol. Carcinog. 2011, 51, 761–770. [Google Scholar] [CrossRef]
- Ernst, I.M.A.; Schuemann, C.; Wagner, A.E.; Rimbach, G. 3,3′-Diindolylmethane but not indole-3-carbinol activates Nrf2 and induces Nrf2 target gene expression in cultured murine fibroblasts. Free. Radic. Res. 2011, 45, 941–949. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Khor, T.O.; Su, Z.-Y.; Saw, C.; Shu, L.; Cheung, K.-L.; Huang, Y.; Yu, S.; Kong, A.-N.T. Epigenetic Modifications of Nrf2 by 3,3′-diindolylmethane In Vitro in TRAMP C1 Cell Line and In Vivo TRAMP Prostate Tumors. AAPS J. 2013, 15, 864–874. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Tong, Z.; Zhang, Y.; Zhou, H.; Luo, M.; Hu, T.; Hu, P.; Kong, L.; Liu, Z.; Yu, C.; et al. Novel Prenylated Indole Alkaloids with Neuroprotection on SH-SY5Y Cells against Oxidative Stress Targeting Keap1–Nrf2. Mar. Drugs 2022, 20, 191. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, A.M.; Pacheco, A.R.; Henrick, B.M.; Taft, D.; Xu, G.; Huda, M.N.; Mishchuk, D.; Goodson, M.L.; Slupsky, C.; Barile, D.; et al. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol. 2020, 20, 357. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.-C.; Lee-Chen, G.-J.; Chen, C.-M.; Wu, Y.-R.; Chen, Y.-J.; Lin, J.-L.; Lo, Y.-S.; Yao, C.-F.; Chang, K.-H. Neuroprotection of Indole-Derivative Compound NC001-8 by the Regulation of the NRF2 Pathway in Parkinson’s Disease Cell Models. Oxidative Med. Cell. Longev. 2019, 2019, 5074367-15. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, D.; Yuasa, A.; Obata, R.; Nakajima, M.; Takahashi, K.; Ohe, T.; Ichimura, Y.; Komatsu, M.; Yamamoto, M.; Imamura, R.; et al. Discovery of benzo[g]indoles as a novel class of non-covalent Keap1-Nrf2 protein-protein interaction inhibitor. Bioorganic Med. Chem. Lett. 2017, 27, 5006–5009. [Google Scholar] [CrossRef] [PubMed]
- Cosimelli, B.; Greco, G.; Laneri, S.; Novellino, E.; Sacchi, A.; Amendola, G.; Cosconati, S.; Bortolozzi, R.; Viola, G. Identification of novel indole derivatives acting as inhibitors of the Keap1–Nrf2 interaction. J. Enzym. Inhib. Med. Chem. 2019, 34, 1152–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwarzo, M.Y. Nrf2 Transcription Factor Gene Regulates Basal Transcription of Mitochondrial Superoxide Dismutase Enzyme in Mouse Brain. Afr. J. Biotechnol. 2009, 8, 5169–5172. [Google Scholar] [CrossRef]
- Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci. 2016, 11, 1–14. [Google Scholar]
- Niementowski, S.; Orzechowski, B. Synthesen der Chinolinderivate aus Anthranilsäure und Aldehyden. Eur. J. Inorg. Chem. 1895, 28, 2809–2822. [Google Scholar] [CrossRef] [Green Version]
- Ziarani, G.M.; Badiei, A.; Aslani, Z.; Lashgari, N. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H) in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones. Arab. J. Chem. 2015, 8, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Sharma, K.; Pathak, S.; Kumar, M.; Sharma, P.K. Synthesis of medicinally improtant quinazdines and derivatives: A review. Open Med. Chem. J. 2020, 14, 108–121. [Google Scholar] [CrossRef]
- Ho, N.-H.; Harapanhalli, R.S.; Dahman, B.A.; Chen, K.; Wang, K.; Adelstein, S.J.; Kassis, A.I. Synthesis and Biologic Evaluation of a Radioiodinated Quinazolinone Derivative for Enzyme-Mediated Insolubilization Therapy. Bioconjugate Chem. 2002, 13, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Rajveer, C.H.; Swarnalatha, C.H.; Rathinaraj, B.S.; Sudhrshini, S. Synthesis OF 6bromooxo quinazoline derivatives and their haramcological activities. Int. J. Chem. Res. 2010, 1, 21–24. [Google Scholar]
- Alsaid, M.S.; Ghorab, M.M.; Higgins, M.; Dinkova-Kostova, A.T.; Shahat, A.A. NAD (P) H: Quinone oxidoreductase 1 inducer activity of some enaminone derivatives. Biomed. Res. 2015, 26, 7–12. [Google Scholar]
- Ghorab, M.M.; Alsaid, M.S.; El-Gazzar, M.G.; Higgins, M.; Dinkova-Kostova, A.T.; Shahat, A.A. Synthesis and biological evaluation of novel 2-phenylquinazoline-4-amine derivatives: Identification of 6-phenyl-8H-benzo[g]quinazolino[4,3-b]quinazolin-8-one as a highly potent inducer of NAD(P)H quinone oxidoreductase 1. J. Enzym. Inhib. Med. Chem. 2016, 31, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Bose, P.; Siddique, M.U.M.; Acharya, R.; Jayaprakash, V.; Sinha, B.N.; Lapenna, A.; Pattanayak, S.P. Quinazolinone derivative BNUA-3 ameliorated [NDEA+2-AAF]-induced liver carcinogenesis in SD rats by modulating AhR-CYP1B1-Nrf2-Keap1 pathway. Clin. Exp. Pharmacol. Physiol. 2019, 47, 143–157. [Google Scholar] [CrossRef]
- Moon, S.Y.; Lee, J.-H.; Choi, H.Y.; Cho, I.J.; Kim, S.C.; Kim, Y.W. Tryptanthrin Protects Hepatocytes against Oxidative Stress via Activation of the Extracellular Signal-Regulated Kinase/NF-E2-Related Factor 2 Pathway. Biol. Pharm. Bull. 2014, 37, 1633–1640. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Qiao, R.; He, D.; Zhao, Z.; Yang, S.; Zou, H.-X.; Zhang, X.; Wu, M.; Chen, J.; Chen, P. Indazolo[3,2-b]quinazolinones Attack Hepatocellular Carcinoma Hep3B Cells by Inducing Mitochondrial-Dependent Apoptosis and Inhibition of Nrf2/ARE Signaling Pathway. Curr. Mol. Med. 2016, 16, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.; Miranda, I.L.; Diaz, M.A.N.; Diaz, G.; Miranda, I.L.; Diaz, M.A.N. Quinolines, Isoquinolines, Angustureine, and Congeneric Alkaloids—Occurrence, Chemistry, and Biological Activity; IntechOpen: London, UK, 2015; ISBN 978-953-51-2170-1. [Google Scholar]
- Li, J.J. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications Fifth Edition, 5th ed.; 2014 Edition; Springer: Cham, Switzerland; New York, NY, USA, 2014; ISBN 978-3-319-03978-7. [Google Scholar]
- Li, J.J. Name Reactions: A collection of Detailed Rection Mechanisms: [more than 300 reaction] (3, expanded); Springer: Berlin/Heidelberg, Germany, 2016; pp. 472–474. [Google Scholar]
- Gujjarappa, R.; Vodnala, N.; Malakar, C.C. Comprehensive strategies for the synthesis of isoquinolines: Progress Since 2008. Adv. Synth. Catal. 2020, 362, 4896–4990. [Google Scholar] [CrossRef]
- Zahari, A.; Cheah, F.K.; Mohamad, J.; Sulaiman, S.N.; Litaudon, M.; Leong, K.H.; Awang, K. Antiplasmodial and Antioxidant Isoquinoline Alkaloids from Dehaasia longipedicellata. Planta Med. 2014, 80, 599–603. [Google Scholar] [CrossRef]
- Yuan, H.-L.; Zhao, Y.-L.; Qin, X.-J.; Liu, Y.-P.; Yang, X.-W.; Luo, X.-D. Diverse isoquinolines with anti-inflammatory and analgesic bioactivities from Hypecoum erectum. J. Ethnopharmacol. 2021, 270, 113811. [Google Scholar] [CrossRef]
- Xi, M.-Y.; Jia, J.-M.; Sun, H.-P.; Sun, Z.-Y.; Jiang, J.-W.; Wang, Y.-J.; Zhang, M.-Y.; Zhu, J.-F.; Xu, L.-L.; Jiang, Z.-Y.; et al. 3-Aroylmethylene-2,3,6,7-tetrahydro-1H-pyrazino [2,1-a]isoquinolin-4(11bH)-ones as Potent Nrf2/ARE Inducers in Human Cancer Cells and AOM-DSS Treated Mice. J. Med. Chem. 2013, 56, 7925–7938. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Jiao, Q.; Liu, T.; You, Q.; Jiang, Z. Development of Novel Nrf2/ARE Inducers Bearing Pyrazino [2,1-a]Isoquinolin Scaffold with Potent In Vitro Efficacy and Enhanced Physicochemical Properties. Molecules 2017, 22, 1541. [Google Scholar] [CrossRef] [Green Version]
- Müller, S.G.; Pesarico, A.P.; Rosa, S.G.; Martini, F.; Nogueira, C.W. Contribution of cholinergic system and Nrf2/HO-1 signaling to the anti-amnesic action of 7-fluoro-1,3-diphenylisoquinoline-1-amine in mice. Chem. Interact. 2020, 317, 108959. [Google Scholar] [CrossRef] [PubMed]
- Dinesh, P.; Rasool, M. Berberine, an isoquinoline alkaloid suppresses TXNIP mediated NLRP3 inflammasome activation in MSU crystal stimulated RAW 264.7 macrophages through the upregulation of Nrf2 transcription factor and alleviates MSU crystal induced inflammation in rats. Int. Immunopharmacol. 2017, 44, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Lazzara, P.R.; David, B.P.; Ankireddy, A.; Richardson, B.G.; Dye, K.; Ratia, K.M.; Reddy, S.P.; Moore, T.W. Isoquinoline Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-like 2 (KEAP1-NRF2) Inhibitors with High Metabolic Stability. J. Med. Chem. 2019, 63, 6547–6560. [Google Scholar] [CrossRef]
- Naidu, S.D.; Suzuki, T.; Dikovskaya, D.; Knatko, E.V.; Higgins, M.; Sato, M.; Novak, M.; Villegas, J.A.; Moore, T.W.; Yamamoto, M.; et al. The isoquinoline PRL-295 increases the thermostability of Keap1 and disrupts its interaction with Nrf2. iScience 2022, 25, 103703. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zheng, Q.; Chen, Z. The Nrf2 Pathway in Liver Diseases. Front. Cell. Dev. Biol. 2022, 10, 826204. [Google Scholar] [CrossRef]
- Varvaresou, A.; Siatra-Papastaikoudi, T.; Tsotinis, A.; Tsantili-Kakoulidou, A.; Vamvakides, A. Synthesis, lipophilicity and biological evaluation of indole-containing derivatives of 1,3,4-thiadiazole and 1,2,4-triazole. Il Farm. 1998, 53, 320–326. [Google Scholar] [CrossRef]
- Shiao, H.-Y.; Coumar, M.S.; Chang, C.-W.; Ke, Y.-Y.; Chi, Y.-H.; Chu, C.-Y.; Sun, H.-Y.; Chen, C.-H.; Lin, W.-H.; Fung, K.-S.; et al. Optimization of Ligand and Lipophilic Efficiency To Identify an in Vivo Active Furano-Pyrimidine Aurora Kinase Inhibitor. J. Med. Chem. 2013, 56, 5247–5260. [Google Scholar] [CrossRef]
- Chabicovsky, M.; Prieschl-Grassauer, E.; Seipelt, J.; Muster, T.; Szolar, O.H.J.; Hebar, A.; Doblhoff-Dier, O. Pre-Clinical Safety Evaluation of Pyrrolidine Dithiocarbamate. Basic Clin. Pharmacol. Toxicol. 2010, 107, 758–767. [Google Scholar] [CrossRef]
- Orlando, L.M.R.; Lechuga, G.C.; Lara, L.D.S.; Ferreira, B.S.; Pereira, C.N.; Silva, R.C.; dos Santos, M.S.; Pereira, M.C.S. Structural Optimization and Biological Activity of Pyrazole Derivatives: Virtual Computational Analysis, Recovery Assay and 3D Culture Model as Potential Predictive Tools of Effectiveness against Trypanosoma cruzi. Molecules 2021, 26, 6742. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Onyango, E.O.; Williams, C.R.; Royce, D.B.; Gribble, G.W.; Sporn, M.B.; Liby, K.T. Novel synthetic pyridyl analogues of CDDO-Imidazolide are useful new tools in cancer prevention. Pharmacol. Res. 2015, 100, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Laeis, P.; Püchler, K.; Kirch, W. The pharmacokinetic and metabolic profile of olmesartan medoxomil limits the risk of clinically relevant drug interaction. J. Hypertens. 2001, 19, S21–S32. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.K.; Ray, A.K.; Mishra, S.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: Evidence from clinical trials. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 1–24. [Google Scholar] [CrossRef]
- Reed, G.A.; Arneson, D.W.; Putnam, W.C.; Smith, H.J.; Gray, J.C.; Sullivan, D.K.; Mayo, M.S.; Crowell, J.A.; Hurwitz, A. Single-Dose and Multiple-Dose Administration of Indole-3-Carbinol to Women: Pharmacokinetics Based on 3,3′-Diindolylmethane. Cancer Epidemiol. Biomark. Prev. 2006, 15, 2477–2481. [Google Scholar] [CrossRef] [Green Version]
- Kassie, F.; Anderson, L.B.; Scherber, R.; Yu, N.; Lahti, D.; Upadhyaya, P.; Hecht, S.S. Indole-3-carbinol Inhibits 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone Plus Benzo(a)pyrene–Induced Lung Tumorigenesis in A/J Mice and Modulates Carcinogen-Induced Alterations in Protein Levels. Cancer Res. 2007, 67, 6502–6511. [Google Scholar] [CrossRef] [Green Version]
- Ku, H.-C.; Lee, S.-Y.; Yang, K.-C.; Kuo, Y.-H.; Su, M.-J. Modification of Caffeic Acid with Pyrrolidine Enhances Antioxidant Ability by Activating AKT/HO-1 Pathway in Heart. PLoS ONE 2016, 11, e0148545. [Google Scholar] [CrossRef]
- Silva, V.L.; Elguero, J.; Silva, A.M. Current progress on antioxidants incorporating the pyrazole core. Eur. J. Med. Chem. 2018, 156, 394–429. [Google Scholar] [CrossRef]
- Schöffmann, A.; Wimmer, L.; Goldmann, D.; Khom, S.; Hintersteiner, J.; Baburin, I.; Schwarz, T.; Hintersteininger, M.; Pakfeifer, P.; Oufir, M.; et al. Efficient Modulation of γ-Aminobutyric Acid Type A Receptors by Piperine Derivatives. J. Med. Chem. 2014, 57, 5602–5619. [Google Scholar] [CrossRef] [Green Version]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef]
- Pennington, L.D.; Moustakas, D.T. The Necessary Nitrogen Atom: A Versatile High-Impact Design Element for Multiparameter Optimization. J. Med. Chem. 2017, 60, 3552–3579. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Buttari, B.; Profumo, E.; Tucci, P.; Saso, L. A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer’s and Parkinson’s Diseases. Front. Cell. Neurosci. 2022, 15, 787258. [Google Scholar] [CrossRef] [PubMed]
- Tucci, P.; Lattanzi, R.; Severini, C.; Saso, L. Nrf2 Pathway in Huntington’s Disease (HD): What Is Its Role? Int. J. Mol. Sci. 2022, 23, 15272. [Google Scholar] [CrossRef]
- Gray, N.E.; Farina, M.; Tucci, P.; Saso, L. The Role of the NRF2 Pathway in Maintaining and Improving Cognitive Function. Biomedicines 2022, 10, 2043. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egbujor, M.C.; Tucci, P.; Onyeije, U.C.; Emeruwa, C.N.; Saso, L. NRF2 Activation by Nitrogen Heterocycles: A Review. Molecules 2023, 28, 2751. https://doi.org/10.3390/molecules28062751
Egbujor MC, Tucci P, Onyeije UC, Emeruwa CN, Saso L. NRF2 Activation by Nitrogen Heterocycles: A Review. Molecules. 2023; 28(6):2751. https://doi.org/10.3390/molecules28062751
Chicago/Turabian StyleEgbujor, Melford C., Paolo Tucci, Ugomma C. Onyeije, Chigbundu N. Emeruwa, and Luciano Saso. 2023. "NRF2 Activation by Nitrogen Heterocycles: A Review" Molecules 28, no. 6: 2751. https://doi.org/10.3390/molecules28062751
APA StyleEgbujor, M. C., Tucci, P., Onyeije, U. C., Emeruwa, C. N., & Saso, L. (2023). NRF2 Activation by Nitrogen Heterocycles: A Review. Molecules, 28(6), 2751. https://doi.org/10.3390/molecules28062751