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Abstract: Several nitrogen heterocyclic analogues have been applied to clinical practice, and about
75% of drugs approved by the FDA contain at least a heterocyclic moiety. Thus, nitrogen heterocycles
are beneficial scaffolds that occupy a central position in the development of new drugs. The fact
that certain nitrogen heterocyclic compounds significantly activate the NRF2/ARE signaling pathway
and upregulate the expression of NRF2-dependent genes, especially HO-1 and NQO1, underscores
the need to study the roles and pharmacological effects of N-based heterocyclic moieties in NRF2
activation. Furthermore, nitrogen heterocycles exhibit significant antioxidant and anti-inflammatory
activities. NRF2-activating molecules have been of tremendous research interest in recent times due to
their therapeutic roles in neuroinflammation and oxidative stress-mediated diseases. A comprehensive
review of the NRF2-inducing activities of N-based heterocycles and their derivatives will broaden their
therapeutic prospects in a wide range of diseases. Thus, the present review, as the first of its kind,
provides an overview of the roles and effects of nitrogen heterocyclic moieties in the activation of
the NRF2 signaling pathway underpinning their antioxidant and anti-inflammatory actions in several
diseases, their pharmacological properties and structural–activity relationship are also discussed with
the aim of making new discoveries that will stimulate innovative research in this area.

Keywords: nitrogen heterocycles; NRF2; HO-1; NQO1; antioxidant; anti-inflammatory; neurodegenerative
diseases

1. Introduction

Nitrogen-based heterocyclic compounds constitute an important class of heterocycles
in drug discovery due to their vast medicinal applications. It is well established that nitro-
gen heterocyclic scaffolds are often present as common cores in a variety of pharmaceutical
products. This implies that nitrogen heterocycles play essential roles in modern drug design
and discovery. Currently, over 85% of all biologically active compounds are heterocycles or
contain at least a heterocyclic moiety, and most frequently, nitrogen heterocycles function as
the backbones of these complex structures [1]. The applications of nitrogen heterocycles in
drug design and development have been reviewed by [2]. Many of them have been found
to possess anticancer activities and good physicochemical properties [3]. Thus, the presence
of an N-based heterocyclic moiety may improve the adsorption, distribution, metabolism
and excretion (ADME) and toxicological properties of drug molecules.

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play essential
physiological roles at moderate concentrations. However, when there is a disequilibrium
between the rate of production of ROS and the rate at which antioxidant defenses neu-
tralize them, oxidative stress occurs and results in oxidative damage and cell death [4,5].
Fortunately, some essential antioxidant molecules and detoxifying enzymes have been
developed by cells as adequate defenses against oxidative stress. NRF2 protein is a no-
table antioxidant molecule that regulates cellular redox homeostasis; thus, its activation
represents an effective antioxidant strategy against electrophilic and oxidative stress [6].
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Consequently, NRF2-related pathways have become important therapeutic targets
in drug discovery for inflammation and oxidative stress-mediated diseases [7,8]. The
NRF2/KEAP1 signaling pathway modulates the antioxidant and cytoprotective responses
of an organism to a great extent [6]. NRF2 is a transcription factor that is made up of about
605 amino acids and 7 functional domains known as Neh1-Neh7. The Neh1 domain is com-
posed of a cap “n” collar basic region and the leucine zipper domain, which enables DNA
binding and a nuclear localization signal that accounts for NRF2 nuclear translocation [9,10].
The Neh2 domain is responsible for NRF2 stability and its ubiquitination by KEAP1, while
the Neh 3–5 domains facilitate NRF2 interaction with several coactivators [11–14]. The
Neh6 domain binds to a β-transducin repeat-containing protein (β–TrCP), through which it
enhances NRF2 ubiquitination, while the Neh7 domain enables NRF2 to bind to the retinoic
X receptor and causes the inhibition of the NRF2–ARE pathway [15,16].

When the condition is physiologically normal, NRF2 is bound to KEAP1, its negative
regulator in the cytosol. This promotes NRF2 ubiquitination by a cullin 3-based ubiquitin
E3 ligase and NRF2 proteasomal degradation [17]. Under oxidative or electrophilic stress,
KEAP1 cysteine residues are oxidized to cystine. This transformational process facilitates
a conformational change in the protein that inhibits NRF2 ubiquitination and promotes
the formation of the non-functional NRF2/KEAP1 complex, which does not allow for
the release of NRF2. This enables the newly translated NRF2 to by-pass KEAP1 and
undergo nuclear translocation; it binds to the antioxidant response element (ARE) sequence
and facilitates the transcription of NRF2-dependent genes that codify the synthesis of
antioxidant enzymes such as SOD, NQO1, HO-1, CAT, GCL, GPX and GR [18,19].

Comparatively, NRF2 and NF-κB (nuclear factor kappa-light-chain-enhancer of acti-
vated B cells) are both transcription factors that are crucial for the regulation of oxidative
stress, inflammation, gene expression and other physiological processes. The cellular
antioxidant defense and detoxification pathways are largely regulated by NRF2 [17–19].
NF-κB, on the other hand, is a transcription factor involved in immune and inflammatory re-
sponses, controlling genes related to cytokines, chemokines and adhesion molecules [20,21].
It is normally bound to its inhibitor IκB and moves to the nucleus, where it binds to κB sites
in order to activate gene expression. While their functions are distinct, there is an interplay
between these signaling pathways as their activities are usually inversely correlated. Re-
search suggests that NRF2 can inhibit NF-κB activation by suppressing proinflammatory
cytokines/chemokines production; while NF-κB can result in ROS generation, causing
disruption of the KEAP1–NRF2 complex which can consequently lead to NRF2 activa-
tion [22–24]. However, the overall relationship between NRF2 and NF-κB is quite complex
and context-dependent; hence, more studies are required to fully elucidate their functional
effects in various physiological and pathological conditions.

The systematic evaluation of the functional effects of nitrogen heterocyclic molecules
through in vivo and in vitro studies gives insight into their pharmacological profile. This
information will determine their suitability as new drug candidates and identify their
therapeutic indications. Furthermore, it could be an essential tool for the development of
newer derivatives of nitrogen heterocycles with better NRF2-mediated antioxidant and
anti-inflammatory activities. The pharmacological profile of NRF2-activating nitrogen
heterocyclic compounds will be further discussed in Section 3. Similarly, structure–activity
relationships (SAR) analysis is employed as an essential tool in primary screening to lead
optimization of drug discovery. It helps to minimize the cost of designing new potentially
bioactive molecules with minimal side effects. A good knowledge of the SAR of nitrogen
heterocyclic molecules will enable researchers to explore their existing bioactive moieties
and equip them with the information required for structural modification and optimization
of antioxidant, anti-inflammatory and NRF2-inducing activities. The SAR will be further
discussed in Section 4.

The present review discusses the potential roles of natural and synthetic nitrogen-
based heterocycles in the activation of the NRF2 signaling pathway, their pharmacological
properties and their structure–activity relationships. Their NRF2-mediated neuroprotective
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and therapeutic effects in inflammation and oxidative stress-mediated diseases such as
Parkinson’s disease, Alzheimer’s disease, Huntington’s diseases, cancer, and many more,
are explored.

2. Nitrogen Heterocycles as Modulators of the NRF2 Pathway

The tendency of the nitrogen atom to readily form hydrogen bonding and various
weak interactions with biological targets has distinguished N-based heterocyclic scaffolds
as building blocks for a couple of drug candidates and expanded their utility in several ther-
apeutic applications. The nitrogen atom of nitrogen heterocycle has a lone pair of electrons,
which act as a hydrogen bond acceptor, resulting in the formation of a hydrogen bond
(hydrogen atom bonded to an electronegative atom) network which enhances the stability
of the nitrogen heterocycle and its interactions with diverse biological molecules [25–27].
Thus, both saturated and unsaturated N-based heterocycles are bioactive molecules of
utmost medicinal importance. A large body of evidence has shown that N-based hete-
rocycles and their analogues possess an interesting neuroprotective profile and exhibit
significant induction of the NRF2–ARE antioxidant responses. Here, we categorize the
NRF2-inducing activity of N-based heterocycles based on the size of the heterocyclic ring.
Three-membered and four-membered nitrogen heterocyclic rings such as aziridines and
azetidines, respectively, and their derivatives have been found to exhibit anti-oxidative
and neuroprotective effects [28–30]. However, these compounds are yet to be explored for
NRF2-inducing activity.

2.1. Five-Membered Nitrogen Heterocycles and NRF2 Activation

Five-membered heterocyclic rings are commonly found in pharmaceuticals. It can
be stipulated that their chemical structures permit variable interactions with essential
biomolecules, hence their predominance in pharmaceuticals. Five membered nitrogen hete-
rocycles such as pyrrole, imidazoles, pyrazoles and many more are components of the best-
selling heterocyclic pharmaceuticals [31]. Currently, the pyrrole derivative, 3-carboxylic
acid pyrroles have been patented as active NRF2 regulators (US2020/0031820A1). More-
over, pyrrole-2-carbaldehydes exert neuroprotective effects against oxygen-glucose depri-
vation/reperfusion injury by modulating NRF2 and Nuclear Factor kappa B (NF-κB) in
PC12 cells [32].

2.1.1. Pyrrolidine/Pyrroline Analogues

Pyrrolidine and pyrroline are saturated and unsaturated five-membered N-heterocycles,
respectively, with one nitrogen heteroatom. Pyrrolidine is naturally found in alkaloids
and is also an essential constituent of natural and synthetic drugs. Pyrrolidine is conven-
tionally synthesized by the reaction of 4-chlorobutan-I-amine with a strong base [33]. Its
derivatives are also synthesized by electroreductive cyclization using imine and terminal
dihyloalkanes [34]. Recent synthetic methods for pyrrolidines have been reviewed by [35]. A
pyrrolidine derivative known as pyrrolidine dithiocarbamate (1) (Table 1) has been reported
as a potent inducer of the NRF2 signaling pathway [36]. It inhibits oxidative stress, de-
creases lipid peroxidation, and exerts neuroprotection via the activation of NRF2 signaling
pathway in astrocytes. Delen and co-workers [37] reported that in addition to reducing
the expressions of NF-κB and Prokineticin 2 (PK2) levels, pyrrolidine dithiocarbamate (I)
exerts a protective effect against methotrexate-induced testicular damage via upregulat-
ing the expression level of NRF2. Contrarily, it has been reported that while pyrrolidine
dithiocarbamate deactivates NF-κB and upregulates some antioxidant enzymes, its admin-
istration has no effect on NRF2/KEAP pathway in dextran sodium sulfate (DSS)-induced
colitis [38]. This could be a result of the fact that pyrrolidine dithiocarbamate (1) lacks the
ability to alter the NRF2-inducing effect of DSS, which is also a potent NRF2 inducer. It is
important to mention that compound 1 also induces the expression of the glutamate cysteine
ligase modulatory gene in HepG2 cells. Although the nuclear localization of NRF2 has
been implicated in this process, the activation of the extracellular regulated kinase (ErK)
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is required for full NRF2 activation. Treatment of HepG2 cells with compound 1 results
in the release of NRF2 from KEAP1 and influences the expression level of GCL [39]. In an
attempt to demonstrate that NRF2 modulates neurogenesis and exerts a protective effect
against Aβ toxicity, neural progenitor cells (NPCs) were treated with compound 1, and the
growth of NPC neurospheres was observed and neuronal differentiation was increased
by it via NRF2 activation [40]. Pyrroline derivative (2) (Table 1) exerts protection against
oxidative stress and hyperphosphorylation in neurodegenerative diseases via the activation
of the NRF2–ARE pathway and upregulation of the expression of protein levels of HO-1
and NQO1 [41].

2.1.2. Pyrazoles

Pyrazoles are unsaturated five-membered N-heterocyclic rings containing two nitrogen atoms
at adjacent positions. Owing to their myriad of pharmacological activities, they are one of the
most prominent classes of compounds among the azole group. Thus, they are components of
well-established drugs such as celecoxib, lenazole, rimonabant, and many more [42–44]. Pyra-
zoles are commonly prepared by reacting α,β-unsaturated aldehydes with hydrazine
followed by dehydrogenation [45]. They are also synthesized by electrophilic cyclizations
of α,β-alkynic hydrazones by iodine [46]. The various methods involved in the synthesis of
pyrazoles have been reviewed by [47]. Pyrazoles exhibit significant anti-inflammatory and
antioxidant properties [48]. Several pyrazole analogues, such as arylcydohexyl pyrazoles
(W02017060855A1), n-aryl pyrazoles (W02018109642) and biaryl pyrazoles (W02017060854)
are already established NRF2 regulators. The antioxidant effect of pyrazoles has been
linked to the activation of the NRF2/KEAP1 signaling pathway. Thus, pyrazole (3) (Table 1)
induces oxidative damage in NRF2 knockout mice but not in wild-type mice due to compen-
sative enhancement of NRF2-regulated antioxidant capacity. Even when ROS is induced
by cytochrome P4502E1 (CYP2E1/2A5) in NRF2 wild-type mice, pyrazole helps to at-
tenuate the oxidative stress via the upregulation of the expression levels of NRF2 and
NRF2-regulated antioxidant enzymes including HO-1, GST and GCS, contrary to what is
observed in NRF2 knockout mice [49]. In corroboration with the fact that pyrazole requires
NRF2 for its anti-oxidative action, liver injury increased as marked by serum transaminases
and histopathology when NRF2 knockout mice were treated with pyrazole (3), but not
in the NRF2 wild-type mice [50]. Contrary to expectations, pyrazole treatment did not
elevate CYP2E1 and CYP2A5 activities in the NRF2 knockout mice, but increased their ac-
tivities in the NRF2 wild-type mice. This confirms the earlier report that pyrazole-induced
hepatotoxicity in the NRF2 knockout mice is independent of CYPZE1/2A5 induction [49].
In summary, it could be right to conclude that pyrazole significantly activates NRF2 and
upregulates the expression levels of its target antioxidant genes such as HO-1, GCS, GST,
and many more via a mechanism that does not involve the induction of CYP2E1/2A5.

Furthermore, pyrazole derivative (4) (Table 1) induces the NRF2 signaling pathway and
inhibits glycogen synthase kinase-3β (GSK3β) [51]. The ability of compound 4 to activate
NRF2 is ascribed to the presence of 2,4-dihydropyrano [2,3-c]pyrazole core, which also acts
as a GSK3β inhibitor. Interestingly, the introduction of a pyrazole moiety to the curcumin
scaffold improves the NRF2 activity and antioxidant capacity of curcumin. Evidently, the
curcumin pyrazole derivative (5) (Table 1) has been found to exhibit better neuroprotective
effects than curcumin and edaravone due to the pyrazole moiety [52]. Compound 5 also
attenuates sodium nitroprusside (SNP)-induced oxidative damage and apoptosis, inhibits
SNP-induced morphological changes, and protects the mitochondrial membrane via NRF2
activation in PC12 cells. Summarily, compound 5 provides neuroprotection and enhances the
antioxidant defense system through the nuclear translocation of NRF2.

2.1.3. Imidazolidine/Imidazole Analogues

Imidazolidine and imidazole are saturated and unsaturated five-membered N-heterocyclic
rings, respectively. They contain two nitrogen atoms at the -1 and -3 positions. They are
components of essential natural products, DNA based structures, and drugs. Imidazolidines
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are prepared by the condensation of aldehydes and 1,2-diamines, while imidazoles are pro-
duced by the condensation of glyoxal, ammonia and formaldehyde [53]. In addition, the
cyclization of amido-nitriles is considered a notable synthetic procedure for disubstituted
imidazoles [54]. Other imidazole derivatives are produced by facile synthetic methods which
have been reviewed by [55]. Imidazolidines and imidazoles exhibit a broad spectrum of
biological properties including anti-inflammatory and antioxidant activities [56,57]. Interest-
ingly, some imidazole analogues have been found to be potent inducers of the NRF2/KEAP1
signaling pathway due to the fact that these analogues target several KEAP1 amino acid
residues of NRF2 [58]. They exert NRF2-mediated antioxidant and anti-inflammatory effects
in several diseases by undergoing the Michael addition reaction with the thiols of KEAP1
cysteine residues [58]. The authors of [59] reported that a compound containing imidazolide, a
conjugate base of IH-imidazole–CCDO-imidazolide (6) (Table 1) is 100 times more potent than
DMF, a known NRF2 activator, in the activation of the NRF2 signaling pathway. Compound 6
is a synthetic oleanane triterpenoid containing an imidazole ring. It inhibits the production of
nitric oxide and attenuates ROS generation in RAW264.7 cells; it also induces about 52 NRF2-
target genes, including NQO1, and HO-1 via NRF2 activation. The treatment with 6 attenuates
the production of pro-inflammatory cytokine/chemokine, tubular injury and improves renal
histology in mice via NRF2 activation and upregulation of antioxidant gene expression [60].
In a similar study, the compound 6 administration decreased oxidative/nitrosative stress,
pro-inflammatory responses, and attenuated hepatic, pulmonary and renal damage in mice
via NRF2 activation [61]. This type of NRF2 activation has also been linked to the amelioration
of cardiac dysfunction and emphysema induced by cigarette smoke [62]. Furthermore, an
imidazole analogue olmesartan (7) (Table 1) has been of therapeutic importance in hyperten-
sion. Although it contains another N-based heterocycle known as tetrazole, the imidazole
ring is said to contribute majorly to the pharmacological properties of olmesartan (7), and
its synthesis begins with an imidazole–dicarbonitrile scaffold [63]. Compound 7 exhibits
significant antioxidant and anti-inflammatory activities. It inhibits oxidative stress in the
daunorubicin (DNR)-induced nephrotoxicity in rats via the activation of the NRF2 signal-
ing pathway and upregulation of the renal expression levels of GPX, Bcl–xL and PPAR-γ.
By this activation process, it reduces oxidative stress and angiotensin II which are key to
DNR-induced nephrotoxicity [64].

2.1.4. Triazoles

Triazoles are unsaturated five-membered N-heterocyclic rings containing three ni-
trogen atoms. The large number of nitrogen atoms makes them chemically reactive and
biologically important. They are commonly prepared via copper catalyzed cycloaddition
reactions using calcium carbide as a source of acetylene [65]. Since the inception of click
chemistry, Cu(1)-catalyzed azide-alkyne cycloaddition (CuAAC) has been used as a unique
synthetic method for triazoles [66]. The synthesis of triazoles have been reviewed by [67].
Triazoles possess significant anti-inflammatory and antioxidant activities, and thus they
have been extensively studied in neurodegenerative diseases [68,69]. The triazole deriva-
tives (8 and 9) (Table 1) bearing 1,4-diaryl-1,2,3-triazole scaffolds significantly activate the
NRF2 signaling pathway by inhibiting the KEAP1/NRF2 protein–protein interaction [70].
They also upregulate the expression levels of NRF2 dependent genes, including HO-1
and NQO1. 1,2,4-Triazole derivative (10) (Table 1) exerts a therapeutic effect in cerebral
ischemic injury. It eliminates ROS, restores mitochondrial transmembrane potential, and
attenuates neurological deficits in middle cerebral artery occlusion in acute ischemic stroke
via NRF2 activation and induction of its antioxidant proteins such as HO-1, NQO1 and
GCLC [71]. In a similar report, [72] reiterated that the neuroprotective effect of 1,2,4-triazole
derivative (11) (Table 1) in cerebral ischemic injury is initiated by the antioxidant response
element (ARE) and antioxidant genes HO-1 and NQO1 via the activation of the NRF2–ARE
signaling pathway. Another 1,2,4-triazole analogue (12) (Table 1) with good bioavailability
reportedly exhibited significant neuroprotective action against ischemic brain injury [73].
This implies that 1,2,4-triazoles could be an effective therapy in the treatment of ischemia re-
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lated cases. Taken together, five-membered N-heterocyclic rings are endowed with diverse
pharmacological properties, which accounts for the attention they have received in research
lately. Particularly, their antioxidant and anti-inflammatory effects in biological systems
exerted via the activation of the NRF2 signaling pathway are of notable medicinal interest.

2.2. Six-Membered N-Heterocyclic Rings and NRF2 Activation

Six-membered N-heterocycles are ubiquitous in natural products and bioactive molecules.
Owing to their vast pharmacological properties, they are structural units of widely accepted
pharmaceuticals, especially psychopharmaceuticals. Six-membered heterocycles containing
one or two nitrogen atoms are components of drugs such as buspirone, hydroxyzine, triflu-
operazine, amoxapine, trazodone, and many more [74,75]. Several compounds containing
six-membered N-heterocycles activate the NRF2/KEAP1 signaling pathway [76].

2.2.1. Piperidines

Piperidine is a saturated six-membered N-heterocycle present in several natural al-
kaloids and pharmaceuticals. It is produced by the reaction of piperine with nitric acid
and, industrially, by catalytic hydrogenation of pyridine. It can also be synthesized by the
reaction of N-(tert-butylsulfinyl)-bromoimine with Grignard reagents [77]. Recent advances
in the synthesis of piperidines have been reviewed by [78]. Piperidine exhibits antioxidant
and anti-inflammatory activities and has been utilized as an essential scaffold in drug
discovery [79]. A piperidine alkaloid (piperine) (13) (Table 1) protects neuronal cells against
H2O2-induced ROS accumulation, apoptosis and oxidative damage via NRF2-dependent
phase II antioxidant enzymes, especially HO-1 and NQO1 [76]. Compound 13 exerts a
significant neuroprotective effect for tyrosine hydroxylase-immunopositive dopaminergic
neurons and attenuates behavioral deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced Parkinson’s disease through the activation of the NRF2/KEAP1 signaling
pathway. The authors of [80] reported that the cinnamyl piperidine analogue (14) (Table 1)
inhibits neddylation, migration and increases apoptosis of gastric cancer cells via a process
partly mediated by the NRF2–KEAP1 signaling pathway.

2.2.2. Pyridine Analogues

Pyridine is an unsaturated six-membered N-heterocyclic ring with one nitrogen atom.
It is commonly found in pharmaceuticals and vitamins. It can be produced industri-
ally by the reaction of acrolein and acetaldehyde or through the biosynthesis of nicotinic
acid [81,82]. In addition, Kröhnke pyridine synthesis has been a notable method which
involves the reaction of α-pyridinium methyl ketone salts with α,β-unsaturated carbonyl
compounds to produce pyridines [83]. Other methods of synthesizing pyridine have been
reviewed by [84]. Pyridines possess antioxidant and anti-inflammatory properties [85,86].
Pyridine alkaloid (15) (Table 1) obtained from Fusarium lateritium enhances the expression
of NRF2 and its target genes HO-1, and NQO1, thereby attenuating oxidative stress and
apoptosis in glutamate-treated hippocampal HT22 cells [87]. This implies that the signifi-
cant neuroprotective effects of pyridine can be attributed to its ability to activate the NRF2
signaling pathway. Pyridine derivative (16) (Table 1) also protects dopaminergic neurons
from MPTP-induced oxidative stress; it suppresses the generation of proinflammatory
enzymes and cytokines via the activation of NRF2 and upregulation of the mRNA levels of
HO-1, SOD1, GCLM and GCLC, the NRF2-dependent antioxidant enzymes [88]. Through
NRF2 activation, compound 16 restores the Parkinson’s disease-related motor dysfunctions
in PD mice.

2.2.3. Pyrimidine and Pyrazine Analogues

Pyrimidine is an aromatic six-membered N-heterocyclic ring with two nitrogen atoms
at 1- and 3-positions of the ring. It is present in natural molecules such as alloxan, thymine,
nucleotide cytosine and thiamine, as well as synthetic compounds such as barbiturates.
Pyrimidines are produced via biosynthesis in the cytoplasm and chemically by the reac-
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tion of aryl ketones and anilines [89]. The cyclization reaction of ketones with nitriles
under base has been found to be an economical synthetic procedure for pyrimidines [90].
Synthetic methods for pyrimidines have been reviewed by [91]. Pyrimidines are good
antioxidants and anti-inflammatory agents [92,93]. Pyrazolo[3,4-d] pyrimidine derivatives
exert therapeutic effects in neurodegenerative diseases. According to [94], these pyrimidine
analogues activate the NRF2 signaling pathway. A pyrimidine analogue 17 (Table 1) has
been found to elevate the mRNA and protein levels of NRF2-target antioxidant enzymes
such as HO-1, NQO1, GCLM and GCLC in BV-2 cells. Through NRF2 activation, it exerts
anti-inflammatory, antioxidant and neuroprotective effects. In addition to the upregu-
lation of HO-1 via the activation of NRF2/HO-1 signaling, compound 17 also activates
AMPK/HO-1 signaling and through these processes, it effects neuroprotection of nigral
neurons in Parkinson’s disease [94]. In a similar development, Lee and co-workers [95] fur-
ther corroborated that pyrazolo[3,4-d]pyrimidine (18) (Table 1) protects nigral dopaminergic
neurons and inhibits the dopamine deficiency-related motor deficits via NRF2 activation
and upregulation of HO-1, NQO1, GCLM and GCLC. Another Pyrazolo[3,4-d]pyrimidine
derivative (19) (Table 1) ameliorates hepatic ischemia reperfusion injury in mice by in-
hibiting p21-activated kinase 4 (PAK4) due to its ability to stabilize NRF2 and enhance
antioxidant capacity in mice [96].

Pyrazine which belongs to the same diazine class as pyrimidine has two nitrogen
atoms in the 1- and 4-positions of the ring. Tetramethyl pyrazine (20) (Table 1) exhibits a
significant antioxidant and anti-apoptotic activity in MPTP-induced Parkinson’s disease in
mice via the upregulation of the expression levels of NRF2, GCLC, Bax and Bcl-2 [97].

2.2.4. Triazines

Triazine is an unsaturated six-membered N-heterocyclic ring with three nitrogen
atoms. They are commonly produced through Bamberger triazine synthesis which involves
an aryl diazonium salt intermediate [98]. One-Pot synthesis through controlled cross-
cyclotrimerization of nitriles is another efficient method for triazine preparation [99]. Other
synthetic methods for the preparation of triazines have been reviewed by [100]. Triazines
exhibit antioxidant and anti-inflammatory activities [101,102]. Triazines also exert neuro-
protective effects in neurodegenerative diseases. Triazine analogues (21 and 22) (Table 1)
maintain redox homeostasis, improve cell survival and enhance the overall antioxidant re-
sponses in organisms via the activation of NRF2 and upregulation of GPx1, GCS, SOD and
CAT in neuronal cells [103]. Similarly, 1,2,4-triazine (23) (Table 1) inhibits H2O2-induced
cell death, and exerts a neuroprotective effect in neuron-like PC12 cells via the activation of
NRF2 and induction of GCS, HO-1 and GPX [104].

Table 1. Five- and six-membered nitrogen heterocyclic compounds and NRF2-inducing activities.

S/N Molecule/Structure Effective
Concentration(s)

NRF2 Target
Genes

Disease of
Interest Study Model

Biological
Activity of

Interest
Reference(s)

1

Pyrrolidine core
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Liver 

injury, 

Oxidative 

stress 

Mice Antioxidant [49] 

  150 mg/kg HO-1 
Oxidative 

stress 
Mice Antioxidant [50] 

4 

 

6-amino-3-methyl-4-(2-nitrophenyl) 

0.3–30 µM 
HO-1, 

NQO1 

AD, 

Oxidative 

stress 

AREc32 Cells 

Antioxidant, 

Anti-

inflammatory 

[51] 

Pyrrolidine-1-carbodithioic acid

20 mg/kg
HO-1, NQO1,

GCLM,
GCLC

AD,
Oxidative

stress
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50 mg/kg GPx1, GPx4
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bowel
disease (IBD)
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inflammatory [38]

100 µM NQO1,
GCLM

Oxidative
stress HepG2 Cells GCL induction,

NRF2 localization [39]

1–10 µM
HO-1, NQO1,

GCLM,
GCLC

AD, Aβ
toxicity Mice Antioxidant,

neurogenesis [40]



Molecules 2023, 28, 2751 8 of 25

Table 1. Cont.

S/N Molecule/Structure Effective
Concentration(s)

NRF2 Target
Genes

Disease of
Interest Study Model

Biological
Activity of

Interest
Reference(s)

2

Pyrroline core

Molecules 2023, 28, x FOR PEER REVIEW 8 of 28 
 

 

Table 1. Five- and six-membered nitrogen heterocyclic compounds and NRF2-inducing activities. 

S/N Molecule/Structure 

Effective 

concentration

(s) 

NRF2 

Target 

Genes 

Disease of 

Interest 
Study Model 

Biological 

Activity of 

Interest 

Reference(s) 

1 

Pyrrolidine core 

 

20 mg/kg 

HO-1, 

NQO1, 

GCLM, 

GCLC 

AD, 

Oxidative 

stress 

Mice, 

Astrocytes 
Antioxidant [36] 

 Pyrrolidine-1-carbodithioic acid 100 mg/kg  Infertility Rats 

Antioxidant, 

Anti-

inflammatory 

[37] 

  50 mg/kg 
GPx1, 

GPx4 

Inflammati

on bowel 

disease 

(IBD) 

Mice 

Antioxidant, 

Anti-

inflammatory 

[38] 

  100 µM 
NQO1, 

GCLM 

Oxidative 

stress 
HepG2 Cells 

GCL induction, 

NRF2 

localization 

[39] 

  1–10 µM 

HO-1, 

NQO1, 

GCLM, 

GCLC 

AD, Aβ 

toxicity 
Mice 

Antioxidant, 

neurogenesis 
[40] 

2 

Pyrroline core 

 

(Z)-Methyl-4-(3,4-dihydroxybenzylidene)-

2-methyl-5-oxo-1-phenethyl-4,5-dihydro-

1H-pyrrolin-3-carboxylate. 

1 µM 
HO-1, 

NQO1 

Neurodege

nerative 

diseases 

SH-SY5Y Cells Antioxidant [41] 

3 

Pyrazole core 

 

1H-Pyrazole 

150 mg/kg 
HO-1, 

GST 

Liver 

injury, 

Oxidative 

stress 

Mice Antioxidant [49] 

  150 mg/kg HO-1 
Oxidative 

stress 
Mice Antioxidant [50] 

4 

 

6-amino-3-methyl-4-(2-nitrophenyl) 

0.3–30 µM 
HO-1, 

NQO1 

AD, 

Oxidative 

stress 

AREc32 Cells 

Antioxidant, 

Anti-

inflammatory 

[51] 

(Z)-Methyl-4-(3,4-
dihydroxybenzylidene)-2-methyl-5-oxo-
1-phenethyl-4,5-dihydro-1H-pyrrolin-3-

carboxylate.

1 µM HO-1, NQO1
Neurode

generative
diseases

SH-SY5Y Cells Antioxidant [41]

3

Pyrazole core

Molecules 2023, 28, x FOR PEER REVIEW 8 of 28 
 

 

Table 1. Five- and six-membered nitrogen heterocyclic compounds and NRF2-inducing activities. 

S/N Molecule/Structure 

Effective 

concentration

(s) 

NRF2 

Target 

Genes 

Disease of 

Interest 
Study Model 

Biological 

Activity of 

Interest 

Reference(s) 

1 

Pyrrolidine core 

 

20 mg/kg 

HO-1, 

NQO1, 

GCLM, 

GCLC 

AD, 

Oxidative 

stress 

Mice, 

Astrocytes 
Antioxidant [36] 

 Pyrrolidine-1-carbodithioic acid 100 mg/kg  Infertility Rats 

Antioxidant, 

Anti-

inflammatory 

[37] 

  50 mg/kg 
GPx1, 

GPx4 

Inflammati

on bowel 

disease 

(IBD) 

Mice 

Antioxidant, 

Anti-

inflammatory 

[38] 

  100 µM 
NQO1, 

GCLM 

Oxidative 

stress 
HepG2 Cells 

GCL induction, 

NRF2 

localization 

[39] 

  1–10 µM 

HO-1, 

NQO1, 

GCLM, 

GCLC 

AD, Aβ 

toxicity 
Mice 

Antioxidant, 

neurogenesis 
[40] 

2 

Pyrroline core 

 

(Z)-Methyl-4-(3,4-dihydroxybenzylidene)-

2-methyl-5-oxo-1-phenethyl-4,5-dihydro-

1H-pyrrolin-3-carboxylate. 

1 µM 
HO-1, 

NQO1 

Neurodege

nerative 

diseases 

SH-SY5Y Cells Antioxidant [41] 

3 

Pyrazole core 

 

1H-Pyrazole 

150 mg/kg 
HO-1, 

GST 

Liver 

injury, 

Oxidative 

stress 

Mice Antioxidant [49] 

  150 mg/kg HO-1 
Oxidative 

stress 
Mice Antioxidant [50] 

4 

 

6-amino-3-methyl-4-(2-nitrophenyl) 

0.3–30 µM 
HO-1, 

NQO1 

AD, 

Oxidative 

stress 

AREc32 Cells 

Antioxidant, 

Anti-

inflammatory 

[51] 

1H-Pyrazole

150 mg/kg HO-1, GST
Liver injury,
Oxidative

stress
Mice Antioxidant [49]

150 mg/kg HO-1 Oxidative
stress

Mice Antioxidant [50]

4

Molecules 2023, 28, x FOR PEER REVIEW 8 of 28 
 

 

Table 1. Five- and six-membered nitrogen heterocyclic compounds and NRF2-inducing activities. 

S/N Molecule/Structure 

Effective 

concentration

(s) 

NRF2 

Target 

Genes 

Disease of 

Interest 
Study Model 

Biological 

Activity of 

Interest 

Reference(s) 

1 

Pyrrolidine core 

 

20 mg/kg 

HO-1, 

NQO1, 

GCLM, 

GCLC 

AD, 

Oxidative 

stress 

Mice, 

Astrocytes 
Antioxidant [36] 

 Pyrrolidine-1-carbodithioic acid 100 mg/kg  Infertility Rats 

Antioxidant, 

Anti-

inflammatory 

[37] 

  50 mg/kg 
GPx1, 

GPx4 

Inflammati

on bowel 

disease 

(IBD) 

Mice 

Antioxidant, 

Anti-

inflammatory 

[38] 

  100 µM 
NQO1, 

GCLM 

Oxidative 

stress 
HepG2 Cells 

GCL induction, 

NRF2 

localization 

[39] 

  1–10 µM 

HO-1, 

NQO1, 

GCLM, 

GCLC 

AD, Aβ 

toxicity 
Mice 

Antioxidant, 

neurogenesis 
[40] 

2 

Pyrroline core 

 

(Z)-Methyl-4-(3,4-dihydroxybenzylidene)-

2-methyl-5-oxo-1-phenethyl-4,5-dihydro-

1H-pyrrolin-3-carboxylate. 

1 µM 
HO-1, 

NQO1 

Neurodege

nerative 

diseases 

SH-SY5Y Cells Antioxidant [41] 

3 

Pyrazole core 

 

1H-Pyrazole 

150 mg/kg 
HO-1, 

GST 

Liver 

injury, 

Oxidative 

stress 

Mice Antioxidant [49] 

  150 mg/kg HO-1 
Oxidative 

stress 
Mice Antioxidant [50] 

4 

 

6-amino-3-methyl-4-(2-nitrophenyl) 

0.3–30 µM 
HO-1, 

NQO1 

AD, 

Oxidative 

stress 

AREc32 Cells 

Antioxidant, 

Anti-

inflammatory 

[51] 

6-amino-3-methyl-4-(2-nitrophenyl)
-2,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile

0.3–30 µM HO-1, NQO1
AD,

Oxidative
stress

AREc32 Cells Antioxidant, Anti-
inflammatory [51]

5

Molecules 2023, 28, x FOR PEER REVIEW 9 of 28 
 

 

-2,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile 

5 

 

4-(3,5-bis((E)-4-hydroxy-3-

methoxystyryl)-1H-pyrazol-1-

yl)benzonitrile 

1.25–5µM GPx 
Oxidative 

stress 
PC12 Cells Antioxidant [52] 

 

 

6 

Imidazole core 

 

(4aR,6aS,12aS,12bS,14bR)-8a-(1H-

imidazole-1-carbonyl)-4,4,6a,11,11,14b-

hexamethyl-3,13-dioxo-

3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13

,14,14a,14b-icosahydropicene-2-

carbonitrile 

50–200 mg/kg 
HO-1, 

NQO1 

Lung 

cancer 

Mice, RAW 

264.7 Cells 

Antioxidant, 

Anti-

inflammatory 

[59]  

  30 µmol/kg 

HO-1, 

NQO1, 

GCLC 

Acute 

Kidney 

Injury 

Mice 

Antioxidant, 

Anti-

inflammatory 

[60] 

  2 mg/kg 

HO-1, 

NQO1, 

GCLC 

Intestinal 

ischemia/re

perfusion 

Mice 

Antioxidant, 

Anti-

inflammatory 

[61] 

7 

 

1-((2’-(2H-tetrazol-5-yl)-[1,1’-biphenyl]-4-

yl)methyl)-4-hydroxy-2-propyl-1H-

imidazole-5-carboxylic acid 

10 mg/kg GPx 

Chronic 

nephrotoxic

ity 

Rats 

Antioxidant, 

Anti-

inflammatory 

[64]  

 

8 

Triazole core 

 

4-(3-nitrophenyl)-1-(m-tolyl)-1H-1,2,3-

triazole 

10 µM 
HO-1, 

NQO1 

Oxidative 

stress 

HEK293 Cells, 

FP and NQO1 

Assay 

Antioxidant [70] 

4-(3,5-bis((E)-4-hydroxy-3-
methoxystyryl)-1H-pyrazol-1-

yl)benzonitrile

1.25–5µM GPx Oxidative
stress PC12 Cells Antioxidant [52]

6

Imidazole core

Molecules 2023, 28, x FOR PEER REVIEW 9 of 28 
 

 

-2,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile 

5 

 

4-(3,5-bis((E)-4-hydroxy-3-

methoxystyryl)-1H-pyrazol-1-

yl)benzonitrile 

1.25–5µM GPx 
Oxidative 

stress 
PC12 Cells Antioxidant [52] 

 

 

6 

Imidazole core 

 

(4aR,6aS,12aS,12bS,14bR)-8a-(1H-

imidazole-1-carbonyl)-4,4,6a,11,11,14b-

hexamethyl-3,13-dioxo-

3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13

,14,14a,14b-icosahydropicene-2-

carbonitrile 

50–200 mg/kg 
HO-1, 

NQO1 

Lung 

cancer 

Mice, RAW 

264.7 Cells 

Antioxidant, 

Anti-

inflammatory 

[59]  

  30 µmol/kg 

HO-1, 

NQO1, 

GCLC 

Acute 

Kidney 

Injury 

Mice 

Antioxidant, 

Anti-

inflammatory 

[60] 

  2 mg/kg 

HO-1, 

NQO1, 

GCLC 

Intestinal 

ischemia/re

perfusion 

Mice 

Antioxidant, 

Anti-

inflammatory 

[61] 

7 

 

1-((2’-(2H-tetrazol-5-yl)-[1,1’-biphenyl]-4-

yl)methyl)-4-hydroxy-2-propyl-1H-

imidazole-5-carboxylic acid 

10 mg/kg GPx 

Chronic 

nephrotoxic

ity 

Rats 

Antioxidant, 

Anti-

inflammatory 

[64]  

 

8 

Triazole core 

 

4-(3-nitrophenyl)-1-(m-tolyl)-1H-1,2,3-

triazole 

10 µM 
HO-1, 

NQO1 

Oxidative 

stress 

HEK293 Cells, 

FP and NQO1 

Assay 

Antioxidant [70] 

(4aR,6aS,12aS,12bS,14bR)-8a-(1H-
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inflammatory [59]

30 µmol/kg HO-1, NQO1,
GCLC

Acute
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Injury
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9
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Table 1. Cont.
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Table 1. Cont.
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NRF2 Target
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Interest Study Model

Biological
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Interest
Reference(s)
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2.3. Fused/Condensed Nitrogen Heterocyclic Compounds

Fused nitrogen heterocycles contain at least one nitrogen heterocyclic ring fused with
either a heterocyclic or carbocyclic ring. They have been extensively studied [105–108].
They are found in a wide range of bioactive natural products and synthetic compounds.
Thus, almost a third of the best-selling therapeutics contain at least one fused heterocyclic
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compound, and the majority are nitrogen-based [1]. Apart from natural occurrence, several
fused N-heterocycles are obtained via facile and effective synthetic processes [109]. Most of
them exhibit antioxidant and anti-inflammatory activities [110].

2.3.1. Indoles

Indole is an aromatic fused N-heterocyclic containing a benzene and pyrrole ring.
They can be produced by certain bacteria or chemically by the catalytic reaction of aniline
with ethylene glycol [111]. They can also be synthesized by acid–metal cyclization of
aldehydes [112]. The synthesis of indoles has been reviewed by [113]. Indole-3-carbinol
(I3C) (24) (Table 2), abundantly found in crucifers, regulates the NRF2 signaling pathway
and exerts chemopreventive effects. The compound 24 induces ARE-luciferase activity
and NRF2-mediated genes, and suppresses the incidence of palpable tumors and gen-
itourinary weight [114]. It inhibits prostate cancer in transgenic adenocarcinomas of
mouse prostate (TRAMP) mice via NRF2 activation. Although compound 24 is effective
in activating the NRF2 signaling pathway, available data indicate that its dimerization to
3,3-iindolylmethane (25) (Table 2) results in improved NRF2-inducing activity. In a com-
parative study of their potential NRF2-inducing activity in murine fibroblasts (NIH3T3),
compound 25 was found to induce the transactivation of NRF2 and upregulation of NQO1,
γGCS and HO-1 in contrast to its precursor (24) [115]. In another development, the com-
pound 25 suppresses DNMT expression, reverses the CpG methylation status of NRF2,
upregulates the expression of NQO1 in vitro, and reduces tumorigenesis and metastasis
in TRAMP mice via the activation of the NRF2 pathway which accounts for its chemo-
preventive actions in prostate cancer [116]. Prenylated indole alkaloid (26) (Table 2) also
exerts neuroprotection against oxidative stress in SH-SY5Y cells via the nuclear translo-
cation of NRF2 and the induction of NQO1 and HO-1. It activates NRF2 signaling by
binding non-covalently with KEAP1, resulting in the reduction of ROS accumulation and
the enhancement of the GSH level [117]. An indole analogue bearing a lactic acid moi-
ety (27) (Table 2) attenuates inflammation and protects intestinal epithelial cells via the
activation of NRF2 and aryl hydrogen receptor pathways [118]. Furthermore, an indole
derivative (28) (Table 2) reduces ROS levels and improves neuronal viability in Parkinson’s
disease via NRF2 activation [119]. It is important to note that several indole derivatives
are non-covalent KEAP1-NRF2 protein–protein interaction (PPI) inhibitors. Through this
mechanism, indole derivatives 29 and 30 (Table 2) increase the expression level of NQO1
and outperform tert-butylhydroquinone (tBHQ), a known NRF2 activator [120,121]. Some
indole derivatives also regulate the induction of SOD2 via NRF2 expression in the mouse
brain [122].

2.3.2. Quinazolines

Quinazoline is an aromatic fused N-heterocyclic compound containing a benzene
and pyrimidine ring. They are biologically active, and are components of several phar-
maceuticals, including notable drugs [123]. They can be produced by reacting anthranilic
acid and formamide in a process known as Niementowski’s synthesis [124]. The reac-
tion of aromatic aldehydes with aminobenzimidazole and dimedone using sulfonic acid
functionalized nano-porous silica has become a more convenient synthetic method for
quinazolines [125]. Various methods used in the synthesis of quinazolines have been re-
viewed by [126]. Quinazolines possess diverse biological properties, including antioxidant
activities [127–129]. Several quinazoline analogues of medicinal importance have been
synthesized by the introduction of bioactive moieties to the stable quinazoline nucleus.
The incorporation of nitrogen heterocycles at position 4- of the quinazoline ring has been
found to enhance its cytoprotective activity including the activation of the NRF2 signaling
pathway [130]. Quinozaline derivatives are highly potent inducers of the NRF2 target
gene NQO1 [130]. The quinazolinone derivative (31) (Table 2) upregulates the expression
levels of NRF2, HO-1 and NQO1, with a consequent downregulation of the expression
of KEAP1, AhR and CYP1B1 [131]. This modulation of the AhR/CYP1B1/NRF2/KEAP1
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signaling pathway by compound 31 accounts for its chemotherapeutic potency in the inhi-
bition of liver carcinogenesis. Tryptanthrin, a natural quinazoline derivative (32) (Table 2)
obtained from Isatidis radix, has been found to upregulate the expression levels of NRF2
and its target genes. Compound 32 also exhibits hepatoprotective effects against oxidative
stress via the activation of the extracellular signal regulated kinase (ERK)/NRF2 signaling
pathway in HepG2 cells [132]. On the contrary, indazolo[3,2-b]quinazolinones inhibit the
NRF2/ARE signaling pathway; however, this opposing effect has been found therapeutic
in hepatocellular carcinoma [133].

2.3.3. Isoquinolines

Isoquinoline is an aromatic fused N-heterocycle made up of a benzene ring and
a pyridine ring. They are isolated from natural alkaloids and produced chemically by
Schlittler–Muller modification reaction [134,135]. They can also be prepared from ben-
zaldehyde and amine via an acid-promoted synthesis [136]. Other synthetic methods for
isoquinolines have been reviewed by [137]. Isoquinoline and its derivatives possess diverse
biological properties, including antioxidant and anti-inflammatory activities [138,139].
Pyrazino[2,1-a]isoquinoline derivatives (33 and 34) (Table 2) are potent NRF2/ARE in-
ducers [140,141]. Compounds 33 and 34 activate the NRF2/ARE signaling pathway and
elevate NQO1 at the cellular level [140,141]. Diphenyl isoquinoline-I-amine derivative
(35) (Table 2) exhibits anti-amnesic activity which has been linked to its ability to activate
the NRF2/HO-1 signaling pathway. Through this activation, it attenuates oxidative stress
and cholinergic dysfunction in the prefrontal cortex of mice exposed to scopolamine [142].
Furthermore, isoquinoline alkaloid (36) (Table 2) upregulates the expression of NRF2 tran-
scription factor and its target genes such as HO-1, GPX, SOD, CAT and NQO1, which help
in alleviating monosodium urate crystal-induced inflammation in rats [143].

Table 2. Fused Nitrogen heterocyclic compounds and NRF2-inducing activities.

S/N Molecule/Structure Effective
Concentration(s)

NRF2 Target
Genes

Disease of
Interest Study Model

Biological
Activity of

Interest
Reference(s)

24
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Table 2. Fused Nitrogen heterocyclic compounds and NRF2-inducing activities. 

S/N Molecule/Structure 
Effective 

Concentration(s) 

NRF2 

Target 

Genes 

Disease of 

Interest 
Study Model 

Biological 

Activity of 

Interest 

Reference(s) 

24 

Indole core 

 

(1H-indol-3-yl)methanol 

20mg/kg NQO1 
Prostate 

cancer 
Mice Antioxidant [114] 

(1H-indol-3-yl)methanol

20mg/kg NQO1 Prostate
cancer Mice Antioxidant [114]

25
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TRAMP mice,  

C1 Cells 
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(3R,6S,12aR,13aR)-3-isopropyl-

12a-methoxy-13a-methyl-6-(2-

methylprop-1-en-1-yl)-

2,3,13,13a-tetrahydro-1H-

pyrazino[1’,2’:3,4]pyrimido[1,6-

a]indole-1,4,12(6H,12aH)-trione 

10–50 µM NQO1 
Oxidative 

stress 
SH-SY5Y Cells Antioxidant [117] 
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2-hydroxy-3-(1H-indol-3-

yl)propanoic acid 

0.1–10 mM 

NQO1, 

SOD-2, 
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Intestinal 

inflammation 
Gut epithelial cells 
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Anti-

inflammatory 
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28 

 

2,3-dihydrocyclopenta[b]indol-

1(4H)-one 
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5-(((4-

methoxyphenyl)sulfonyl)methy

l)-2-methyl-N’-phenyl-1H-

4–100 µM NQO1 
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stress 

MEF Cells, HepG2 

Cells 
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3,3′-diindolylmethane

25–100 µM NQO1, HO-1
Oxidative

stress NIH3T3 Cells Antioxidant [115]

5 µM NQO1 Prostate
cancer

TRAMP mice,
C1 Cells

Antioxidant,
Anticancer [116]

26
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Table 2. Cont.

S/N Molecule/Structure Effective
Concentration(s)

NRF2 Target
Genes

Disease of
Interest Study Model

Biological
Activity of

Interest
Reference(s)
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Table 2. Cont.

S/N Molecule/Structure Effective
Concentration(s)

NRF2 Target
Genes

Disease of
Interest Study Model

Biological
Activity of

Interest
Reference(s)
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Several isoquinoline derivatives exert their NRF2-inducing activity by the inhibiting
the KEAP1/NRF2 interaction. This is based on the fact that the pharmacological activation
of NRF2 arises from the inhibition of the interaction of NRF2 with KEAP1 [144,145]. Thus,
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isoquinoline PRL-295 (37) (Table 2) increases KEAP1 thermostability in cell lysates and
causes a disruption of its interaction with NRF2 in single live cells. This leads to the
activation of NRF2 and enhanced hepatocellular protection. Oral administration of this
isoquinoline analogue (37) in mice results in the induction of NQO1 in the liver, and a
reduction of the plasma alanine aminotransferase and aspartate aminotransferase levels
associated with acetaminophen-induced hepatic injury [145,145]. The modulation of NRF2
signaling pathway has been found therapeutic in hepatic diseases [146].

3. Pharmacological Profile of NRF2-Activating Nitrogen Heterocyclic Molecules

Several nitrogen heterocyclic derivatives exhibit good ligand and lipophilic effi-
ciency, which influences their solubility, absorption, distribution and membrane permeabil-
ity [147,148]. Compound 1 is a metal-chelating compound that permeates the blood brain
barrier, making it valuable for CSN-related diseases [36]. It has a rapid absorption and
intravenous LD50 of 282 mg/kg and 306 mg/kg in mice and rats, respectively. It possesses
a toxicological profile that qualifies it as a drug candidate [149]. Pyrazole (3) exhibits
good oral bioavailability, adsorption, distribution, metabolism, and excretion (ADME) and
toxicological profile and drug-likeness [150].

In addition to higher NRF2-inducing activity and elevation of HO-1 and NQO1 mRNA
levels, compounds 40 and 41 exhibit better metabolic stability and pharmacodynamics than
compound 6 [151]. For instance, compound 6 is not as stable as compounds 40 and 41 in
human plasma. Compounds 40 and 41 (12–15 µmol/kg) also exhibit a higher bioavailability
of 6 (1.7 µmol/kg) in the mouse liver after six hours [151]. The metabolic and pharma-
cokinetic profiles of compound 7 have been reported by [152]. 1,4-diaryl-1,2,3-triazole
derivatives (8 and 9) show strong binding interactions with Arg483, Arg415, Arg380, Ser602
and Asn382 amino acids of the Keap1 Kelch domain, making them act as Keap1-NRF2 PPI
inhibitors [70]. The 1,2,4-triazole derivatives (10, 11 and 12) have interesting pharmacoki-
netic properties. Compound 10 exhibits very suitable pharmacokinetic properties including
low acute toxicity, a high plasma protein binding rate, and good hERG inhibition [72].
The pharmacokinetics and pharmacodynamics of derivatives of 13 have been evaluated
by [153]. The cytotoxicity of pyridine derivative 16 shows 100% cell survival up to 10 µM,
plasma and microsomal stability with about 97% and 66% of the intact remaining [107]. It
also exhibits blood brain barrier permeability (Pe: 65.16 × 10−6) which could be beneficial
in CNS-related diseases [107]. Pyrimidine derivative 18 binds directly to KEAP1 with high
affinity and dissociation constant (Kd) of 5.84 × 10−10 M and causes an alteration in the
plasma resonance [108]. Pharmacokinetic studies indicate that 18 has good bioavailability
and permeates the brain after intravenous and oral administration [108]. 1,2,4-Triazine
derivatives (21, 22 and 23) permeate the blood brain barrier [104]. Studies have revealed
the bioavailability, metabolism and distribution of compounds 24 and 25. While 24 is not
detectable in plasma, 25 can be detected in plasma [154]. Compound 24 is highly unstable
and rapidly absorbed to well-perfused tissues where it easily transforms to 25, which
is more stable and exerts anticancer actions [155]. Indole derivative 30 shows a strong
binding interaction with amino acid residues of KEAP1 [121]. The pharmacokinetic and
physicochemical properties of 30 have been reported by [121]. Isoquinoline derivative
33 exhibits unfavorable physicochemical properties such as poor membrane permeabil-
ity (11.680 × 10−6 cm/s. pH 7.4) and water solubility (0.022 µg/µL, pH 7.4), probably
due to the complexity of the ring systems and rigidity of the backbone [119]. However,
these physicochemical properties were improved by the complete removal of benzene
ring A (48).

4. Structure–Activity Relationship of NRF2-Activating Nitrogen Heterocyclic Molecules

The SAR assessment of nitrogen heterocyclic molecules for improved NRF2-inducing
activity is represented in Figure 1. The pyrrolidine moiety in compound 1 influences the
antioxidant activity. The introduction of the pyrrolidine moiety to caffeic acid improves its
antioxidant activity. The replacement of the OH of the COOH of caffeic acid with pyrroli-
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dine increases its ability to attenuate lipid peroxidation and improve antioxidant capacity
via the activation of Nrf2-dependent antioxidant enzyme HO-1 pathway and AKT pathway
in heart [156]. The SAR studies of pyrazole derivatives indicate that the incorporation of
the pyrazole core (3) increases their total antioxidant activity [157]. Although compound 6
activates the NRF2 signaling pathway and upregulates the expression levels of HO-1 and
NQO1, the introduction of 2- and 3-pyridyl moieties to the imidazole produces better drug
candidates 40 and 41, respectively [151]. For 1,4-diaryl-1,2,3-triazoles (8 and 9), the insertion
of a nitro group at the meta position of the 4-phenyl ring and a nitro (42), methyl (43) or halo-
gen group (44) at the meta position of the 1-phenyl ring are the best conformations required
for NRF2 cell-based activity [70]. For 1,2,4-triazole derivatives 10, 11 and 12, [72] reported
that the introduction of alkyl groups at the 3-position of the 1,2,4-triazole moiety enhanced
the NRF2-mediated neuroprotective effects. Notably, the 3,5-dimethyl substitution (10)
confers the best NRF2-inducing activity and neuroprotection. For piperidine derivatives 13
and 14, the introduction of N,N-dibutyl, N,N-dipropyl, N,N-bistrifluoromethyl or p-methyl
to their piperidine scaffold enhances their pharmacological efficiency [158]. Compound 16
was designed based on SAR analysis, and it exhibits superlative NRF2-inducing activity.
Among the drugs approved by the USA FDA, the pyridine moiety remains the second
most commonly introduced aromatic N-heterocycle [159,160]. According to [107], the
replacement of chlorobenzene with a pyridine ring and OMe with Cl- in vinyl sulfone
(45: EC50 = 530 nM) improves its NRF2-inducing activity (46: EC50 = 0.618 µM). Further-
more, the insertion of 3-Cl into the pyridine ring of 46 confers the highest NRF2-inducing
activity (16: EC50 = 0.026 µM).
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A SAR evaluation of triazine derivatives (21, 22 and 23) suggests that the introduc-
tion of aryl groups at 4-and 5-positions, and a thiolalkyl group at the 2-position of the
triazine ring (47) could improve NRF2-mediated neuroprotective effects [103]. Structurally,
compound 25 containing double indolyl groups outperforms its precursor (24) with one
indolyl group as an NRF2 inducer [115]. The presence of double indolyl groups could be
responsible for the increased NRF2-activating potency of compound 25. The incorporation
of a thiophene-carboxylic moiety improves the NRF2-inducing activity of indole deriva-
tives [121]. The thiophene ring of compound 30 is involved in a strong interaction, which
accounts for its ability to significantly induce NRF2-related antioxidant enzymes. The SAR
of the isoquinoline derivative (33) has been studied. The benzene ring B in 33 has been
identified as the main driver of its NRF2/ARE-inducing activity, and 3-F substitution of
the benzene ring B (33) gives the best activity [141]. Removal of benzene ring A (48) results
in comparable NRF2/ARE-inducing activity with 33 but improved physicochemical and
drug-like properties.

5. Conclusions

Owing to their wide range of pharmacological activities, nitrogen heterocycles and
analogues are essential candidate drugs for myriad of diseases, especially those in which
oxidative stress and inflammation have been implicated. Interestingly, both natural and
synthetic nitrogen heterocycles exert therapeutic effects in neurodegenerative diseases such as
Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and many more [161–163].
This is due to the fact that most of these nitrogen heterocycles activate the NRF2 signaling
pathway, which regulates oxidative stress and neuroinflammation, the key mediators in the
development of neurodegenerative diseases. Through their NRF2-mediated antioxidant and
anti-inflammatory effects, N-based heterocycles attenuate the gradual decline in neuronal
functions associated with neurodegenerative diseases. Furthermore, the ability of these nitro-
gen heterocycles to elevate the expression levels of NRF2 target genes such as NQO1, HO-1,
GCLM, GCLC, GPX, SOD and CAT represents an essential therapeutic strategy in a myriad of
diseases. The available data indicate that about 95% of NRF2-activating nitrogen heterocycles
induce the expression of NQO1 and HO-1, which are essential therapeutic molecular targets
for several inflammation- and oxidative stress-mediated diseases. It is well established that
while NQO1 catalyzes the reduction and detoxification of quinines and their analogues, HO-1
is involved in heme catabolism, and these processes exert anti-inflammatory and antioxidant
effects in organisms. This implies that NRF2-activating nitrogen heterocycles will aid NQO1
and HO-1 targeted drug discovery for diseases in which oxidative stress and inflammation
have been implicated. Taken together, the analyses of the NRF2-inducing activity of nitrogen
heterocycles based on the size of the ring indicate that aziridines and azetidines which are
three- and four-membered N-heterocycles, respectively, have not been explored yet. However,
five-membered N-based heterocycles such as pyrrolidines, pyrroles, imidazoliding, imida-
zoles, triazoles and pyrazoles exert NRF2-mediated antioxidant and anti-inflammatory effects,
which have been found therapeutic in diseases such as infertility, liver injury, inflammatory
bowel diseases, lung cancer and neurodegenerative diseases, especially Alzheimer’s disease
(Table 1). Furthermore, six-membered N-based heterocycles such as piperidines, pyridines,
pyrimidines, pyrazines, triazines and their derivatives exhibit significant antioxidant and
anti-inflammatory properties. They play essential therapeutic roles in Parkinson’s disease,
gastric cancer, ischemia reperfusion injury and Alzheimer’s disease via NRF2 activation
(Table 1). On the other hand, fused nitrogen heterocycles such as indoles, quinazolines and
isoquinolines exhibit antioxidant and anti-inflammatory activities, and exert NRF2-mediated
therapeutic effects in prostate cancer, intestinal inflammation, liver carcinogenesis, amnesia,
gouty arthritis and Parkinson’s disease (Table 2). Obviously, higher membered rings such as
azepine (seven-membered), azocines (eight–membered) and azonines (nine-membered) have
not been explored. In the same vein, higher nitrogen containing heterocycles such as tetrazoles
and pentazoles have not been subjected to NRF2-inducing activity evaluation. However, it is
important to explore them because if nitrogen heterocycles were to activate NRF2 in direct
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proportion to their size and number of nitrogen atoms, then higher membered rings and
higher nitrogen-containing heterocycles would be privileged molecules. In summary, based on
NRF2-mediated activities, pharmacological profile and SAR evaluation, nitrogen heterocycles
and their analogues represent good candidates for further development for inflammation and
oxidative stress-mediated diseases, especially neurodegenerative diseases.
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