Antileishmanial Activity of Cinnamic Acid Derivatives against Leishmania infantum
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Antileishmanial Activity
2.3. Selectivity Index
2.4. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.1.1. Chemical Characterization and Reagents
4.1.2. Preparation of Compounds 2–8
4.1.3. Preparation of Compounds 9, 10, and 14
4.1.4. Preparation of Compounds 11–13 and 15–35
4.2. Antileishmanial Activity
4.2.1. Ethics Statement
4.2.2. Drugs of Reference
4.2.3. Leishmania Culture Conditions
4.2.4. Antileishmanial Activity
4.2.5. Red Blood Cell Lysis Assay
4.2.6. Data Analysis and Statistics
4.3. Modeling Methods
4.3.1. Targets Selection
4.3.2. Molecular Docking
4.3.3. Molecular Dynamics Simulations and Estimation of Free Energies of Binding
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Leishmaniasis. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 20 January 2023).
- Ferreira, G.E.M.; dos Santos, B.N.; Dorval, M.E.C.; Ramos, T.P.B.; Porrozzi, R.; Peixoto, A.A.; Cupolillo, E. The Genetic Structure of Leishmania Infantum Populations in Brazil and Its Possible Association with the Transmission Cycle of Visceral Leishmaniasis. PLoS ONE 2012, 7, e36242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leifso, K.; Cohen-Freue, G.; Dogra, N.; Murray, A.; McMaster, W.R. Genomic and Proteomic Expression Analysis of Leishmania Promastigote and Amastigote Life Stages: The Leishmania Genome Is Constitutively Expressed. Mol. Biochem. Parasitol. 2007, 152, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, D.E.; Benchimol, M.; Rodrigues, J.C.F.; Crepaldi, P.H.; Pimenta, P.F.P.; de Souza, W. The Cell Biology of Leishmania: How to Teach Using Animations. PLOS Pathog. 2013, 9, e1003594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patino, L.H.; Ramírez, J.D. RNA-Seq in Kinetoplastids: A Powerful Tool for the Understanding of the Biology and Host-Pathogen Interactions. Infect. Genet. Evol. 2017, 49, 273–282. [Google Scholar] [CrossRef]
- Lainson, R.; Shaw, J.J. Evolution, Classification and Geographical Distribution. In The Leishmaniases in Biology and Medicine; Academic Press: Cambridge, MA, USA, 1987; 120p. [Google Scholar]
- Kamhawi, S. Phlebotomine Sand Flies and Leishmania Parasites: Friends or Foes? Trends Parasitol. 2006, 22, 439–445. [Google Scholar] [CrossRef]
- Uliana, S.R.B.; Trinconi, C.T.; Coelho, A.C. Chemotherapy of Leishmaniasis: Present Challenges. Parasitology 2018, 145, 464–480. [Google Scholar] [CrossRef]
- Kasetti, R.B.; Nabi, S.A.; Swapna, S.; Apparao, C. Cinnamic Acid as One of the Antidiabetic Active Principle(s) from the Seeds of Syzygium Alternifolium. Food Chem. Toxicol. 2012, 50, 1425–1431. [Google Scholar] [CrossRef]
- Da Silveira E Sá, R.D.C.; Andrade, L.N.; De Oliveira, R.D.R.B.; De Sousa, D.P. A Review on Anti-Inflammatory Activity of Phenylpropanoids Found in Essential Oils. Molecules 2014, 19, 1459–1480. [Google Scholar] [CrossRef] [Green Version]
- Sova, M. Antioxidant and Antimicrobial Activities of Cinnamic Acid Derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An Overview on the Role of Dietary Phenolics for the Treatment of Cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic Acid Derivatives: A Potential Class of Natural Compounds for the Management of Lipid Metabolism and Obesity. Nutr. Metab. 2016, 13, 27. [Google Scholar] [CrossRef] [Green Version]
- Szwajgier, D.; Borowiec, K.; Pustelniak, K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients 2017, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Hu, Y.; Guo, D.H.; Wang, D.X.; Tu, H.H.; Ma, L.; Xie, T.T.; Kong, L.Y. Potential Antidepressant Properties of Radix Polygalae (Yuan Zhi). Phytomedicine 2010, 17, 794–799. [Google Scholar] [CrossRef]
- Chiriac, C.I.; Tanasa, F.; Onciu, M. A Novel Approach in Cinnamic Acid Synthesis: Direct Synthesis of Cinnamic Acids from Aromatic Aldehydes and Aliphatic Carboxylic Acids in the Presence of Boron Tribromide. Molecules 2005, 10, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Zolfaghari, B.; Senatore, M.; Lanzotti, V. Antifungal Cinnamic Acid Derivatives from Persian Leek (Allium ampeloprasum Subsp. Persicum). Phytochem. Lett. 2013, 3, 360–363. [Google Scholar] [CrossRef]
- Kanaani, J.; Ginsburg, H. Effects of Cinnamic Acid Derivatives on in Vitro Growth of Plasmodium Falciparum and on the Permeability of the Membrane of Malaria-Infected Erythrocytes. Antimicrob. Agents Chemother. 1992, 36, 1102–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.J.; Kuo, H.C.; Chu, C.Y.; Wang, C.J.; Lin, W.C.; Tseng, T.H. Involvement of Tumor Suppressor Protein P53 and P38 MAPK in Caffeic Acid Phenethyl Ester-Induced Apoptosis of C6 Glioma Cells. Biochem. Pharmacol. 2003, 66, 2281–2289. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, B.Y.; Lee, H.J. Accumulation of Phytotoxic Organic Acids in Reused Nutrient Solution during Hydroponic Cultivation of Lettuce (Lactuca sativa L.). Sci. Hortic. 2006, 110, 119–128. [Google Scholar] [CrossRef]
- Nishikawa, K.; Fukuda, H.; Abe, M.; Nakanishi, K.; Taniguchi, T.; Nomura, T.; Yamaguchi, C.; Hiradate, S.; Fujii, Y.; Okuda, K.; et al. Substituent Effects of Cis-Cinnamic Acid Analogues as Plant Growh Inhibitors. Phytochemistry 2013, 96, 132–147. [Google Scholar] [CrossRef]
- Santos De, R.; Lenno Sousa, K.; Eduarda Deluca, M.; Amelia, C.; Santos Silva Silva, C.; Magno Santos, D. Farmacocinética E Farmacodinâmica in Silico Do Ácido Cinâmico. Rev. Cient. Multi. Núcleo Conhecim. 2006, 7, 53–64. [Google Scholar]
- De Farias, M.O.; Lima, T.C.; Pérez, A.L.A.L.; Silva, R.H.N.; Oliveira, A.J.M.S.; Lima, E.O.; De Sousa, D.P. Antifungal Activity of Ester Derivatives from Caffeic Acid against Candida Species. IJPPR Hum. 2016, 7, 151–159. [Google Scholar]
- Silva, R.H.N.; Andrade, A.C.M.; Nóbrega, D.F.; Castro, R.D.D.; Pessôa, H.L.F.; Rani, N.; De Sousa, D.P. Antimicrobial Activity of 4-Chlorocinnamic Acid Derivatives. Biomed Res. Int. 2019, 2019, 3941242. [Google Scholar] [CrossRef] [PubMed]
- Boeck, P.; Sá, M.M.; De Souza, B.S.; Cercená, R.; Escalante, A.M.; Zachino, S.A.; Filho, V.C.; Yunes, R.A. A Simple Synthesis of Kaurenoic Esters and Other Derivatives and Evaluation of Their Antifungal Activity. J. Braz. Chem. Soc. 2005, 16, 1360–1366. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, N.; Tang, Y.; Li, B.; Liu, L.; Zhang, X.; Fu, H.; Duan, J.A. Biological Activity Evaluation and Structure-Activity Relationships Analysis of Ferulic Acid and Caffeic Acid Derivatives for Anticancer. Bioorg. Med. Chem. Lett. 2012, 22, 6085–6088. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, B.; Belsare, D.; Pharande, D.; Mourya, V.; Dhake, A. Esters, Amides and Substituted Derivatives of Cinnamic Acid: Synthesis, Antimicrobial Activity and QSAR Investigations. Eur. J. Med. Chem. 2004, 39, 827–834. [Google Scholar] [CrossRef]
- Dimmock, J.R.; Murthi Kandepu, N.; Hetherington, M.; Wilson Quail, J.; Pugazhenthi, U.; Sudom, A.M.; Chamankhah, M.; Rose, P.; Pass, E.; Allen, T.M.; et al. Cytotoxic Activities of Mannich Bases of Chalcones and Related Compounds. J. Med. Chem. 1998, 41, 1014–1026. [Google Scholar] [CrossRef]
- Wang, J.; Morin, P.; Wang, W.; Kollman, P.A. Use of MM-PBSA in Reproducing the Binding Free Energies to HIV-1 RT of TIBO Derivatives and Predicting the Binding Mode to HIV-1 RT of Efavirenz by Docking and MM-PBSA. J. Am. Chem. Soc. 2001, 123, 5221–5230. [Google Scholar] [CrossRef]
- Guterres, H.; Im, W. Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations. J. Chem. Inf. Model. 2020, 60, 2189–2198. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Teuscher, F.; Lowther, J.; Skinner-Adams, T.S.; Spielmann, T.; Dixon, M.W.A.; Stack, C.M.; Donnelly, S.; Mucha, A.; Kafarski, P.; Vassiliou, S.; et al. The M18 Aspartyl Aminopeptidase of the Human Malaria Parasite Plasmodium falciparum. J. Biol. Chem. 2007, 282, 30817–30826. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.Y.; Dey, A.; Qureshi, I.A. Structural and Functional Highlights of Methionine Aminopeptidase 2 from Leishmania donovani. Int. J. Biol. Macromol. 2018, 115, 940–954. [Google Scholar] [CrossRef]
- Perez-Castillo, Y.; Lima, T.C.; Ferreira, A.R.; Silva, C.R.; Campos, R.S.; Neto, J.B.A.; Magalhães, H.I.F.; Cavalcanti, B.C.; Júnior, H.V.N.; De Sousa, D.P. Bioactivity and Molecular Docking Studies of Derivatives from Cinnamic and Benzoic Acids. Biomed Res. Int. 2020, 2020, 6345429. [Google Scholar] [CrossRef]
- Bhat, S.Y.; Qureshi, I.A. Structural and Functional Basis of Potent Inhibition of Leishmanial Leucine Aminopeptidase by Peptidomimetics. ACS Omega 2021, 6, 19076–19085. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Arya, P.; Mukherjee, C.; Singh, B.K.; Singh, N.; Parmar, V.S.; Prasad, A.K.; Ghosh, B. Novel Aromatic Ester from Piper Longum and Its Analogues Inhibit Expression of Cell Adhesion Molecules on Endothelial Cells. Biochemistry 2005, 44, 15944–15952. [Google Scholar] [CrossRef]
- Thomas, G. Química Medicinal—Uma Introdução; Editora Guanabara Koogan Ltd.: Rio De Janeiro, Brazil, 2003. [Google Scholar]
- Smieško, M. Molecular Modeling in Drug Design: Department of Pharmaceutical Sciences—University of Basel. Switzerland Part 5: Virtual Screening + Publication Search. Available online: https://www.modeling.unibas.ch/MMiDD/MMiDD_5.pdf (accessed on 2 June 2022).
- Lopes, S.P.; Castillo, Y.P.; Monteiro, M.L.; de Menezes, R.R.P.P.B.; Almeida, R.N.; Martins, A.M.C.; de Sousa, D.P. Trypanocidal Mechanism of Action and in Silico Studies of P-Coumaric Acid Derivatives. Int. J. Mol. Sci. 2019, 20, 5916. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, E.; Kummerle, A.; Fraga, C. The Methylation Effect in Medicinal Chemistry. Chem. Rev. 2011, 111, 5215–5246. [Google Scholar] [CrossRef]
- Yang, X.D.; Zeng, X.H.; Zhao, Y.H.; Wang, X.Q.; Pan, Z.Q.; Li, L.; Zhang, H.B. Silica Gel-Mediated Amide Bond Formation: An Environmentally Benign Method for Liquid-Phase Synthesis and Cytotoxic Activities of Amides. J. Comb. Chem. 2010, 12, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.Y.; Bhandari, S.; Thacker, P.S.; Arifuddin, M.; Qureshi, I.A. Development of Quinoline-Based Hybrid as Inhibitor of Methionine Aminopeptidase 1 from Leishmania Donovani. Chem. Biol. Drug Des. 2021, 97, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.O.; Pérez-Castillo, Y.; Oliveira, L.H.G.; Nunes, F.C.; de Sousa, D.P. Larvicidal Activity of Cinnamic Acid Derivatives: Investigating Alternative Products for Aedes aegypti L. Control. Molecules 2020, 26, 61. [Google Scholar] [CrossRef]
- De Morais, M.C.; de Oliveira Lima, E.; Perez-Castillo, Y.; de Sousa, D.P. Synthetic Cinnamides and Cinnamates: Antimicrobial Activity, Mechanism of Action, and In Silico Study. Molecules 2023, 28, 1918. [Google Scholar] [CrossRef]
- Rodrigues, K.A.D.F.; Amorim, L.V.; Dias, C.N.; Moraes, D.F.C.; Carneiro, S.M.P.; Carvalho, F.A.D.A. Syzygium cumini (L.) Skeels Essential Oil and Its Major Constituent α-Pinene Exhibit Anti-Leishmania Activity through Immunomodulation In Vitro. J. Ethnopharmacol. 2015, 160, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Jain, K.; Verma, A.K.; Mishra, P.R.; Jain, N.K. Surface-Engineered Dendrimeric Nanoconjugates for Macrophage-Targeted Delivery of Amphotericin B: Formulation Development and In Vitro and In Vivo Evaluation. Antimicrob. Agents Chemother. 2015, 59, 2479–2487. [Google Scholar] [CrossRef] [Green Version]
- Perez-Castillo, Y.; Montes, R.C.; da Silva, C.R.; De Andrade Neto, J.B.; Dias, C.D.S.; Duarte, A.B.S.; Júnior, H.V.N.; de Sousa, D.P. Antifungal Activity of N-(4-Halobenzyl)Amides against Candida Spp. and Molecular Modeling Studies. Int. J. Mol. Sci. 2022, 23, 419. [Google Scholar] [CrossRef]
- Lopes, S.P.; Yepe, L.M.; Pérez-Castillo, Y.; Robledo, S.M.; De Sousa, D.P. Alkyl and Aryl Derivatives Based on P-Coumaric Acid Modification and Inhibitory Action against Leishmania braziliensis and Plasmodium falciparum. Molecules 2020, 25, 3178. [Google Scholar] [CrossRef]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating Protein Pharmacology by Ligand Chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A Better Web Interface. Nucleic Acids Res. 2008, 36 (Suppl. S2), W5–W9. [Google Scholar] [CrossRef]
- OpenEye Scientific Software. QUACPAC; OpenEye Scientific Software: Santa Fe, NM, USA. Available online: http://www.eyesopen.com (accessed on 23 June 2022).
- Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; De Beer, T.A.P.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-New Features and Functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case, D.A.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E.; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Gilson, M.K.; Gohlke, H.; Goetz, A.W.; et al. AMBER; University of California: San Francisco, CA, USA, 2018. [Google Scholar]
- De Morais, M.C.; Perez-Castillo, Y.; Silva, V.R.; de Souza Santos, L.; Soares, M.B.P.; Bezerra, D.P.; de Castro, R.D.; de Sousa, D.P. Cytotoxic and Antifungal Amides Derived from Ferulic Acid: Molecular Docking and Mechanism of Action. Biomed Res. Int. 2021, 2021, 3598000. [Google Scholar] [CrossRef] [PubMed]
- Iranpoor, N.; Firouzabadi, H.; Riazi, A.; Pedrood, K. Regioselective Hydrocarbonylation of Phenylacetylene to α,β-Unsaturated Esters and Thioesters with Fe(CO)5 and Mo(CO)6. J. Organomet. Chem. 2016, 822, 67–73. [Google Scholar] [CrossRef]
- Lutjen, A.B.; Quirk, M.A.; Barbera, A.M.; Kolonko, E.M. Synthesis of (E)-Cinnamyl Ester Derivatives via a Greener Steglich Esterification. Bioorg. Med. Chem. 2018, 26, 5291–5298. [Google Scholar] [CrossRef]
- Jakovetić, S.; Jugović, B.Z.; Gvozdenović, M.M.; Bezbradica, D.I.; Antov, M.G.; Mijin, D.Ž.; Knežević-Jugović, Z.D. Synthesis of Aliphatic Esters of Cinnamic Acid as Potential Lipophilic Antioxidants Catalyzed by Lipase B from Candida Antarctica. Appl. Biochem. Biotechnol. 2013, 170, 1560–1573. [Google Scholar] [CrossRef]
- Sova, M.; Perdih, A.; Kotnik, M.; Kristan, K.; Rizner, T.L.; Solmajer, T.; Gobec, S. Flavonoids and Cinnamic Acid Esters as Inhibitors of Fungal 17β-Hydroxysteroid Dehydrogenase: A Synthesis, QSAR and Modelling Study. Bioorg. Med. Chem. 2006, 14, 7404–7418. [Google Scholar] [CrossRef]
- Bisogno, F.; Mascoti, L.; Sanchez, C.; Garibotto, F.; Giannini, F.; Kurina-Sanz, M.; Enriz, R. Structure-Antifungal Activity Relationship of Cinnamic Acid Derivatives. J. Agric. Food Chem. 2007, 55, 10635–10640. [Google Scholar] [CrossRef]
- do Vale, J.A.; Rodrigues, M.P.; Lima, Â.M.A.; Santiago, S.S.; Lima, G.D.d.A.; Almeida, A.A.; de Oliveira, L.L.; Bressan, G.C.; Teixeira, R.R.; Machado-Neves, M. Synthesis of Cinnamic Acid Ester Derivatives with Antiproliferative and Antimetastatic Activities on Murine Melanoma Cells. Biomed. Pharmacother. 2022, 148, 112689. [Google Scholar] [CrossRef]
- Osuka, A.; Hanasaki, Y.; Suzuki, H. Synthesis of α, Β- Unsaturated Carboxamides Using Dialkyltelluronium Carbamoylmethylide. Chem. Inform. 1998, 19. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL83X0325808 (accessed on 21 February 2023).
- Shuldburg, S.; Carroll, J. Scaffolding Students’ Skill Development by First Introducing Advanced Techniques through the Synthesis and 15N NMR Analysis of Cinnamamides. J. Chem. Educ. 2017, 94, 1974–1977. [Google Scholar] [CrossRef]
- Weidner-Wells, M.A.; Fraga-Spano, S.A.; Turchi, I.J. Unusual Regioselectivity of the Dipolar Cycloaddition Reactions of Nitrile Oxides and Tertiary Cinnamides and Crotonamides. J. Org. Chem. 1998, 63, 6319–6328. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D.; Mazumder, A.; Mazumder, R. Synthesis of Cinnamanilide Derivatives and Their Antioxidant and Antimicrobial Activity. J. Chem. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wu, X.F. Synthesis of Linear α,β-Unsaturated Amides from Isocyanates and Alkenylaluminum Reagents. Syn. Lett. 2020, 31, 788–792. [Google Scholar] [CrossRef]
- Morcillo, S.P.; Álvarez De Cienfuegos, L.; Mota, A.J.; Justicia, J.; Robles, R. Mild Method for the Selective Esterification of Carboxylic Acids Based on the Garegg-Samuelsson Reaction. J. Org. Chem. 2011, 76(7), 2277–2281. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, H.; Kobamoto, N.; Yasuda, M. Fungitoxic and Phytotoxic Activities of Cinnamic Acid Ester Sand Amides. J. Pestic. Sci. 2001, 25, 263–266. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.J.; McNulty, T.F.; Chan, K.P. Composition and Method for Use in Three Dimensional Printing. US20070168815A1, 20 January 2009. [Google Scholar]
- Knuniants, I.L.; Gambarian, N.P. Determination of the Strength of the Bond between Radicals and Sulfur in Unsymmetric Sulfides by the Method of Destructive Bromination. Bull. Acad. Sci. USSR Div. Chem. Sci. 1958, 7, 1176–1184. [Google Scholar] [CrossRef]
- Duangkamol, C.; Jaita, S.; Wangngae, S.; Phakhodee, W.; Pattarawarapan, M. An Efficient Mechanochemical Synthesis of Amides and Dipeptides Using 2,4,6-Trichloro-1,3,5-Triazine and PPh3. RSC Adv. 2015, 5, 52624–52628. [Google Scholar] [CrossRef]
- Wang, X.; He, L.; Li, Z.; Wang, W.; Liu, J. SmI3-Catalyzed Addition of Amines to α,β-Unsaturated N-Acylbenzotriazoles. Synth. Commun. 2009, 39, 819–829. [Google Scholar] [CrossRef]
- Bouali, J.; Hamri, S. Design, Synthesis and Evaluation of N-Aryl Carboxamide Derivatives as Potential Anti-Proliferative Effect on the Pulmonary Artery Smooth Muscle Cells. Artic. Res. J. Pharm. Biol. Chem. Sci. 2015. Available online: https://www.researchgate.net/profile/Mostafa-Khouili/publication/280293777_Design_Synthesis_and_Evaluation_of_N-Aryl_Carboxamide_Derivatives_as_Potential_Anti-Proliferative_Effect_on_the_Pulmonary_Artery_Smooth_Muscle_Cells/links/55afd88c08ae32092e06f800/Design-Synthesis-and-Evaluation-of-N-Aryl-Carboxamide-Derivatives-as-Potential-Anti-Proliferative-Effect-on-the-Pulmonary-Artery-Smooth-Muscle-Cells.pdf (accessed on 21 February 2023).
- Saito, Y.; Ouchi, H.; Takahata, H. Carboxamidation of Carboxylic Acids with 1-Tert-Butoxy-2-Tert-Butoxycarbonyl-1,2-Dihydroisoquinoline (BBDI) without Bases. Tetrahedron 2008, 64, 11129–11135. [Google Scholar] [CrossRef]
- Allen, C.L.; Chhatwal, A.R.; Williams, J.M.J. Direct Amide Formation from Unactivated Carboxylic Acids and Amines. Chem. Commun. 2011, 48, 666–668. [Google Scholar] [CrossRef]
- Martínez-Soriano, P.A.; Macías-Pérez, J.R.; María Velázquez, A.; del Carmen Camacho-Enriquez, B.; Pretelín-Castillo, G.; Ruiz-Sánchez, M.B.; Abrego-Reyes, V.H.; Villa-Treviño, S.; Angeles, E. Solvent-Free Synthesis of Carboxylic Acids and Amide Analogs of CAPE (Caffeic Acid Phenethyl Ester) under Infrared Irradiation Conditions. Green Sustain. Chem. 2015, 5, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Barajas, J.G.H.; Méndez, L.Y.V.; Kouznetsov, V.V.; Stashenko, E.E. Efficient Synthesis of New N-Benzyl- or N-(2-Furylmethyl)Cinnamamides Promoted by the “green” Catalyst Boric Acid, and Their Spectral Analysis. Synthesis 2008, 377–382. [Google Scholar] [CrossRef]
- Khaldoun, K.; Safer, A.; Saidi-Besbes, S.; Carboni, B.; Le Guével, R.; Carreaux, F. An Efficient Solvent-Free Microwave-Assisted Synthesis of Cinnamamides by Amidation Reaction Using Phenylboronic Acid/Lewis Base Co-Catalytic System. Synth. J. Synth. Org. Chem. 2019, 51, 3891–3900. [Google Scholar] [CrossRef]
- Yasui, Y.; Tsuchida, S.; Miyabe, H.; Takemoto, Y. One-Pot Amidation of Olefins through Pd-Catalyzed Coupling of Alkylboranes and Carbamoyl Chlorides. J. Org. Chem. 2007, 72, 5898–5900. [Google Scholar] [CrossRef]
Compounds | Radical | X | IC50 (µg/mL) | IC50 (µM) |
---|---|---|---|---|
1 | - | >400 | - | |
2 | Methyl | O | >400 | - |
3 | Ethyl | O | 142.7 | 809.82 |
4 | Propyl | O | 48.25 | 253.62 |
5 | Isopropyl | O | >400 | - |
6 | Butyl | O | 36.26 | 177.51 |
7 | Pentyl | O | 80.48 | 368.66 |
8 | Isopentyl | O | >400 | - |
9 | Decyl | O | 72.05 | 249.80 |
10 | Benzyl | O | 124.6 | 522.89 |
11 | 4-methylbenzyl | O | 25.0 | 99.08 |
12 | 4-hydroxybenzyl | O | 92.7 | 399.01 |
13 | 4-nitrobenzyl | O | >400 | - |
14 | 4-chlorobenzyl | O | 68.65 | 251.71 |
15 | Piperonyl | O | 12.17 | 42.80 |
16 | 3-methyl-4-hydroxybenzyl | O | 27.55 | 97.16 |
17 | Isobutyl | NH | >400 | - |
18 | Dietyl | N | >400 | - |
19 | Butyl | NH | >400 | - |
20 | Hexyl | NH | >400 | - |
21 | Octyl | NH | >400 | - |
22 | Decyl | NH | >400 | - |
23 | Hexadecyl | NH | >400 | - |
24 | Oleyl | NH | >400 | - |
25 | Cyclohexyl | NH | >400 | - |
26 | Phenyl | NH | >400 | - |
27 | 4-chlorophenyl | NH | >400 | - |
28 | Benzyl | NH | >400 | - |
29 | 4-chlorobenzyl | NH | 81.81 | 301.05 |
30 | 4-hydroxybenzyl | NH | 104.1 | 410.97 |
31 | 4-methoxybenzyl | NH | 102.4 | 383.04 |
32 | 4-isopropylbenzyl | NH | 9.42 | 33.71 |
33 | 4-methylbenzyl | NH | 201.1 | 800.14 |
34 | Piperonyl | NH | 43.65 | 155.16 |
35 | Dibenzyl | N | >400 | - |
Amphotericin B | 2.91 | 3.14 |
Compounds | IC50 (µg/mL; µM) | Hemolytic Activity (HC50) (µg/mL; µM) | Selectivity Index (HC50/IC50) |
---|---|---|---|
6 | 36.26/177.51 | >400/1958.19 | >11.03 |
11 | 25.00/99.08 | >400/1585.28 | >16 |
15 | 12.17/42.80 | >400/1406.73 | >32.86 |
16 | 27.55/97.16 | >400/1410.67 | >14.51 |
32 | 9.42/33.71 | >400/1431.42 | >42.46 |
34 | 43.65/155.16 | >400/1421.85 | >9.16 |
Amphotericin B | 2.91/3.14 | 6.53/7.04 | 2.24 |
UniProt Accession | ID | Description/Name |
---|---|---|
A4I6Z4 | PGFS | Prostaglandin f2-alpha synthase |
A4I1F4 | ALDH2 | Aldehyde dehydrogenase, mitochondrial |
A4I4D6 | CPC | Cysteine peptidase C |
A4I4V0 | AAP | Aspartyl aminopeptidase |
A4HZ67 | HDAC | Histone deacetylase |
A4I1D2 | CYPA | Peptidyl-prolyl cis-trans isomerase (PPIase) |
A4HSQ3 | CYP2 | Peptidyl-prolyl cis-trans isomerase (PPIase) |
A4I698 | CYP5 | Peptidyl-prolyl cis-trans isomerase (PPIase) |
A4I004 | CYP6 | Peptidyl-prolyl cis-trans isomerase (PPIase) |
A4IC14 | CYP40 | Cyclophilin 40 |
A4HZB2 | PPT | Phosphotransferase |
A4I3K7 | PAH | Phenylalanine-4-hydroxylase |
Target | PLP (a) | Z_PLP (b) | GS (c) | Z_GS (d) | CS (e) | Z_CS (f) | ASP (g) | Z_ASP (h) | Aggregated Z-Score |
---|---|---|---|---|---|---|---|---|---|
PGFS | 60.40 | −0.39 | −7.79 | −2.21 | 27.91 | 0.36 | 32.61 | 0.65 | 1.52 |
ALDH2 | 71.49 | 0.78 | −1.81 | −1.83 | 33.01 | 1.31 | 39.00 | 1.57 | 1.39 |
CPC | 53.12 | −1.17 | 30.45 | 0.23 | 17.93 | −1.50 | 27.70 | −0.06 | 1.15 |
AAP | 70.10 | 0.64 | 41.78 | 0.95 | 27.45 | 0.28 | 29.12 | 0.15 | 1.33 |
CYPA | 63.48 | −0.07 | 17.96 | −0.57 | 25.41 | −0.10 | 31.44 | 0.48 | 0.88 |
CYP2 | 78.44 | 1.52 | 30.55 | 0.24 | 31.88 | 1.10 | 33.74 | 0.81 | 2.34 |
CYP5 | 70.57 | 0.69 | 33.06 | 0.52 | 29.43 | 0.64 | 32.95 | 0.70 | 1.33 |
CYP6 | 62.53 | −0.17 | 36.74 | 0.63 | 26.03 | 0.01 | 25.65 | −0.33 | 1.29 |
CYP40 | 51.44 | −1.33 | 23.33 | −0.22 | 21.94 | −0.75 | 24.66 | −0.50 | 0.92 |
PPT -ATP | 57.03 | −0.75 | 36.64 | 0.62 | 23.52 | −0.46 | 20.22 | −1.14 | 1.63 |
PPT-Glu | 51.68 | −1.32 | 39.71 | 0.82 | 15.07 | −2.03 | 11.16 | −2.45 | 1.17 |
PAH | 79.06 | 1.59 | 39.53 | 0.81 | 32.07 | 1.14 | 29.00 | 0.13 | 1.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Morais, M.C.; Medeiros, G.A.; Almeida, F.S.; Rocha, J.d.C.; Perez-Castillo, Y.; Keesen, T.d.S.L.; de Sousa, D.P. Antileishmanial Activity of Cinnamic Acid Derivatives against Leishmania infantum. Molecules 2023, 28, 2844. https://doi.org/10.3390/molecules28062844
de Morais MC, Medeiros GA, Almeida FS, Rocha JdC, Perez-Castillo Y, Keesen TdSL, de Sousa DP. Antileishmanial Activity of Cinnamic Acid Derivatives against Leishmania infantum. Molecules. 2023; 28(6):2844. https://doi.org/10.3390/molecules28062844
Chicago/Turabian Stylede Morais, Mayara Castro, Gisele Alves Medeiros, Fernanda Silva Almeida, Juliana da Câmara Rocha, Yunierkis Perez-Castillo, Tatjana de Souza Lima Keesen, and Damião Pergentino de Sousa. 2023. "Antileishmanial Activity of Cinnamic Acid Derivatives against Leishmania infantum" Molecules 28, no. 6: 2844. https://doi.org/10.3390/molecules28062844
APA Stylede Morais, M. C., Medeiros, G. A., Almeida, F. S., Rocha, J. d. C., Perez-Castillo, Y., Keesen, T. d. S. L., & de Sousa, D. P. (2023). Antileishmanial Activity of Cinnamic Acid Derivatives against Leishmania infantum. Molecules, 28(6), 2844. https://doi.org/10.3390/molecules28062844