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Abstract: As an underrepresented functional group in bioorganic and medicinal chemistry, the
hydroxylamine unit has historically received little attention from the synthetic community. Recent
developments, however, suggest that hydroxylamines may have broader applications such that a
review covering recent developments in the synthesis of this functional group is timely. With this in
mind, this review primarily covers developments in the past 15 years in the preparation of di- and
trisubstituted hydroxylamines. The mechanism of the reactions and key features and shortcomings
are discussed throughout the review.
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1. Introduction

In synthetic chemistry, the O-acyl-N,N-disubstituted hydroxylamine moiety has received
a great deal of attention on account of its ability to function as an electrophilic nitrogen
source [1–4]. Indeed, this mode of reactivity has proved to be highly effective in the synthesis
of functionalized chiral tertiary amines through copper-catalyzed hydroamination procedures,
or of chiral N-heterocycles through palladium-catalyzed aza-Heck/aza-Narasaka-Heck cy-
clizations as popularized by many groups, notably those of Buchwald and Bower, respectively
(Figure 1A) [5–8]. Conversely in nature, the analogous O-acetylation or O-sulfonylation of
hydroxylamines, followed by elimination to nitroso derivatives, is called phase II metabolism
of hydroxylamines and is the root cause of hydroxylamine-based mutagenicity [9,10]. Com-
pared to O-acyl-N,N-disubstituted hydroxylamines and related derivatives, the chemistry of
di- and trialkylhydroxylamines is much less studied. With experimentally determined bond
dissociation energy (BDE) values from 55 to 65 kcal·mol−1 a pKa of 5.93 in aqueous solution
for the conjugate acid of hydroxylamine itself, and barriers to stereomutation, nitrogen
inversion, or N-O bond rotation of approximately 15 kcal·mol−1, the di- and trialkylhy-
droxylamine units offer interesting properties situated in unique chemical space [11–16].
The trialkylhydroxylamine unit is found in approved scaffolds such as the anti-insecticidal
spiropidion, developed by Syngenta, the tetracycline-derived antibiotic sarecycline, devel-
oped by Allergen (acquired by Almirall), and has been used as a phosphate replacement
in nucleotide analogs by Alnylam, but such examples are rare (Figure 1B) [17–19]. De-
spite these examples, broader uptake of the hydroxylamine unit in small-molecule drug
discovery settings beyond simple O-methyl-N,N-disubstituted hydroxylamines has yet to
materialize. This could be due in part to the assignment of hydroxylamines as “structural
alerts” in traditional medicinal chemistry or to the historical lack of reliable synthetic
methods for this functionality [20,21].

Molecules 2023, 28, 2816. https://doi.org/10.3390/molecules28062816 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28062816
https://doi.org/10.3390/molecules28062816
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0009-0001-8753-056X
https://orcid.org/0000-0003-2400-0083
https://doi.org/10.3390/molecules28062816
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28062816?type=check_update&version=1


Molecules 2023, 28, 2816 2 of 22

Molecules 2023, 28, x FOR PEER REVIEW 2 of 22 
 

 

traditional medicinal chemistry or to the historical lack of reliable synthetic methods for 
this functionality [20,21]. 

 
Figure 1. (A) Examples of the use of O-acyl-N,N-disubstituted hydroxylamines in synthesis. (B) The 
O-methoxy-N,N-disubstituted hydroxylamine moiety in approved agrochemical and pharmaceuti-
cal drug structures. (C) Hydroxylamine terminology and scope of the present review. (D) Examples 
of oxime transformations toward disubstituted hydroxylamines. (E) Select examples of hydroxyla-
mine synthesis covered in this review. 

The aim of this review is to summarize recent developments in synthetic methodol-
ogy directed toward the preparation of the di- and trialkylhydroxylamine moieties (Figure 
1C). We begin by discussing approaches to dialkylhydroxylamines through catalytic re-
duction of oxime ethers, then continue with some recent advances in alkylation and re-
ductive amination chemistry for the preparation of di- and trialkylhydroxylamines. Then, 
we move into recent developments in Cope-type hydroaminations and [2,3]-Meisenhei-
mer rearrangements of N-oxides and finally conclude with developments in di- and trial-
kylhydroxylamine synthesis by direct N-O bond formation (Figure 1D,E). Emphasis is 
placed on developments made in the past 15 years for synthetic methods aimed at acyclic 
di- and trialkylhydroxylamines: for a more thorough discussion on the chemistry of elec-
trophilic hydroxylamine derived reagents [3], hydroxamic acids [22], oximes [23], or the 
chemistry of endo-cyclic hydroxylamines [24], the reader is directed to some recent re-
views. 

2. Synthesis of Disubstituted Hydroxylamines by Catalytic Reduction of Oxime 
Ethers 

The reduction of oxime ethers is a valuable method for the synthesis of N,O-disub-
stituted hydroxylamines with high step- and atom-economy [25]. Unfortunately, tradi-
tional methods are largely based on reduction with stoichiometric borohydrides [26,27], 
hydrosilanes [28], or organotin hydrides [29]. Moreover, oxime ether reduction is compli-
cated by the requirement for selective reduction of the C=N bond without reductive cleav-
age of the labile N-O bond [25]. Since Vavon�s seminal reports in the 1920s on the first 
catalytic reduction of oxime ethers, much effort has been directed toward improving 
yields, functional group tolerance, and in the development of stereoselective variants, 

Figure 1. (A) Examples of the use of O-acyl-N,N-disubstituted hydroxylamines in synthesis. (B) The
O-methoxy-N,N-disubstituted hydroxylamine moiety in approved agrochemical and pharmaceutical
drug structures. (C) Hydroxylamine terminology and scope of the present review. (D) Examples of
oxime transformations toward disubstituted hydroxylamines. (E) Select examples of hydroxylamine
synthesis covered in this review.

The aim of this review is to summarize recent developments in synthetic methodology
directed toward the preparation of the di- and trialkylhydroxylamine moieties (Figure 1C).
We begin by discussing approaches to dialkylhydroxylamines through catalytic reduction of
oxime ethers, then continue with some recent advances in alkylation and reductive amination
chemistry for the preparation of di- and trialkylhydroxylamines. Then, we move into recent
developments in Cope-type hydroaminations and [2,3]-Meisenheimer rearrangements of
N-oxides and finally conclude with developments in di- and trialkylhydroxylamine syn-
thesis by direct N-O bond formation (Figure 1D,E). Emphasis is placed on developments
made in the past 15 years for synthetic methods aimed at acyclic di- and trialkylhydroxy-
lamines: for a more thorough discussion on the chemistry of electrophilic hydroxylamine
derived reagents [3], hydroxamic acids [22], oximes [23], or the chemistry of endo-cyclic
hydroxylamines [24], the reader is directed to some recent reviews.

2. Synthesis of Disubstituted Hydroxylamines by Catalytic Reduction of Oxime Ethers

The reduction of oxime ethers is a valuable method for the synthesis of N,O-disubstituted
hydroxylamines with high step- and atom-economy [25]. Unfortunately, traditional meth-
ods are largely based on reduction with stoichiometric borohydrides [26,27], hydrosi-
lanes [28], or organotin hydrides [29]. Moreover, oxime ether reduction is complicated by the
requirement for selective reduction of the C=N bond without reductive cleavage of the labile N-
O bond [25]. Since Vavon’s seminal reports in the 1920s on the first catalytic reduction of oxime
ethers, much effort has been directed toward improving yields, functional group tolerance,
and in the development of stereoselective variants, most notably using homogenous cata-
lysts [30,31]. Thus, in 2014, Oestreich reported a frustrated Lewis pair-catalyzed hydrogena-
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tion of sterically encumbered ketoxime derivatives using a tris(pentafluorophenyl)borane
catalyst in toluene at 100 bar of hydrogen pressure (Scheme 1) [32,33]. Under the opti-
mized conditions, excellent yields (up to 99%) were obtained for the N,O-disubstituted
hydroxylamines and a variety of functional groups could be tolerated including trifluo-
romethyl (1–2) in 80–99% yields, and aryl halides with products (7–10) isolated in 95–99%
yield (Scheme 1A). However, when the optimized conditions were applied to aldoxime
substrates no reaction occurred, which the authors attributed to the reduced Lewis basicity
of aldoximes relative to ketoximes. To enable efficient reduction of aldoxime substrates, the
authors switched the solvent from toluene to 1,4-dioxane, which was precedented to act
as the Lewis-basic component in frustrated-Lewis-pair-type heterolytic dihydrogen split-
ting [33–35]. Under these conditions, various aldoximes underwent efficient reduction of
the C=N bond selectively to afford N,O-disubstituted hydroxylamines (11–15) in excellent
yields (89–95%) (Scheme 1B).
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Scheme 1. Oestreich’s hydrogenation of E/Z oximes using frustrated Lewis pairs. (A) Selected
examples of the reaction on ketoximes using conditions A. (B) Selected examples of the reaction on
aldoximes using conditions B [32,33].

In 2020, Cramer reported the first highly efficient stereoselective reduction of oximes
using chiral cyclometalated Cp Ir(III) methanesulfonate complexes ((S)-Ir1) in an alcohol
solvent with 1.5 equivalents of methanesulfonic acid under 50 bar of hydrogen pressure
at room temperature (Scheme 2) [36]. Importantly, the reaction proceeded without the
requirement for a bulky substituent as seen in Oestrich’s frustrated-Lewis-pair reduction
protocol, while retaining full chemoselectivity towards the oxime C=N bond with catalyst
turnovers up to 4000 and enantiomeric ratios up to 98:2 [33,35]. Under the optimized con-
ditions, a variety of substrates underwent efficient reduction even with sterically congested
oximes such as a tert-butyl substituted oxime that gave the intended product (16) in 90%
yield (Scheme 2A). A variety of functional groups were well tolerated including ethers
and esters affording products (19–20) in excellent yields (94–99%) (Scheme 2A). Using
a slightly modified version of the standard reaction conditions with hydrogen pressure
reduced to 20 bar, even azide-bearing oxime ethers were competent substrates in the trans-
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formation affording the intended products (18) in 80% yield (Scheme 2A). In a subsequent
2021 study by Cramer aimed at investigating the full scope and reaction mechanism of the
novel hydrogenation procedure, an alternative cyclometalated Cp* Ir(III) methanesulfonate
complex (Ir2) was identified as a highly efficient catalyst for hydrogenation [37]. Using the
new catalyst, selective C=N reduction of oximes containing broad functionalities could be
achieved in up to 99% yield with examples including cyclopropyl (21), dimethylacetal (22),
phthalimido (24), or benzothiazole (25) carrying oximes (Scheme 2B).
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Scheme 2. Cramer’s enantioselective and racemic hydrogenations of E/Z oximes for the synthesis
of secondary hydroxylamines. (A) Selected examples of the enantioselective reaction using catalyst
[(S)-Ir1]. (B) Selected examples of the racemic reaction using catalyst [Ir2] [36,37].

In 2022, Zhang reported the first asymmetric reduction of oximes using earth-abundant
Ni catalysis. This reaction proceeds under 50 bar hydrogen pressure with the addition of
acid in up to 99% yield and 99% e.e. of the product N,O-disubstituted hydroxylamines
(Scheme 3) [38]. Under the optimized condition, ketoximes were reduced in excellent yields
(up to 99%) to the corresponding N,O-disubstituted hydroxylamines (26–36) (Scheme 3A).
A variety of functional groups were well tolerated in the reaction including aryl halides and
nitro groups, with products (32, 33) formed in excellent yields (85% and 99%, respectively).
Moreover, a carbomethoxy substituted oxime ether functioned well as a substrate affording
the intended N,O-disubstituted hydroxylamine (34) in 98% yield while retaining excellent
enantioselectivity (98:2). For ortho-substituted aryl ketoximes a variation in reaction con-
ditions was needed to affect reduction, with a Ni/(R,R)-Quinoxp* catalyst being optimal
under slightly adjusted solvent conditions (TFE/AcOH = 10:1) giving an N,O-disubstituted
hydroxylamine (37) in 97% yield (Scheme 3B). A gram scale reduction was also carried out
on (38) with a substrate-to-catalyst ratio of 1000:1, affording the intended N,O-disubstituted
hydroxylamine (39) in 95% yield and excellent enantioselectivity (98:2). To highlight the
potential synthetic utility of the transformation, hydroxylamine (39) was also converted
into the N-ethoxy oxathiazolidine (40) and the cyclophosphamide (41) in 94% and 71%
yields, respectively (Scheme 3C).
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3. Protecting Group-Free Synthesis of Di- and Trisubstituted Hydroxylamines

Historically, alkylation chemistry represented the most common route for the prepa-
ration of di- and trisubstituted hydroxylamines [39]. This is likely due to the widespread
availability of N-hydroxyphthalimide (NHPI) and hydroxylamine hydrochloride, which
provide reliable methods for the preparation of mono- and disubstituted hydroxylamines
but that nevertheless require a series of protection/deprotection steps to achieve the in-
tended products [39]. Synthesis of hydroxylamines by alkylation chemistry, however, is
limited to the use of strong electrophiles, which in turn leads to complications due to over-
alkylation. For example, selective mono-alkylation of O-monosubstituted hydroxylamines
is fraught with challenges due to competing dialkylation in comparison to the more straight-
forward alkylation of N,O-disubstituted hydroxylamines [39,40]. In this section, we will
cover recent strategies for the direct preparation of di- and trisubstituted hydroxylamines
from less substituted hydroxylamines without protection/deprotection sequences.

In contrast to alkylation chemistry, reductive amination procedures of O-monosubstituted
hydroxylamines represent a powerful strategy for the synthesis of N,O-disubstituted and
trisubstituted hydroxylamines [41]. This is underlined by the commercial preparation
of sarecycline (Figure 1B) by Almirall, which employs a reductive amination between
N,O-dimethylhydroxylamine and a tetracycline-derived aldehyde followed by reduction
with borane to construct the trisubstituted hydroxylamine moiety [42]. Beyond simple
O-methoxy-N,N-disubstituted hydroxylamines, in 1994, Bols reported a concise synthesis
of isofagomine which included a ring-closing double reductive amination step for the
construction of the polyhydroxylated piperidine ring [43]. In 2012, Crich applied a related
strategy for the synthesis of polyhydroxylated N-alkoxy piperidines (Scheme 4) [44]. Under
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the optimized conditions, which consisted of dioxime formation from a masked dialdehyde,
followed by reductive ring-closure, a variety of trisubstituted hydroxylamines could be
prepared bearing a range of functional groups, including benzyl (42), paramethoxybenzyl
(43), allyl groups (44), ethyl esters (45), and alkynes (46) (Scheme 4A). Moreover, the
reaction could be applied to the synthesis of complex disaccharide mimetics linked through
a trisubstituted hydroxylamine, where the intended product (47) was isolated in 70%
yield (Scheme 4B). Disaccharide (47) could then be deprotected under Zemplén conditions
(sodium methoxide in MeOH) followed by BCl3-mediated cleavage of the benzyl ethers,
giving the intended product (48) in 61% yield over two steps, all while retaining the
hydroxylamino linkage [45]. This ring-closing double reductive amination approach was
also later used by Crich in the synthesis of di- and trimeric hydroxylamine based β-(1→3)-
glucan mimetics [46,47].
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Shibasaki’s rare earth alkali metal BINOLate (REMB) framework has found wide appli-
cations in the preparation of enantioenriched small molecules through simple modification
of the pro-ligand, (R)- or (S)-BINOL [48–51]. In the early 2000s, Shibasaki reported that the
REMB framework could be used in the synthesis of highly enantioenriched N,O-disubstituted
hydroxylamines by conjugate addition of O-alkylhydroxylamines to α,β-unsaturated car-
bonyl derivatives in up to 98% yield and 96% e.e. (Scheme 5) [50]. Using yttrium-based
(S,S,S)-REMB (YLB), high yields (up to 97%) and excellent enantioselectivities (up to 96:4)
were obtained of the N,O-disubstituted hydroxylamines with good functional group toler-
ance of the enone substrates, which included furans (49), thiophenes (50), and aryl halides
(51) (Scheme 5A). However, in the conjugate addition of O-methylhydroxylamine to α,β-
unsaturated N-acylpyrroles the authors noted that a dysprosium-based REMB (DyLB) gave
slightly better yields and enantioselectivities (up to 97% yield, 86:14 e.e.) than the original
YLB catalyst. The reaction was also extended to homologs of O-methoxy disubstituted
hydroxylamine, with O-benzylhydroxylamine and O-diphenylmethylhydroxylamine af-
fording products (56, 57) in 91% and 50% yield, respectively. The reduced yield of 57 was
accounted for by the sterically encumbered nature of the nucleophile, which the authors
claimed highlighted the importance of complexation between YLB and the hydroxylamine
nucleophile on the outcome of the reaction. The authors also proposed a catalytic cycle
that begins with the reversible coordination of hydroxylamine (II) to the YLB catalyst
(I) to form an active YLB-hydroxylamine catalyst (III) (Scheme 5B). Upon reaction of III
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with the α,β-unsaturated carbonyls (IV) in a carbon–nitrogen bond forming event, enolate
(V) is formed and then undergoes irreversible proton transfer to yield VI. Upon disso-
ciation, the intended product (VII) is formed, and active YLB-hydroxylamine catalyst
(III) is regenerated after another coordination event with hydroxylamine (II). The impor-
tance of conjugate additions of lesser substituted hydroxylamines in the construction of
di- and trisubstituted hydroxylamines is evident from the synthesis of the anti-insecticidal,
spiropidion (Figure 1B): a double conjugate addition of O-methylhydroxylamine with two
molecules of methyl acrylate is followed by Dieckmann reaction to afford the requisite
intermediate trisubstituted hydroxylamine, N-methoxy-4-piperidinone [17,52].
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In 2021, Takao and Ogura reported a synthesis of indoline-based trisubstituted hydrox-
ylamines by reaction of diaryliodonium salts with tetrabutylammonium fluoride (TBAF)
through a proposed iodaoxazepine intermediate (Scheme 6) [53]. Under these conditions, a
variety of indoline-based trisubstituted hydroxylamines could be obtained in fair yields
(up to 57%) with good functional group tolerance that included ethers (58), various halides
(59–60), and nitro groups (63) (Scheme 6A). Interestingly, the reaction could also be applied
to a sterically encumbered substrate bearing an O-tert-alkyl moiety, with the intended prod-
uct (62) being isolated in 57% yield. The authors also proposed a mechanism to account for
this reaction beginning with diaryliodonium salt (I) which upon exposure to TBAF leads to
deprotection of the trisubstituted hydroxylamine to an N,N-disubstituted hydroxylamine
(II) that undergoes intramolecular attack affording an iodaoxazepine (III) (Scheme 6B).
Iodaoxazepine (III) can then undergo nitrogen attack at the ipso-carbon affording N-oxide
(V) after the loss of iodobenzene through a proposed four-membered transition state (IV).
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Subsequent [1,2]-Meisenheimer rearrangement affords the intended products (XI) [54]. A
radical pair pathway for the final step was supported by (2,2,6,6-tetramethylpiperidin-1-
yl)oxyl (TEMPO) trapping studies, which led to the isolation of benzyl TEMPO adducts
(VIII). For allylic substituted substrates that do not bear an O-benzyl group, the final step
was proposed to proceed through a [2,3]-sigmatropic Meisenheimer rearrangement [54].
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Scheme 6. Takao and Ogura’s synthesis of indoline trisubstituted hydroxylamines. (A) Selected
examples of the transformation. (B) Proposed mechanism [53].

In 2021, Zhang, Li, and Xuan reported a blue-light-promoted multicomponent synthe-
sis of trisubstituted hydroxylamines derived from 2-nitrosopyridine, aryl diazoacetates,
and β-ketoesters (Scheme 7) [55]. Depending on the solvent, tetrahydrofuran (THF) or
dichloromethane (CH2Cl2), trisubstituted hydroxylamines are formed either directly from
the three substrates or with the insertion of a THF-derived butoxy chain. The authors ratio-
nalized this observation in terms of photolytic generation of a carbene (II) [56] that is then
quenched by reaction with the adduct of the β-ketoesters (III) with 2-nitrosopyridine (IV)
in CH2Cl2 to afford products (VI). However, in THF, the carbene species (II) first reacts with
the solvent to afford an oxonium ylide (VII) that can undergo nucleophilic attack by the
N,O-disubstituted hydroxylamine (V) to afford products (XI) [57]. Under both conditions,
the reaction proceeds in excellent yield with very good functional group tolerance including
various aryl halides (65, 66, 79, 81) and complex alcohol-derived aryl diazoacetates (72–78,
84–88), with hydroxylamines isolated in up to 99% yield (Scheme 7B,C).
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Scheme 7. Zhang, Li, and Xuan’s multicomponent synthesis of trisubstituted hydroxylamines.
(A) Selected examples of the transformation using CH2Cl2 as solvent. (B) Selected examples of the
reaction using THF as solvent. (C) Proposed mechanism to account for differential reactivity in
alternative solvents [55].

In 2022, Shao, Xiao, and Deng reported a synthesis of sterically encumbered O-tert-
alkyl-N,N-disubstituted hydroxylamines by tandem in situ deacetylation of O-benzoyl-
N,N-disubstituted hydroxylamines and coupling with α-amido or α-keto tertiary alkyl
chlorides (Scheme 8) [58]. The reaction proceeds under palladium catalysis with Xantphos
as a ligand in up to 85% yield and exhibits good functional group tolerance. A wide vari-
ety of N-heterocycles were used in the reaction bearing diverse functionalities including
dimethylketals (89), thiophenes (91), and furans (92) (Scheme 8A). The authors proposed
a mechanism that begins with the reduction of Pd(II) to Pd (0) (I) followed by a single-
electron transfer (SET) process between the Pd(0) and tertiary alkyl chloride, generating
a Pd(I) species (III) and a tertiary alkyl radical (IV) (Scheme 8B) [59,60]. Subsequent re-
combination affords Pd(II) intermediate (V), which undergoes ligand exchange with in situ
generated N,N-disubstituted hydroxylamine salt (VII) to afford alkyl-hydroxylamino Pd(II)
intermediate (VIII). A final reductive elimination then furnishes the intended products (XI)
and regenerates the Pd(0) catalyst (I).

In 2023, Lin and He reported a novel catalytic asymmetric synthesis of allylic N,O-
disubstituted hydroxylamines from conjugated dienes through a hydroaminoxylation proce-
dure (Scheme 9) [61]. The reaction utilizes oxime nucleophiles under palladium catalysis
to generate allylic oximes asymmetrically, which subsequently undergo reduction to the
corresponding allylic N,O-disubstituted hydroxylamines. Under the optimized conditions,
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various functional groups were well tolerated in the transformation including methyl esters
(96), aryl halides (95–104), nitrile (100), and trifluoromethyl (99) groups, affording products
in good yields (68–74%) and excellent enantiomeric ratios (up to 96:4).
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In 2010, Sato and Chida devised a method for the synthesis of O-methoxy-derived
trisubstituted hydroxylamines with branching α- to the N-substituent [62]. The reaction
consists of the reduction of Weinreb amides by diisobutylaluminum hydride (DIBAL)
and subsequent trapping of the tetrahedral intermediate (I) with Lewis acids (II), which
induces collapse to N-oxy-iminium ions (III) that can subsequently undergo attack with
nucleophiles to afford products (IV) (Scheme 10). The reaction was tolerated by various
alkyl substituents (107–110) and could also be applied in the synthesis of macrocyclic
trisubstituted hydroxylamines giving products (111, 112) in excellent yields (up to 90%).

Molecules 2023, 28, x FOR PEER REVIEW 11 of 22 
 

 

In 2010, Sato and Chida devised a method for the synthesis of O-methoxy-derived 
trisubstituted hydroxylamines with branching 𝛼- to the N-substituent [62]. The reaction 
consists of the reduction of Weinreb amides by diisobutylaluminum hydride (DIBAL) and 
subsequent trapping of the tetrahedral intermediate (I) with Lewis acids (II), which in-
duces collapse to N-oxy-iminium ions (III) that can subsequently undergo attack with nu-
cleophiles to afford products (IV) (Scheme 10). The reaction was tolerated by various alkyl 
substituents (107–110) and could also be applied in the synthesis of macrocyclic trisubsti-
tuted hydroxylamines giving products (111, 112) in excellent yields (up to 90%). 

 
Scheme 10. Sato and Chida�s 𝛼-functionalization of Weinreb amides for the synthesis of O-meth-
oxy-derived trisubstituted hydroxylamines [62].  

In 2016, Crich developed a method for the synthesis of trisubstituted hydroxylamines 
with branching 𝛼- to the O-substituent by application of Rychnovsky�s ether methodol-
ogy to O-acyl-N,N-disubstituted hydroxylamines [63,64] (Scheme 11). Importantly, the re-
action was not limited to O-methoxy derivatives as was the case in Sato and Chida�s re-
duction method [62]. Trisubstituted hydroxylamines could be readily synthesized with an 𝛼-methylene unit adjacent to the O-substituent as shown in trisubstituted hydroxylamine 
products (113–116), by reduction of the 𝛼-acetoxy intermediates with triethylsilane and 
BF3·OEt2. Moreover, trisubstituted hydroxylamines with alkyl branching 𝛼- to the O-sub-
stituent could be prepared using carbon-based nucleophiles in the last step, including si-
lylenol ethers (117), 2-methylfurans (119), and allylmetals (118, 120) all of which gave good 
to excellent yields of the hydroxylamine products (up to 79% yield, over two steps). 

R1 N

O

OMe
R3

R2 1) DIBAL, CH2Cl2
    - 78 ºC

2) Lewis Acid
    R4M, rt

R1 N
OMe

R3

R2R4 H

Weinreb amide O-methoxy-derived
trisubstituted hydroxylamine

>10 examples
up to 92% yield

N
OMe

Ph

H

Me
N
OMe

Ph

H

Me

Me

Ph N
OMe

Ph

NC H Me

N
MeO

CN

N
MeO

107, LA = Sc(OTf)3 (1.3 equiv): 
      92% yield

108, LA =  Sc(OTf)3 (1.3 equiv):
      72% yield

109, LA = SnCl4 (3.0 equiv):
      65% yield

111, LA = SnCl4 (3.0 equiv): 
      76% yield

112, LA = Sc(OTf)3 (1.3 equiv): 
     90% yield

Sato, Chida (2010) Via:

R1 N

O

R3R2

OMeH
AlH

Lewis acid
R1 N

O

R3R2

OMeH

LA

R1 N

H

R3R2

OMeR4M
R1 N

OMe
R3

R2R4 H

I II

IIIIV

N
OMe

Ph

H

Me

Me

110, LA = SnCl4 (3.0 equiv): 
      79% yield

NC

Scheme 10. Sato and Chida’s α-functionalization of Weinreb amides for the synthesis of O-methoxy-
derived trisubstituted hydroxylamines [62].

In 2016, Crich developed a method for the synthesis of trisubstituted hydroxylamines
with branching α- to the O-substituent by application of Rychnovsky’s ether methodology to O-
acyl-N,N-disubstituted hydroxylamines [63,64] (Scheme 11). Importantly, the reaction was not
limited to O-methoxy derivatives as was the case in Sato and Chida’s reduction method [62].
Trisubstituted hydroxylamines could be readily synthesized with an α-methylene unit ad-
jacent to the O-substituent as shown in trisubstituted hydroxylamine products (113–116),
by reduction of the α-acetoxy intermediates with triethylsilane and BF3·OEt2. Moreover,
trisubstituted hydroxylamines with alkyl branching α- to the O-substituent could be pre-
pared using carbon-based nucleophiles in the last step, including silylenol ethers (117),
2-methylfurans (119), and allylmetals (118, 120) all of which gave good to excellent yields
of the hydroxylamine products (up to 79% yield, over two steps).
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4. Synthesis of Hydroxylamines by [2,3]-Sigmatropic Rearrangements of N-Oxides
and Cope-Type Hydroaminations

The [2,3]-Meisenheimer rearrangement, is a [2,3]-sigmatropic rearrangement of ter-
tiary allylic N-oxides to trisubstituted hydroxylamines and represents a highly efficient,
atom-economical route for the preparation of allylic trisubstituted hydroxylamines [65].
Recent work on [2,3]-Meisenheimer rearrangements has primarily focused on the develop-
ment of asymmetric variants [66]. The first asymmetric Meisenheimer rearrangement was
reported by Tambar in 2011 and was performed under palladium catalysis with an electron-
deficient phosphoramidite ligand (Scheme 12) [67]. Interestingly, during optimization,
the authors found that the addition of meta-chlorobenzoic acid (m-CBA) led to enhanced
enantioselectivity in the reaction but did not provide an explanation for this phenomenon.
Under the optimized conditions, a variety of allylic-dibenzylamines underwent efficient
rearrangement after oxidation to the corresponding N-oxides in up to 86% yield with excel-
lent enantioselectivity (up to 97:3) (Scheme 12A). The authors proposed a catalytic cycle
whereby the Pd(II)-phosphoramidite catalyst (I) first acts as a π-acid and activates N-oxide
(II) to an intermediate that exists either as an olefin-bound (III) or oxide-bound complex
(IV) that leads to the formation of heterocycle (V) (Scheme 12B) [68]. The intermediacy of
heterocycle (V) was supported by the lack of reactivity for substrates substituted at C-2 of
the allylic functionality, which would be unable to form heterocycle (V) for steric reasons.
A final aza-Grob fragmentation was proposed to afford the corresponding products (VI)
and regenerate the Pd(II)-phosphoramidite catalyst (I) [69].

In 2020, Peters reported a method for the enantioselective synthesis of O-tert-alkyl
allylic trisubstituted hydroxylamines under catalysis by a planar chiral ferrocene-based
bispalladacycle, without the need for the exogeneous m-CBA needed in Tambar’s study
(Scheme 13) [67,70]. The mild nature of these reaction conditions was underlined by the
excellent functional group tolerance, which included substrates bearing primary tosylates
(127), esters (128–129), and epoxides (130, 132), from which all hydroxylamines were
isolated in good to excellent yields (69–96%) and excellent enantioselectivity (up to 96:4)
(Scheme 13A). The reaction could also be applied in the synthesis of sterically congested
tertiary alcohols by reductive cleavage of the N-O bond as shown in the synthesis of 135,
which was accomplished in 80% yield over two steps (Scheme 13B).
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Scheme 12. Tambar’s enantioselective [2,3]-sigmatropic rearrangement of allylic amine N-oxides
for the synthesis of trisubstituted hydroxylamines. (A) Selected examples of the transformation.
(B) Proposed catalytic cycle [67].
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Scheme 13. Peters’ enantioselective [2,3]-sigmatropic rearrangement of allylic amine N-oxides for the
synthesis of O-tert-alkyl trisubstituted hydroxylamines. (A) Selected examples of the transformation.
(B) Elaboration of the products to complex tertiary alcohols [67,70].

The Cope elimination of tertiary N-oxides affords alkenes and hydroxylamines via
a concerted, 5-membered cyclic transition state. In the reverse direction, the process
is known as the Cope-type hydroamination [71–73]. This latter process has been used
extensively, most notably by the Beauchemin group, as a highly efficient method for the
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preparation of N,N-disubstituted hydroxylamines and tertiary N-oxides [73–80]. In 2009,
Beauchemin reported a synthesis of trisubstituted hydroxylamines by the reaction of mono
or disubstituted alkenes with N,N-disubstituted hydroxylamines [74]. To overcome the
propensity for reversible Cope-elimination of the Cope-type hydroamination N-oxide
products, the authors appended a methallyl group on the hydroxylamine that undergoes
an irreversible [2,3]-Meisenheimer rearrangement to afford the intended trisubstituted
hydroxylamines (Scheme 14). The reaction was compatible with a variety of bicyclic alkenes
(136–140) and amines (141–142), with products typically isolated in fair to good yields (up to
86%) (Scheme 14A). Beauchemin and coworkers also applied their methodology in the total
synthesis of the alkaloid norreticuline (146) (Scheme 14B). Starting from N-monosubstituted
hydroxylamine (143), installation of the methallyl moiety on 144 proceeded in 50% yield,
which on exposure to heat underwent the desired tandem Cope-type hydroamination,
[2,3]-Meisenheimer rearrangement, affording the allylic trisubstituted hydroxylamine (145)
in 54% yield. Reductive cleavage of the N-O bond followed by BCl3-mediated cleavage of
the i-Pr ethers yielded norreticuline (146) in 77% yield over two steps.
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Scheme 14. Beauchemin’s tandem Cope-type hydroamination/[2,3]-rearrangement for the synthesis
of trisubstituted hydroxylamines. (A) Selected examples of the transformation. (B) Application of the
method to the total synthesis of the alkaloid norreticuline [74].

In a further strategy designed to overcome the reversible nature of Cope-type hy-
droaminations without recourse to a subsequent Meisenheimer rearrangement, in 2011
Beauchemin introduced a method based on “temporary intramolecularity” in which allylic
secondary amines react with N-monosubstituted hydroxylamines in the presence of ben-
zyloxyacetaldehyde (Scheme 15) [75]. In a subsequent 2012 study, Beauchemin showed
that formaldehyde could act as a catalyst with improved yields at reduced loadings rela-
tive to that seen with the original benzyloxyacetaldehyde catalyst (Scheme 15A) [75,76].
Under both catalytic systems, a variety of functional groups were well tolerated including
alkenes (149), diethylacetals (150), branched alkanes (151), and ethers (152) from which
products were isolated in the highest yields under formaldehyde catalysis (up to 98% yield)
(Scheme 15A). To account for the observed reactivity, the authors proposed a catalytic cycle
beginning with an initial condensation of the aldehyde catalyst (I) and N-monosubstituted
hydroxylamine (II), which affords an intermediate nitrone (III). The reaction of allyl amine
(IV) in a carbon–nitrogen bond-forming event with III then affords mixed aminal (V),
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which undergoes the key intramolecular Cope-type hydroamination yielding N-oxide (VI).
N-Oxide (VI) then undergoes fragmentation to zwitterionic species (VII), which upon
reaction with another equivalent of hydroxylamine (II) regenerates nitrone catalyst (III)
and furnishes the intended products (VIII).

Molecules 2023, 28, x FOR PEER REVIEW 15 of 22 
 

 

reaction of allyl amine (IV) in a carbon–nitrogen bond-forming event with III then affords 
mixed aminal (V), which undergoes the key intramolecular Cope-type hydroamination 
yielding N-oxide (VI). N-Oxide (VI) then undergoes fragmentation to zwitterionic species 
(VII), which upon reaction with another equivalent of hydroxylamine (II) regenerates 
nitrone catalyst (III) and furnishes the intended products (VIII). 

 
Scheme 15. Beauchemin�s aldehyde catalyzed Cope-type hydroamination of alkenes for the synthe-
sis of N,O-disubstituted hydroxylamines. (A) Selected examples of the reaction using different al-
dehyde catalysts. (B) Proposed catalytic cycle [75]. 

5. Synthesis of Hydroxylamines by Direct N-O Bond Formation 
Retrosynthetically, trisubstituted hydroxylamines could be accessed most efficiently 

by the attack of a secondary amine-based nucleophile on an oxygen-centered electrophile 
or by an alcohol-based nucleophile on an amine-centered electrophile. Unfortunately, 
such nucleophilic displacement reactions, termed X-philic reactions, are fraught with chal-
lenges due to competing eliminations and rearrangements [81]. Despite this, in nature, 
heteroatom-heteroatom bond formation is a common phenomenon and natural prod-
ucts-containing heteroatom-heteroatom bonds are found in many major classes of natural 
products [82]. Biosynthetically, the construction of hydroxylamines occurs by the reaction 
of amines with flavin-dependent N-monooxygenases (NMOs) or cytochrome P450 
monooxygenase enzymes through enzyme bound peroxy-intermediates [82]. The use of 
peroxide O-O bonds as electrophilic “O+” sources in the biosynthesis of hydroxylamines 
is noteworthy as this method had not been developed in the laboratory for the preparation 
of hydroxylamines until recently on account of varied yields due to overoxidations [39]. 
Nevertheless, a few early examples of hydroxylamine synthesis by reaction of amine nu-
cleophiles with specific classes of peroxide electrophiles have been reported in the litera-
ture. For example, in 1992 Adam and Heil reported the ring-opening reaction of 1,2-diox-
etanes with amine nucleophiles for the synthesis of 𝛽-hydroxy trisubstituted hydroxyla-
mines (153–156); yields of the transformation were generally good (up to 84% yield) 
(Scheme 16) [83]. Subsequently, in a 2002 mechanistic study of the Kornblum–DeLaMare 
rearrangement, the Kelly group reported the ring-opening reaction of endo-peroxides with 
lithium amides leading to 𝛿-hydroxy trisubstituted hydroxylamines (157–160) (Scheme 
16) [84]. Unfortunately, these early reports by Adam and Kelly have clear intrinsic scope 
limitations and as such, are not broadly applicable in the synthesis of a diverse array of 
trisubstituted hydroxylamines. 

Beauchemin (2011, 2012)

N-monosubstituted 
hydroxylamines

R1

H
N

R2

allylic secondary
amines

N
H

OHR3
R4 H

O
(5-100 mol%)

N
N

R2

R1

R4 R3

O
HSolvent 24 h - 96 h

rt or 60 ºC

R1
N
H

R2

Me

N
R3 OH

diverse N,O-disubstituted
hydroxylamines

A
Bn

N
OH

Me

H
N

Bn

Bn
N

OH

Me

H
N

Me

Bn
N

OH

Me
H
N

Bn
N

OH

Me

H
N

OEt

OEt

N
OH

Me

H
N

Me
Me

H H

O

H

O
BnO

catalyst Bcatalyst A

solvent:
(C6H6 or
CHCl3)

N
OH

Me

H
N

MeMeO

147, with catalyst A (20 mol%): 75% yield
       with catalyst B (5 mol%): 85% yield

148, with catalyst A (20 mol%): 72% yield
         with catalyst B (5 mol%): >98% yield

149, with catalyst A (20 mol%): 69% yield
       with catalyst B (5 mol%): 92% yield

150, with catalyst A (20 mol%): 56% yield
       with catalyst B (5 mol%): 66% yield

151, with catalyst A (20 mol%): 61% yield
       with catalyst B (5 mol%): 74% yield

152, with catalyst A (20 mol%): 56% yield
       with catalyst B (5 mol%): 66% yield

R4 H

O

R4 N
R1

N
R3 O

H

N

N

R3
O

R1

R4

R2

R2

Me

R4 N
R1

Me

R2

N
R3

O

R4 H

N
O R3

N
H

OHR3

HN
R1

Me

R2

N
R3

OH

R1

H
N

R2

N
H

OHR3

H2O

B

solvent:
(t-BuOH)

I III

II

IV
V

VI

VIIII

VIII

>10 examples
up to 98% yield

Scheme 15. Beauchemin’s aldehyde catalyzed Cope-type hydroamination of alkenes for the synthesis
of N,O-disubstituted hydroxylamines. (A) Selected examples of the reaction using different aldehyde
catalysts. (B) Proposed catalytic cycle [75].

5. Synthesis of Hydroxylamines by Direct N-O Bond Formation

Retrosynthetically, trisubstituted hydroxylamines could be accessed most efficiently
by the attack of a secondary amine-based nucleophile on an oxygen-centered electrophile
or by an alcohol-based nucleophile on an amine-centered electrophile. Unfortunately, such
nucleophilic displacement reactions, termed X-philic reactions, are fraught with challenges
due to competing eliminations and rearrangements [81]. Despite this, in nature, heteroatom-
heteroatom bond formation is a common phenomenon and natural products-containing
heteroatom-heteroatom bonds are found in many major classes of natural products [82].
Biosynthetically, the construction of hydroxylamines occurs by the reaction of amines
with flavin-dependent N-monooxygenases (NMOs) or cytochrome P450 monooxygenase
enzymes through enzyme bound peroxy-intermediates [82]. The use of peroxide O-O bonds
as electrophilic “O+” sources in the biosynthesis of hydroxylamines is noteworthy as this
method had not been developed in the laboratory for the preparation of hydroxylamines
until recently on account of varied yields due to overoxidations [39]. Nevertheless, a
few early examples of hydroxylamine synthesis by reaction of amine nucleophiles with
specific classes of peroxide electrophiles have been reported in the literature. For example,
in 1992 Adam and Heil reported the ring-opening reaction of 1,2-dioxetanes with amine
nucleophiles for the synthesis of β-hydroxy trisubstituted hydroxylamines (153–156); yields
of the transformation were generally good (up to 84% yield) (Scheme 16) [83]. Subsequently,
in a 2002 mechanistic study of the Kornblum–DeLaMare rearrangement, the Kelly group
reported the ring-opening reaction of endo-peroxides with lithium amides leading to δ-
hydroxy trisubstituted hydroxylamines (157–160) (Scheme 16) [84]. Unfortunately, these
early reports by Adam and Kelly have clear intrinsic scope limitations and as such, are not
broadly applicable in the synthesis of a diverse array of trisubstituted hydroxylamines.
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An early example of a synthetic method that utilizes peroxide electrophiles and that has
received broad usage in synthetic chemistry is the oxidation of amines with benzoyl peroxide
(Scheme 17) [85]. Following the early reports, Ganem provided an improved procedure for
the synthesis of O-benzoyl-N,N-disubstitued hydroxylamines that consists of an amine nucle-
ophile reacting with benzoyl peroxide (BPO) as electrophile buffered by either Na2HPO4 or
poly-4-vinylpyridine in ethereal solvents (Scheme 17). Under these conditions, sterically en-
cumbered secondary amines such as dibenzylamine proceed smoothly to the corresponding
O-benzoyl-N,N-disubstituted hydroxylamines (161–164) in up to 89% yield (Scheme 17A).
However, with less sterically hindered secondary amines, competing N-C bond formation
leading to the corresponding benzamides persists as a side reaction (165–166). Additionally,
primary amines are unreactive substrates under Ganem’s original procedure. To overcome
this issue, in 2019 Yamamoto published a revised experimental protocol that proceeds
in excellent yields with high N-O selectivity (up to 99:1) (Scheme 17B) [86]. Under the
optimized conditions, Cs2CO3 in CH2Cl2 with 3:1 BPO:water, a variety of primary amines
and N-heterocycles such as piperidine and cyclooctanamine are well tolerated with the
products (163, 167) isolated in 83 and 90% yields, respectively (Scheme 17B). Additionally,
under Yamamoto’s conditions, diamines can be used as substrates to yield O-benzoyl-N-
monosubstituted hydroxylamine (168) in fair yield (54%) and good N-O selectivity (up
to 9:1). Yamamoto also demonstrated deprotection of the O-benzoyl-N,N-disubstituted
hydroxylamines to the corresponding N,N-disubstituted hydroxylamines by treatment
with lithium hydroxide, where the intended product (170) was isolated in 99% yield.

In 2020, Crich reported the first broadly applicable synthesis of trisubstituted hydrox-
ylamines by direct N-O bond formation (Scheme 18) [87]. The method uses magnesium
amides generated in situ as the nucleophilic component and alcohol-derived 2-methyl-
tetrahydropyranyl (MTHP) monoperoxyacetals as electrophiles in an SN2-like reaction
affording trisubstituted hydroxylamines in a direct, convergent manner [88–90]. A range
of secondary amines in addition to primary and secondary alcohol-derived monoperox-
yacetals bearing diverse functionalities were competent partners in the transformation.
Compatible functional groups included internal alkenes (172), internal alkynes (173), aryl
halides (174), complex carbohydrates (175), azides (178), or basic nitrogen heterocycles
(179), all of which generally gave excellent yields (up to 98%) (Scheme 18A). Importantly, the
reaction was also applicable in total synthesis as demonstrated by 10-aza-9-oxakalkitoxin
(182), a hydroxylamine analog (hydroxalog) of the marine natural product kalkitoxin,
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that was synthesized in 16 steps using direct N-O bond formation as a key step [91], rep-
resenting a marked improvement to Crich’s original 25 step synthesis of this molecule
(Scheme 18B) [92].
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Scheme 17. Ganem and Yamamoto’s syntheses of O-acyl-N,N-disubstituted hydroxylamines. (A)
Selected examples and limitations of Ganem’s method (conditions A). (B) Selected scope and re-
lated derivatization of Yamamoto’s optimized method to reduce competing C-N bond formation
(conditions B) [85,86].

In the 2020 report [87], it was noted that O-tert-butyl-derived MTHP monoperox-
yacetals failed under the optimized conditions to yield O-tert-butyl-N,N-disubstituted
hydroxylamines (Scheme 18). In order to overcome this scope limitation, in 2021 Crich re-
ported the synthesis of O-tert-butyl-N,N-disubstituted hydroxylamines by direct N-O bond
formation using perester electrophiles (Scheme 19) [93,94]. Interestingly, the authors noted
a steric requirement in the reaction whereby sterically encumbered magnesium amides re-
acted well with either tert-butylperbenzoate (TBPB) or 2,6-dimethyl-tert-butylperbenzoate,
but less sterically hindered amine nucleophiles reacted predominately in a 1,2-fashion to
afford benzamides with TBPB whereas they reacted chemoselectively to yield trisubstituted
hydroxylamines with 2,6-dimethyl-tert-butylperbenzoate. Under the optimized conditions
using the “sterically matched” electrophile, a variety of amine nucleophiles, containing
diverse functional groups including aryl halides (186), isothiazoles (187), trifluoromethyls
(188), or basic nitrogen heterocycles (190–191) could be used in the reaction in good yields
(up to 80%) (Scheme 19A). The steric requirement for the transformation was accounted
for by an irreversible attack on the peroxy oxygen bond in competition with reversible
carbonyl addition (II) (Scheme 19B). The process of 1,2-addition to unsubstituted TBPB
occurs where k1 > k3 and is proceeded by irreversible collapse to the benzamides by k2.
Upon substitution of TBPB with the 2,6-dimethyl analog, a retardation in 1,2-addition is
observed such that k3 > k1 and irreversible N-O bond formation predominates leading to the
intended products (III) [95–97]. The predominant N-O bond formation seen with sterically
encumbered amines was proposed to arise from collapse to the amide (k2) being sufficiently
slowed by steric interactions in the product benzamides (IV) and in the corresponding
transition state (II).
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6. Conclusions 
Di- and trisubstituted hydroxylamines have considerable unexplored potential in 

bioorganic and medicinal chemistry. This review has summarized key developments in 
the past 15 years which have made di- and trisubstituted hydroxylamines more readily 
available and should better position the community to fill this void. 
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6. Conclusions

Di- and trisubstituted hydroxylamines have considerable unexplored potential in
bioorganic and medicinal chemistry. This review has summarized key developments in
the past 15 years which have made di- and trisubstituted hydroxylamines more readily
available and should better position the community to fill this void.
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