
Citation: Bougueroua, S.; Bricage, M.;

Aboulfath, Y.; Barth, D.; Gaigeot,

M.-P. Algorithmic Graph Theory,

Reinforcement Learning and Game

Theory in MD Simulations: From 3D

Structures to Topological

2D-Molecular Graphs

(2D-MolGraphs) and Vice Versa.

Molecules 2023, 28, 2892. https://

doi.org/10.3390/molecules28072892

Academic Editor: Jia-Bao Liu

Received: 24 February 2023

Revised: 17 March 2023

Accepted: 18 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Algorithmic Graph Theory, Reinforcement Learning and Game
Theory in MD Simulations: From 3D Structures to Topological
2D-Molecular Graphs (2D-MolGraphs) and Vice Versa
Sana Bougueroua 1,* , Marie Bricage 2, Ylène Aboulfath 2, Dominique Barth 2 and Marie-Pierre Gaigeot 1,*

1 Université Paris-Saclay, University Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587,
91025 Evry-Courcouronnes, France

2 Université Paris-Saclay, University Versailles Saint Quentin, DAVID, 78000 Versailles, France
* Correspondence: sana.bougueroua@univ-evry.fr (S.B.); mgaigeot@univ-evry.fr (M.-P.G.)

Abstract: This paper reviews graph-theory-based methods that were recently developed in our
group for post-processing molecular dynamics trajectories. We show that the use of algorithmic graph
theory not only provides a direct and fast methodology to identify conformers sampled over time but
also allows to follow the interconversions between the conformers through graphs of transitions in
time. Examples of gas phase molecules and inhomogeneous aqueous solid interfaces are presented to
demonstrate the power of topological 2D graphs and their versatility for post-processing molecular
dynamics trajectories. An even more complex challenge is to predict 3D structures from topological
2D graphs. Our first attempts to tackle such a challenge are presented with the development of game
theory and reinforcement learning methods for predicting the 3D structure of a gas-phase peptide.

Keywords: algorithmic graph theory; molecular dynamics; identification of conformers; machine
learning; game theory; pathways; conformational conversion; prediction of 3D structures

1. Introduction

In the last decade, the domains of artificial intelligence (AI) and algorithmic graph
theory have seen a wealth of development in the realm of molecular simulations. On the
one hand, the large domain of machine learning (ML) has seen a growth in popularity
in the community of molecular dynamics (MD) simulations. A wealth of development
has, in particular, been dedicated to the machine learning of force fields (FF) for realizing
more accurate classical MD simulations. Pioneers and well-advanced research groups in
ML-FF include the groups of Behler, Czanyi, Shapeev and Ceriotti; see for instance [1–10],
with applications mostly done in the condensed phase. Marquetand et al. [11] pioneered
machine learning for infrared spectroscopy calculation, by coupling ML-FF with the simul-
taneous machine learning of dipole moments that uses similar training as that for energies
and forces in ML-FF. Other works such as in [4,12,13] continued on the same routes for IR
and Raman spectroscopies with various types of observables being learned. In the context
of vibrational spectroscopy based on MD simulations, we developed a theoretical route
based on atomic polar tensors (APTs) and Raman tensors, applicable to the modeling of IR,
Raman and SFG (Sum Frequency Generation) spectroscopies; see [14–17]. The APT and
Raman tensors can be machine learned from high level quantum calculations. Vibrational
spectra can also be directly machine learned in order to predict very quickly a spectrum
associated to a given molecular system; see e.g., [18–21].

On the other hand, algorithmic graph theory, a branch of AI, is powerful for the
analysis of molecular simulations. A 2D graph encodes topological properties of matter
through vertices and edges that report on the specific (pairwise) interactions between the
vertices. At the molecular level of representation, the vertices are usually associated to
atoms while the edges report on the interactions between the atoms, e.g., chemical bonds

Molecules 2023, 28, 2892. https://doi.org/10.3390/molecules28072892 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28072892
https://doi.org/10.3390/molecules28072892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-0642-5275
https://orcid.org/0000-0002-3409-5824
https://doi.org/10.3390/molecules28072892
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28072892?type=check_update&version=2


Molecules 2023, 28, 2892 2 of 21

and intermolecular interactions. Three-dimensional information related to e.g., distances,
angles, are not encoded into topological 2D graphs unless vertices/nodes are specifically
colored with such information (giving rise to 3D graphs). Modeling the interaction between
the atoms of a molecule by a 2D graph is nowadays well established [22], as already shown
by the early work of James Joseph Sylvester (1814–1897). Easier to obtain or to predict than
3D graphs, 2D graphs already carry information on the structure, the functional properties
and even the 3D shape of the molecules they model. Examples include the classification of
similar molecules according to their topology [23,24], the prediction of patterns in biological
molecules [25], the prediction of the 3D structure of small molecules [26], etc. Molecular
graphs are also commonly used in supervised machine learning algorithms; the framework
of graph-based models for molecules is indeed naturally suited for carrying out predictions
in message-passing neural network schemes.

In bio-informatics and chemo-informatics, the challenge is to identify or design algo-
rithms capable of obtaining molecular properties from input graphs and to follow these
properties in time. This can be done by operations research or artificial intelligence ap-
proaches, considering each graph as an input [27], or by machine learning approaches,
considering all atoms or sub-graphs of any target molecular graph as interconnected
agents [26,28]. Obtaining, analyzing and qualifying such algorithms frequently gives rise
to new research challenges in algorithmics; see e.g., [29].

The last decade has seen several developments on algorithmic graph theory for an-
alyzing various types of molecular dynamics simulations, from e.g., the conformational
analysis of gas phase molecules and clusters, to their chemical reactivity, to the dynamics
of H-Bonds in liquids, to the dynamics of the solvation shells of ions in liquids, to the
structural and dynamical analysis of complex aqueous interfaces in condensed matter; see
for instance [30–41].

Our group has been involved in the development of graph-theory-based methods
for analyzing (post-processing) atomistic molecular dynamics simulations (obtained from
DFT-based MD and classical FF-MD). These developments are included in the GaTewAY
post-processing software described in [42]. We present our developed algorithmic graph
theory methods in Section 2. The applications are presented in the same section, showing
the versatility of the graphs and associated algorithms in going from the analysis of MD
trajectories of ‘simple’ gas phase molecules to much more complex heterogeneous aqueous
interfaces in condensed matter. It is one thing to be able to define and follow in time
topological 2D graphs from an input molecular dynamics simulation; an even more complex
challenge is to be able to make the reverse processing, i.e., to predict the 3D structure of a
molecular system from the sole knowledge of its 2D topological graph. Section 3 of this
paper reports our first attempts to tackle this challenge by implementing game theory
and reinforcement learning. An illustration on the prediction of the 3D structure of a gas
phase flexible peptide using a 2D molecular graph as input is presented. Conclusions and
perspectives are presented in Section 4.

2. GaTewAY Post-Processing Tool for Time-Dependent Conformational Analysis

We have developed 2D molecular graphs (labeled 2D-MolGraph) and associated
algorithms in order to automatically analyze the conformational dynamics of molecules
and their assemblies from molecular dynamics simulations. The 2D-MolGraph and the
algorithms are described in the next section. Different applications are presented in order
to illustrate the versatility and transferability of the 2D-MolGraphs that can be applied
to gas phase molecules, clusters, liquids, solids and inhomogeneous interfaces between
solids and liquids. Our developments are included in the GaTewAY (Graph Theory for
conformAtional dYnamics analysis) software described in [42].

A key component in the versatility and transferability of our 2D-MolGraphs is the
atomic level of granularity that was chosen to define the vertices and edges of topological
2D graphs. In our 2D-MolGraphs, any molecular conformation is defined by a molecular
graph where vertices represent the atoms of the molecular system and the edges represent
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the interactions between these atoms. These interactions can result in covalent bonds,
hydrogen bonds, these interactions can be of electrostatic nature, etc. As will be seen in
Section 2.1, one can easily define and implement new relevant interactions that are needed
to describe a given molecular system and hence augment the number of definitions for the
edges in the 2D-MolGraphs.

With 2D-MolGraphs in our hands, the exploration with time of molecular conforma-
tions along molecular dynamics simulations can easily be seen as the exploration of graph
topologies, which can be tracked using graph-theory-based methods, e.g., isomorphism.
This is described in Section 2.2. Given an MD trajectory, the GaTewAY software thus
provides the list of conformations that have been explored based on the isomorphism test
from [43], their residence time and the “graph of transitions” that represents all transitions
that have been observed between the identified conformations along the MD time-length.
Examples of applications to gas phase molecules and to more complex inhomogeneous
aqueous interfaces will be given in Section 2.3. GaTewAY can be applied to any kind of
MD trajectory, be it ab initio MD, classical MD or coarse-grained MD, or any type of mixing
between these atomistic representations, including chemical reactivity. The algorithms are
implemented in such a way that they can be easily extended to take into account any other
types of interactions and parameters to analyze the conformational dynamics.

2.1. From the 3D Structure to a 2D MolGraph

We summarize here the key elements to define a 2D MolGraph; more details are found
in [40,42]. A molecular conformation is defined by a mixed graph G = (V, EC, AH , EI , EO),
where the following definitions are applied (these are the current definitions implemented
in GaTewAY; these definitions can easily be extended as previously emphasized):

• V is the set of all atoms of the molecular system except hydrogen atoms that are not
accounted for. Each atom of the molecular system is a vertex of G.

• EC = {[a, b], a ∈ V, b ∈ V : [a, b] is a covalent bond}, where each covalent bond
represents an edge in G ([a, b] = [b, a]).

• AH = {(a, b), a ∈ V, b ∈ V : (a, b) is an H-bond}, where each H-bond represents
an arc (directed edge) in G ((a, b) 6= (b, a)), in which atom a is a heavy atom in the
H-bond and atom b is the acceptor of the hydrogen bond. Directed edges (arcs) are
hence used to keep the information related to the hydrogen atom involved in H-bonds:
for a hydrogen bond, the edge is directed from the heavy atom to the donor.
There is therefore no need to include explicitly the hydrogen atoms in the 2D Mol-
Graphs, only the ones involved in H-bonds are indirectly incorporated through the
directed edges. There are no other directed edges in the 2D MolGraphs.

• EI = {[a, b], a ∈ V, b ∈ V : [a, b] is an “electrostatic interaction”}, where each
electrostatic interaction represents an edge in G ([a, b] = [b, a]). Such interaction can
be obtained whenever an ion (anion or cation) atom interacts with other atoms.

• EO = {[a, b], a ∈ V, b ∈ V : [a, b] is an “organometallic interaction”}, where
each organometallic interaction represents an edge in G ([a, b] = [b, a]). Such in-
teraction is defined whenever a metallic atom such as Manganese, Ruthenium or
Gold (metallic atoms investigated in our works up-to-now) interacts with any other
type of atom.

In order to take into account the chemical type of the atoms in 2D MolGraphs, we
apply a special case of graph coloring, such that the vertices of a given 2D MolGraph
display the same color if and only if the corresponding atoms have the same chemical
type. In Figure 1, the vertices of the 2D MolGraph (right side) are colored in such a way
that dark gray stands for carbon atoms, blue stands for nitrogen atoms, red for oxygen
atoms, and light gray for hydrogen atoms. Moreover, the edges in the 2D MolGraphs are
colored in order to distinguish the bond type. For example, edges in black lines stand for
covalent bonds and red dashed arcs are for hydrogen bonds. These are conventions that
are systematically applied to 2D MolGraphs.
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The right side of Figure 1 shows the 2D MolGraph that is associated to a given 3D
conformation of a gas phase peptide (shown on the left side of the figure). It illustrates the
concepts of vertices and edges of a given 2D MolGraph as defined above, and it illustrates
the coloring of the vertices and edges just described.
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2D representation (mixed graph)

Graph theory

3D representation (position)

Figure 1. One snapshot (3D representation, (left)) and its associated 2D MolGraph (right) from a
trajectory of NH+

3 − Ala7 −COOH (C21H38N7O8) peptide in the gas phase. In the left panel, carbon
atoms are represented in dark gray, nitrogen atoms in blue, oxygen atoms in red, and hydrogen
atoms in light gray. In the 2D MolGraph (right), the conventions are the following: vertices are
colored in dark gray, blue, red and light gray, corresponding respectively to a carbon atom, nitrogen
atom, oxygen atom and hydrogen atom; the edges are colored and represented in black lines when a
covalent bond exists between two atoms (i.e., between two vertices) and in red dashed lines when a
hydrogen bond exists between a heavy atom and the H-bond acceptor (i.e., between the associated
vertices), which is an arc as seen by the arrow going from donor to acceptor of the H-bond.

2.2. Fingerprinting Based on Bonding Patterns and Types of Interactions

To analyze the conformational dynamics of a molecular system either for one trajectory
or multiple trajectories treated in parallel, our software GaTewAY is composed of two
main stages:

• Construction of the series of 2D MolGraphs: This stage consists in constructing
the series of 2D MolGraphs from the list of the positions of the atoms given by the
trajectory file(s). At each step (snapshot) I of the MD trajectory, the list of atoms
and their cartesian coordinates are known. Depending on the chemical type, we
have established a database in which each possible atom has a specific covalent
radius and a maximum number of covalent bonds that it can form. For each type
of bond/interaction, a set of threshold distance/angle values have been established.
These values are in a database that can be easily modified by any user. We always
choose the nearest atoms to fix the eventual bond overflow, especially when the user
sets high cut-off values. For example, given an atom a that should form at most one
covalent bond, and two atoms b and c that respect the condition to form a covalent
bond with atom a, whenever the distance(a, b) is less than distance(a, c), the algorithm
will choose atom b for establishing a covalent bond from atom a as atom b has the
shortest distance from atom a. In order to reduce the computational costs of the
geometric analysis at each step of the trajectory, two essential features have been
implemented: one feature is the orbit of an atom which keeps track of the subset of
atoms that can potentially form bonds with atom a; the second feature is composed
of reference snapshots that are a (small) subset of snapshots where the orbits are
recalculated. For all details, we refer the reader to [40]
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• Graph theory analysis: Once orbits and bonds are computed using the geometric-
based approach, the structural and dynamical behaviors of the molecular system
are examined with graph-theoretic methods. The 2D MolGraph allows defining a
unique system topology (i.e., both intra- and inter-molecular bonds) for any possible
configuration of atoms along the trajectory. Any conformational change, such as
isomerization, proton transfer, change in solvation shells, etc., can be seen as the
exploration of a different 2D MolGraph topology.

Graph isomorphism, as defined in [43], allows to represent each conformer with a
fingerprint graph and allows comparisons between graphs. In our applications, isomor-
phism consists in comparing the distribution of edges between two 2D MolGraphs: if the
two graphs being compared have the same set of bonds/interactions connected to the
same set of atoms (in terms of chemical types/colors for the graphs), these graphs are then
isomorphic, i.e., the two graphs are identical; see [43–46].

In a formal way, we define the isomorphism between two conformations as follows:
two conformations Gi = (Vi, ECi , AHi , EIi ) and Gj = (Vj, ECj , AHj , EIj) are isomorphic if
and only if there exists a bijection θi,j:Vi → Vj such as:

1. ∀a ∈ Vi, we have φ(a) = φ(θi,j(a)).
2. [a, b] ∈ ECi ⇔ [θi,j(a), θi,j(b)] ∈ ECj .
3. (a, b) ∈ AHi ⇔ (θi,j(a), θi,j(b)) ∈ AHj .
4. [a, b] ∈ EIi ⇔ [θi,j(a), θi,j(b)] ∈ EIj .

Using the graph coloring based on the chemical type of atoms, we only allow the
permutation between vertices of the same color. In Figure 2, the graphs in the lower row
show the coloring of graphs (A) and (B). Here, vertex N (shown in blue) in graph (C) and
vertex O (shown in red) in graph (D) do not have the same color; hence, graphs (C) and (D)
are not isomorphic.

O

C

C

C
O

N

C

C

O

O

C

C

C
O

N

C

C

O

N

C

C

C
O

O

C

C

O

N

C

C

C
O

O

C

C

O

(A) (B)

(A) (B)(C)

(A) (B)

(D)

Figure 2. Example of isomorphic conformations represented by their 2D-MolGraphs. Top: confor-
mations (A) (left) and (B) (right) are isomorphic by interchanging vertices N and O shown in red
regardless of the chemical type of their corresponding atoms. Bottom: conformations (C,D) are not
isomorphic anymore once the coloring process has been applied.

The main steps of the GaTewAY algorithm are as follows:

1. Initialization: read the first snapshot I1 of the trajectory and construct the first 2D-
MolGraph G1 (see definitions above).

2. Read a new snapshot Ii and construct the associated 2D-MolGraph Gi.
3. Test if Gi is isomorphic to Gi−1. If they are isomorphic, add the snapshot Ii to the list

of appearance of Gi−1 and go to step (2).
4. Test if Gi is isomorphic to one of the 2D-MolGraph already identified. If yes, then add

the snapshot Ii to the list of appearance of the isomorphic 2D-MolGraph and go to
step (2).

5. Else, add Gi to the list of the 2D-MolGraph already identified.
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6. Return to step (2) in order to read the subsequent snapshot.

The conformational changes that occur over the molecular dynamics can also be
summarized as a graph called “graph of transitions”. An example is given in Figure 3.
Given trajectory I composed of S snapshots, the graph of transitions GI = (G,A) is labeled
as a directed graph, wherein:

• G = {G1, G2, ..., GC} are the vertices of GI . Each vertex represents a 2D-MolGraph
(i.e., a conformation) that has been identified at least once over trajectory I .

• A are the arcs (directed edges) of GI . Each arc (Gi, Gj) represents a transition observed
from conformation Gi to conformation Gj.

Figure 3. Example of a graph of transitions for a trajectory of NH+
3 − Ala2 −COOH (C6H13N2O3)

peptide in the gas phase. See text for the nomenclature and colors.

For a given vertex in the graph of transitions, we report the percentage of appear-
ance of this conformation in the trajectory as well as the bond(s)/interaction(s) that were
formed in this conformation. Figure 3 shows an example of a graph of transitions. This
graph is composed of six vertices; each vertex represents one conformer that has been
identified along the trajectory. We can observe that conformer (3) is the most frequent
with a total percentage of appearance of 45.57%. The edges between the vertices are also
labeled, providing two types of information: (1) the total frequency rate for going from one
conformation to the other one, (2) the bonds/interactions that have changed when going
from one conformation to the other. The colors of the vertices in the graph of transitions
directly give the most relevant conformations in terms of appearance periods. We hence
put in red the conformations that appear at least Pmin% (input parameter that the user
can change), and the ones in the green color are those occurring below this threshold. All
the conformations explored along the molecular dynamics simulations can be kept in the
graph of transitions. Such information might indeed be useful for some analyses, typically
when rare events (rare conformations) are investigated. The user can modify this at will.
For instance, one can observe a larger conformational dynamic between conformations
(2) and (3) in the graph of transitions in Figure 3; such event occurs 60 times. One can see
on the graph that the hydrogen bond N1−O1 appears in going from conformation 2 to
conformation 3.

2.3. Evaluation and Validation

The GaTewAY software can analyze any molecular dynamics trajectory, i.e., AIMD,
QM-MM-MD, FF-MD, CG-MD. Because of the atomic granularity level chosen for the
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2D-MolGraph definitions, GaTewAY is versatile and can be applied to trajectories of gas
phase molecules and clusters, to solids, nano-particles, to any complex inhomogeneous
molecular system as e.g., solid–water interfaces. In the following, we illustrate applications
of the 2D-MolGraphs and associated graph algorithms in the gas phase (analysis of the
trajectory of an isolated protonated peptide Z− Ala6 −COOH, C26H39N7O8) and in the
condensed phase for trajectories of hydrophobic surfaces in contact with liquid water
(air/water, graphene/water, boron-nitrate BN/water).

2.3.1. Time-Dependent Structural Recognition of Peptides

Our first illustration of the capability of 2D-MolGraphs and associated graph algo-
rithms concerning the trajectory of the gas phase Z− Ala6 −COOH peptide (C26H39N7O8,
80 atoms). A 150 K DFT-MD trajectory composed of 43,125 snapshots is analyzed (∼20 ps,
δt = 0.5 fs). Based on the analysis of the H-bonds dynamics, 46 different conformers
of the Z − Ala6 − COOH peptide have been identified by GaTewAY over the trajectory,
showing a very dynamical and flexible peptide in the gas phase, even at a rather moderate
temperature. At the temperature of 150 K, eight different types of hydrogen bonds have
been explored in Z− Ala6 − COOH over the trajectory. The structure of each identified
conformer is composed of two to six hydrogen bonds formed simultaneously. The peptide
is found either in opened structures where a low number of simultaneous H-bonds are
present or in H-bonded folded structures.

Figure 4 presents two 2D-MolGraphs corresponding to two identified conformers of
Z− Ala6 −COOH (see the top of the Figure 4), respectively built on five (Figure 4c) and
four H-bonds (Figure 4d). Three of these H-bonds are common in the two conformations,
while the two structures differ by the N2 · · ·O8 vs. N1 · · ·O8 H-bond. Figure 5 presents
the graph of transitions that summarizes the dynamics of the Z − Ala6 − COOH gas
phase peptide at 150 K. It is composed of an extremely high number of vertices and edges
connecting these vertices, which is the signature of high dynamicity and high flexibility of
the peptide.

The high number of vertices and edges in the graph of transitions in Figure 5 illustrates
the limit of the atomic level of granularity used in the 2D-MolGraphs for highly flexible
molecular systems. There are also brief periods of time for breaking/reforming covalent
bonds and/or H-bonds over the dynamics that are captured as changes in conformations by
the graph analysis, as they are signatures of dynamics of these bonds around the threshold
values employed in the method. These numerous transitions between conformers are
in practice the signature of the existence of a single ‘meta-conformation’, around which
dynamicity and flexibility occur.

One advantage of topological 2D graphs is that higher levels of granularity can be
employed for the graphs. Because the 2D-MolGraphs are especially based on the H-
bond dynamics, one way to achieve a more coarse-grained analysis for flexible peptides
such as Z− Ala6 − COOH is to define graphs based on the H-bonded rings/cycles and
their polymorphism, i.e., the similar role an H-bonded ring will play in two different
conformations despite the H-bonded cycle being built on different atoms in the peptide.
The underlying paradigm here is that the structure of such H-bonded molecule is mainly
related to the interactions (i.e., sharing of edges and/or vertices) between the cycles of the
associated 2D-MolGraph. We are currently developing such graph approach. To describe
the method briefly, using an evolution of the Horton algorithm, we consider a basis made
of H-bonded cycles in each conformation of a given trajectory, i.e., a subset of cycles of
minimum size allowing by composition to generate all the cycles of the conformation. Two
cycles in the obtained bases of two conformations are equivalent if they share at least some
essential atoms, and if they have the same interactions in their respective conformations
with other cycles also pairwise equivalent. Given a trajectory (seen again as a sequence
of graphs having the same set of vertices), a maximum set of pairwise equivalent cycles
(also called “polymorphic” cycles) is called a poly-cycle. With this in hand, one can build
the polygraph of the trajectory, which is the graph in which a vertex is one identified



Molecules 2023, 28, 2892 8 of 21

poly-cycle. There is an edge between two vertices, i.e., between two poly-cycles, if they
have an interaction in all conformations containing one polymorphic cycle of each of these
two poly-cycles. Thus, each molecular conformation can be characterized by a subgraph of
this polygraph (depending of the basis of its cycles), and the evolution of these subgraphs
over the trajectory represents the evolution of the structure of the molecule, without the
“noisy” modification of links within each cycle discussed above at the molecular level of
representation. The trajectory can therefore be seen as the interaction of the cycles evolving
over time in their atomic structure (polymorphism) and still interacting in the same way,
but with some of these cycles appearing or disappearing over time.

(a) (b)

(c) (d)
Figure 4. Illustration of two conformers (3D representation, top (a,b)) and their associated 2D-
MolGraphs (bottom (c,d)) identified in a trajectory of the gas phase Z− Ala6 −COOH (C26H39N7O8)
peptide. Colors for the 3D structures vertices: green for carbon, dark blue for nitrogen, red for oxygen,
and light gray for hydrogen atoms. Colors for the 2D-MolGraph vertices: dark gray for carbon, dark
blue for nitrogen, and red for oxygen. Solid black edges in the graphs represent covalent bonds, and
the red arcs represent the hydrogen bonds directed from the donor to the acceptor.
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Figure 5. Graph of transitions (right) for 150 K dynamics of the gas phase Z − Ala6 − COOH
peptide. The vertices represent the explored conformers. Vertices in red are for conformers with
a total percentage of appearance Pmin% greater than 4%, vertices in green are for conformers with
Pmin% < 4%. These threshold values can be modified at will. Edges between vertices represent the
transitions between two conformers as observed over time.The labels on each edge provide the total
percentage of occurrence of the transition and the associated chemical changes that occur. Edges are
directed. The left figure is the image zoomed over a portion of the graph of transitions displaying
the knowledge on four conformers being explored over time. One conformer appears over 29% of the
trajectory (red vertex), and the three other conformers appear for less than the minimum threshold
value of time (Pmin) (green vertices). The transitions between these conformations are shown with the
black arrows/edges.

The first experimentation and analysis of such innovative algorithmic approach is cur-
rently being implemented in our group. As an example, Figure 6 shows the 2D-MolGraphs
of two different conformers of Z− Ala6 −COOH. In the two 2D-graphs of the peptide, the
H-bonded rings have been highlighted in different colors, where each color corresponds to
a given polymorphic H-bonded ring. In this example, there is one hydrogen bonded cycle
(in orange in Figure 6) that is different between the two conformers: these two (orange)
H-bonded rings involve different atoms and give rise to a different size of the cycle while
they are polymorphic to each other. They hence play the same role within the associated 3D
structures. Despite the two H-bonded cycles being built on different atoms, the associated
coarse-grained graph of cycles that is found (and reported at the bottom of Figure 6) is the
same for these two 2D-MolGraphs because of the similar role played by the two (orange)
H-bonded cycles in the two conformations. These two different roles appear in the orange
vertex of the graph of cycles where there are two identities for the H-Bond reported for this
particular cycle, while the other vertices of the graph of cycles have one single identity.
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Figure 6. Example of two 2D-MolGraphs of two conformers of gas phase Z − Ala6 − COOH
(C26H39N7O8) peptide. The five H-bonded rings/cycles that exist in each conformation have been
highlighted in different colors (orange, green, purple, light blue, pink). The bottom graph is the
coarse-grained graph of cycles that is identical for the two conformers. The colors used for the
vertices of the graph of cycles are identical to the colors used in the 2D-MolGraphs for representing
the H-bonded cycles. See text for more details on the graph of cycles, in particular for the definitions
of the edges.

2.3.2. The 2D-MolGraphs in Condensed Matter: Hydrophobicity Revealed at
Aqueous Interfaces

The 2D-MolGraphs and associated graph algorithms can be applied to more complex
and challenging molecular systems such as inhomogeneous aqueous interfaces in the
condensed phase. Here we present algorithmic graph theory applied to the DFT-MD
dynamics of three hydrophobic aqueous interfaces, which have been characterized at
the molecular level for their hydrophobic character in [47]. We have shown in [41,47,48]
that the surface hydrophobicity results in the formation of a two-dimensional (2D) highly
collective H-bond network made by the water molecules in the layer in direct contact with
the hydrophobic surface (i.e., water located in the BIL-Binding Interfacial Layer as defined
in [17]), where the water–water H-bonds are formed parallel to the surface. This water
collective 2D-Hbonded-Network is the molecular signature of surface hydrophobicity.

We here illustrate the specific characteristics of the 2D-MolGraph of the 2D-HBonded-
Network and the algorithms that have been used in order to dissect further the 2D-
MolGraph, and provide more details about the actual structure of the water molecules
in this collective H-bonded network. In particular, the actual organization of the water
molecules in the 2D-Network, i.e., the network topology, is shown to vary between the
hydrophobic surfaces. Three hydrophobic aqueous interfaces are here dissected, i.e., the
air/liquid water interface as the prototype of hydrophobic surfaces, the graphene/liquid
water interface and the Boron-Nitrate BN/liquid water interface. DFT-MD trajectories are
used (see their analyses in [47]); a limited number of 400 snapshots have been extracted and
analyzed with graph theory for each trajectory (from a total of 50 ps trajectory per system).
This corresponds to roughly an analysis of 1 snapshot every 0.1 ps of dynamics, which
represents a good statistical sampling regarding the dynamics of hydrogen bonds. For
each aqueous interface, the graph analyses are done on the BIL-interfacial region only, in
which there is roughly an average of 48 water molecules (all simulation boxes are roughly
equivalent in sizes).

Figure 7 presents one 2D-MolGraph per aqueous interface, from left to right: the BIL
organization of the air/water interface, the graphene/water interface and the BN/water
interface. For the illustrations, we present one 2D-MolGraph per system; there are as many
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2D-MolGraphs as there are non-isomorphic graphs along each trajectory. The statistical
analysis of the ensemble of 2D-MolGraphs per interface is presented in the next paragraph
by employing algorithmic graphs.

Figure 7. Illustration of a 2D-MolGraph applied to condensed phase systems, for each hydropho-
bic aqueous interface investigated here: air/liquid water (left), graphene/liquid water (middle),
BN/liquid water (right). Only the water molecules located in the BIL (Binding Interfacial Layer; see
definitions in [17]) are taken into account for the 2D-MolGraph analysis (∼48 water molecules on
average). Vertices of the graph represent the oxygen atoms of the water molecules (red); the dashed
red arcs represent the H-bonds between two water molecules oriented from donor to acceptor.

Each of these 2D-MolGraphs shows the same global structural property of the water
molecules in the BIL of hydrophobic surfaces: a collective arrangement of the water
molecules in terms of H-bonded polygons (or rings) that are adjacent to each other.

To obtain the statistical view on the number of water molecules that are interconnected
within the 2D-HBonded-Network, the (identified non-isomorphic) 2D-MolGraphs can be
analyzed in terms of the size of the connected components, i.e., the ensemble of subgraphs
in which all vertices are connected to each other. This is done for the 400 2D-MolGraphs that
have been calculated in each trajectory. The distribution of the connected components is
shown in Figure 8 for each aqueous interface. One can immediately see that the three plots
are similar, with the largest extended network made by ∼90–95% of the water molecules.
From the 2D-MolGraphs in Figure 7 and from the distributions of connected components
in Figure 8, one can thus conclude that the water molecules in the BIL are statistically
organized with the same collective HB-Network at all three interfaces, displaying the same
high degree of inter-connectivity.

Figure 8. Distribution of the connected components of the 2D-MolGraphs (condensed phase, see text
for details) for the air/liquid water interface (left), the Graphene/liquid water (middle), and the
BN/liquid water (right).

The supplementary information that can be directly deduced from the analysis of the
2D-MolGraphs is the distribution of the size of the H-bonded polygons made by the water
molecules in the BIL at the interface with the three hydrophobic surfaces investigated here.
This is obtained by applying the Horton algorithm [49] that provides a minimum basis of
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cycles for one given graph. Such analysis provides a direct view on the graph topology and
thus on the structural topology of the water molecules at the interface. The final analyses
are reported in Figure 9 for the three investigated hydrophobic aqueous interfaces.

Figure 9. Distribution of the size of H-bonded rings/cycles formed by the water molecules in the
2D-MolGraphs (condensed phase). (Left): the air/water interface; (Middle): the graphene/water
interface; (Right): the BN/water interface.

Very interestingly, though the water molecules in the three investigated BILs are
assembled with the same collective 2D-Hbonded-Network, the distribution of sizes of
the H-bonded polygons that build these networks are non-identical between the three
hydrophobic interfaces. On the one hand, the sizes of the H-bonded polygons are centered
on 4 to 6 for the air/water and BN/water interfaces. There is a clear dominant component
related to H-bonded pentagons made by the water molecules at the interface with the BN
surface while the formation of H-bonded tetragons and pentagons is found equivalent
at the interface with the air. On the other hand, the 2D-Hbonded-Network made by the
water molecules at the surface of graphene is more homogeneous in terms of sizes of the
polygons, where tetragons, hexagons and heptagons have roughly the same probability of
appearance, and H-bonded pentagons dominate slightly more. We hence see that the water
molecules dominantly form five-membered H-bonded rings/polygons at the interface with
the BN surface, which can be associated to the hexagonal templated structure of Boron
Nitride. The length of the C−C covalent bonds in BN is shorter than the O · · ·H hydrogen
bonds: the best arrangement for the water molecules is thus into five-membered H-bonded
rings rather than six-membered rings.

One can also calculate the average percentage of water molecules that belong to the
H-bonded rings/polygons that build the 2D-Hbonded-Network at the direct interface with
the solid. This network is composed of 2D polygons that can be adjacent to each other but
also of chains of water molecules that can make links between some of the polygons. We
hence find that the percentage of water molecules that give rise to the polygons within the
2D-HBonded-Network is around 40–30% for the aqueous interfaces investigated here, with
the following interesting ranking: one finds a larger percentage of water in the 2D polygons
for the air/water interface (∼43.44%) than for the graphene/water interface (∼36.16%)
interface, which has a larger percentage than for the BN/water interface (∼33.57%). Such
percentages of participation of the water molecules might explain the strength of the 2D-
HBonded-Network found at each interface. The work in [47] indeed shows that the strength
of the 2D-HBonded-Network can be ranked as Air > Graphene > BN. In other words,
the more water molecules forming rings within the 2D-Hbonded-Network (i.e., the more
rings being formed), the stronger the 2D-HBonded-Network, and the more hydrophobic
the interface.

3. Game Theory and Reinforcement-Learning to Predict the 3D Structures of Gas
Phase Molecules

The previous section has shown how we can use graph theory to go from 3D structures
to 2D molecular graphs and a few usages of these graphs together with graph algorithms
for the direct analysis of molecular dynamics simulations. The next challenge that we
address in this section concerns the reverse route/back-mapping, i.e., how to go from a
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given 2D-MolGraph to the associated 3D structure of the molecule. Such reverse route is
typically necessary in the theoretical domain of conformer generation that is needed for
e.g., starting the search of low energy conformers in quantum mechanics calculations, for
starting molecular dynamics simulations by sampling the phase space, and in computa-
tional drug design and docking. Methods for generating the 3D structures of conformers
have been developed in the literature. See for instance [50–56]. Some of these methods
typically rely on databases of 3D structures of sub-units that will be used to generate a rea-
sonable conformation of a more complex molecule. Other methods rely on crystallographic
databases for the initial construction. Nowadays, topological databases based on 2D graphs
such as the ones presented in the first part of this paper are becoming more in use. See
for instance the topology-based databases of [18,57]. Furthermore, the 3D prediction of
e.g., proteins typically takes advantage of the large amount of available 3D data and the
specificity of local structures in these biomolecules [58] to propose prediction approaches
by Deep Learning (see e.g., [59]), which turns out to be interesting alternatives to energy
minimization approaches for these particular molecules.

In our specific context, the present development is part of this latter domain, i.e., to
generate 3D structures of molecular conformers from a database of 2D graphs. In our case,
the database is built on the 2D-MolGraphs that were presented in Section 2 of this paper. We
show in this section of the paper the algorithmic methods that we have developed based on
game theory and reinforcement learning in order to generate the 3D structure of a gas phase
molecule from the sole knowledge of its 2D-MolGraph. We stick to isolated molecules
in the present presentation and application. The methodology should be transferable to
the more complex domain of the condensed phase. This is, however, non-trivial; we are
currently working on this aspect together with improvements of the methodology for gas
phase molecules, as will be discussed later at the end of this section.

Many popular prediction methods have to be supervised by the knowledge of the real
(or confirmed) three-dimensional structure of the molecules; see for instance [50,60]. These
methods are system-dependent. Unsupervised approaches have been developed based on
heuristic or meta-heuristic techniques; see for example [27,51].

We show in this section some of our preliminary works using game theory algorithms
associated with a reinforcement-learning approach, inspired by methods developed by
some of us in bio-informatics for the prediction of the 3D structure of RNA biopolymers at a
high granularity level of representation, where the 3D structure is made of stems and loops;
see [26,61–63]. In these previous works, as in the present work, we assume that the 3D
structure of a molecule is based on the notion of equilibrium between local components. The
leading idea is to apply stochastic learning methods to find the molecule’s equilibrium space
corresponding to stable or meta-stable situations. Such approach is adapted here at the
atomic level of representation by considering only the topological constraints imposed by
the molecular graph and the local constraints imposed on the atoms by their neighborhood.
The key point is that energy is never introduced in the method, which makes the method
independent on the accuracy of the level of representation of the energy. The method
is hence typically not affected by the never-ending discussions of quality of quantum
mechanics methods (high level accuracy such as CCSDT types of methods vs. lower level
of accuracy such as the DFT) vs. much lower level of energy accuracy represented by
parameterized force fields representations. Furthermore, as a key element in finding 3D
structures at the lowest possible computational cost, our method does not depend on the
computational cost of the evaluation of energy (and forces).

In the following, we describe the key components of the developed methods and
show our first preliminary result in an application to the prediction of the 3D structure of
a tri-peptide molecule in the gas phase from the sole knowledge of its 2D-MolGraph (as
defined in Section 2 of this paper).
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3.1. Game Model

We consider a 2D-MolGraph G = (V, E) as defined in Section 2 of this work, where
V is the set of vertices (representing all the atoms of the molecular system, i.e., including
all hydrogen atoms added to the definition presented in Section 2) and E is the set of
possible edges (made of covalent bonds and hydrogen bonds for the peptidic molecules
of interest here). The goal is to generate the 3D configuration associated to a given 2D-
MolGraph by convergence towards a chemically realistic configuration. The approach we
propose consists in representing any edge in a given 2D-MolGraph, i.e., representing any
bond (u, v) (hereby covalent bonds and hydrogen bonds) as a player in a sequential game
(see [64]), whose objective is to find a comfortable position with respect to its neighbors
while minimizing as much as possible the negative impact of its choices on the equilibrium
of the whole molecular structure. We consider a sequential game where players (u, v)
choose a 3D position in space in a certain order. We repeat the game in consecutive rounds.
At the end of each round of the game, each player is assigned a utility ranking calculated
from a utility function that takes into account both the local equilibrium and the impact of
each player upon the equilibrium of the other players who will be playing next. This utility
function will influence the choice of this player in the next round of the game, by using a
reinforcement learning method (as used in [26]) that makes the players’ strategies converge
towards those that induce an equilibrium situation for all the players. It is the definition
of the utility functions that must guarantee that this equilibrium is close to a chemically
realistic situation.

At each round k of the game, the vertices of G are ordered from 1 to n = |V| from
running a Breadth-First Search (BFS) Algorithm, as given in [65], in order to browse the
graph G and construct a covering tree T. When the ith player associated to u is active, we
consider each (u, v) couple with v ∈ NT(u) being a child of u in T. The couple (u, v) is
then a player in the game. Possible strategies of (u, v) are the possible positions of v in a
discretized 3D space of icosahedrons centered on u, denoted I(u), with 42 possible atomic
positions located on it. The position of the root of T is (0,0,0). Each player (u, v) thus has
42 possible strategies. The chosen strategy provides a virtual space position of v in I(u),
relatively to the one of u chosen by player (w, u), with w the parent of u in T. A rotation is
applied to I(u) around u, such that the virtual space of the parent w of u in I(u) previously
fixed matches with the real final position of w. The rotation allows for minimizing the
average displacement of each point of I(u). After applying this rotation, each vertex of
NT(u) has its definitive position in the game’s current iteration.

Consider that at the end of the 2(n − 1) steps of the ongoing round of the game
(i.e., the number of (u, v) couples), each vertex u of the 2D-MolGraph has a position
pk(u) = (xk

u, yk
u, zk

u) in the global space. The utility ranking of vertex u is computed from
the two utility functions Directk(u) and Indirectk(u):

• Directk(u): considers on the one hand all the relative positions of the vertices v in
NT(u) in I(u), and on the other hand for any w ∈ NG(u)− NT(u), the projection of
pk(w) on I(u). Directk(u) is hence the minimum sum of the distances separating these
positions from the ideal positions that the neighbors should have around the atom if
they respect the valence shell electron pair repulsion theory (VSEPR). VSEPR is used
here for the geometrical rules known for chemical groups. For instance, a CH4 group
should have a tetrahedral symmetry in space, etc.

• Indirectk(u): given any vertex u, we first consider the sum for all vertices v ∈ NG(u)−
NT(u) of the euclidian distances between projw(v), the projection of pk(v) on I(u),
and pk(v), the position of v in the round k of the game. Then for all vertices z in G
such that pk(z) is in I(w), we also add the sum of the euclidian distance between pk(z)
and pk(u). Let us denote by localk(w) the global sum of these distances. Then

Indirectk(u) = ∑
v∈VT,u

Localk(v)
distT(u, v)
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with VT,u the set of vertices of the subtree of T rooted in u and distT(y, v) the (graph
theory) distance between u and v in T. Note that Indirectk(u) is a measure of the (bad)
impact of the chosen position of u (when dealing with player (u, v)) on the positions
of NG(u).

The cost function of each player (u, v) at the end of round k of the game is

Rk(u, v) = Directk(u)+Indirectk(u)
2 . The purpose of each player (u, v) is to minimize R(u, v) as

much as possible.
Note that the choice of players as couples of vertices (x, y) rather than single vertices

x ∈ V aims to reduce the number of strategies per player (42 here), which has an impact on
the efficiency of the method to reach an equilibrium (see next section). Indeed, in the case
where a player is a vertex, we should define 42δT(x) strategies for each player, where δT(x)
represents the out-degree (i.e., the number of children) of vertex x in T. It is also the reason
for all couples (u, v) for any given u to have the same utility function value at each round k
of the game.

3.2. Distributed Reinforcement Learning

A Linear Reward Inaction distributed reinforcement learning strategy as defined
in [66] is applied in order to make the game reach, if possible, a Nash equilibrium. For
each round k of the game, we hence associate a stochastic vector Vk

x,y to each (x, y) player,
such that Vk

x,y(s) is the probability for each strategy s ∈ Start(x) being a spatial position
in I(x). When a player (x, y) has to play, a strategy sk

x,y is randomly chosen using the
probability Vk

x,y.
At the end of iteration k, we define the utility of player (x, y) at round k by

Uk(x, y) =
Max(sk

x,y)− Rk(x, y)

Max(sk
x,y)−Min(sk

x,y)

where
Max(sk

x,y) = max
k′≤k:

sk′
x,y=sk

x,y

Rk′(x, y) and Min(sk
x,y) = min

k′≤k:
sk′

x,y=sk
x,y

Rk′(x, y)

Then, the vectors Vk+1
x,y (s) are updated considering the Linear Reward Inaction ap-

proach of [67], defined as follows:

Vk+1
x,y (s) = Vk

x,y(s) + (1−Vk
x,y(s))× b× uk(x, y) i f s = sk

x,y

Vk+1
x,y (s) = Vk

x,y(s) − Vk
x,y(s)× b× uk(x, y) i f s 6= sk

x,y

where b is a slowing factor taken in [0, 1].
For each round k of the game, we define mk as the average of Uk(x, y) on all players

(x, y). The game is stopped when mk is not improved after at least t consecutive rounds,
with t a input parameter.

3.3. Illustration on a Gas Phase Tri-Peptide: Going from a 2D-MolGraph to the 3D Structure

As a first performance evaluation of this reinforcement learning method, we test on
the gas phase tri-peptide molecule NH+

3 − Ala3 −COOH composed of 32 atoms. We run
the algorithm over 10 blocks, each block consists of 120,000 iterations. The goal is to be able
to predict the 3D structure of the peptide molecule in which there is one hydrogen bond
between the NH+

3 and COOH terminal groups as given by the 2D-MolGraph in Figure 10a.
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(a) (b) (c)
Figure 10. Example for the prediction of the 3D structure of the tri-peptide NH+

3 − Ala3 −COOH
from the knowledge of a 2D-MolGraph. (a) The 2D-MolGraph of the NH+

3 − Ala3 − COOH
(C9H18N3O4) tri-peptide extracted from a snapshot of a DFT-MD trajectory. (b) Associated 3D
structure known from the DFT-MD trajectory. (c) The 3D structure of the best predicted solution by
the presently developed game theory coupled to the learning method.

Figure 10b illustrates the 3D structure that we aim to predict. This 3D structure is
indeed known from one snapshot of a DFT-MD trajectory. There exists one hydrogen bond
(surrounded in red) between the two extremities of the peptide; the hydrogen (white atom)
covalently bonded to the nitrogen (blue atom) is the donor of the H-bond directed towards
the acceptor oxygen (red atom) of the COOH terminal group of the peptide. Figure 10c
illustrates the best solution found by our developed learning method. Based on the mk, our
algorithm provides the best solution at the first round (see Table 1). Despite the drawings
in Figure 10b,c not using exactly the same orientation angle, we can see a significant
resemblance between the target structure and the predicted one. In particular, almost all
atoms have their correct covalent bond distances with their neighbors being predicted
by the method. The covalent bonds between carbon atoms are obtained slightly longer
than the expected ones. The hydrogen bond length found in the predicted solution is
too short and is therefore closer to a covalent bond, which explains the O-H bond drawn
by the software in Figure 10c. The method can be improved by adjusting the possible
positions that one atom can take over the icosahedrons. Moreover, polyhedrons could be
used instead of icosahedrons, which would possibly improve the final agreement.

Figure 11a provides the distribution of utility function values for one given block
(120,000 iterations).

(a) (b)
Figure 11. Time evolution of the average of the values of the utility function. (a) Time evolution of
the average of the utility function values over one block. (b) Time evolution for the best iterations at
each block.
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Two stages are seen. The first stage has a fast increase of the utility function, followed
by a “plateau” that starts at block 25,000 and over which the utility values fluctuate between
0.90 and 0.95. Figure 11b represents the time evolution of the utility averaged over the best
iteration for each block. For this example, one can see that the best solution is reached after
26,768 blocks.

Table 1 provides a statistical view of the evolution of the predicted 3D structure. For
each run, the best solution, as described above using the utility function, is selected, for
which the RMSD descriptor (Root Mean Square Displacement) between the ‘real/target’
3D structure and the solution found by our algorithm is calculated. The best solutions in
terms of the average utility function mk and RMSD are indicated in green and the worst
ones in red. We notice that, even if the best mk is found at the first block, the best prediction
in terms of the actual 3D structure is found at the second block with an RMSD equal to
1.551. Other tests led to similar results.

Table 1. Evolution of the solutions found at each block. Green values indicate the best solutions in
terms of the average utility function mk and RMSD and the red values represent the worst ones.

Block 1 2 3 4 5 6 7 8 9 10

Best
mk 0.969 0.955 0.961 0.963 0.953 0.955 0.958 0.962 0.959 0.967

RMSD 2.301 1.551 1.981 2.089 2.200 2.271 2.186 2.071 2.053 1.870

The conclusions that can be extracted from this first application are summarized as
follows. (1) The utility function can certainly be improved. One idea would be to redefine
both Directk(u) and Indirectk(u) functions by e.g., changing the way the distances are
calculated. (2) A factor related to the global structure that is predicted should be added
to the utility function in order to improve the prediction. (3) Though the RMSD metric
is simple to calculate and is an easy descriptor, it is by no means the best one, as already
discussed in the literature. This metric is especially too sensitive to small changes in the 3D
structure, and it is therefore hard to use in order to quantify the agreement with the target
structure. Another metric has to be found for comparing the predicted 3D structure to the
target one.

4. Conclusions and Perspectives

As illustrated by the contributions presented in this paper, modeling the structure
of molecules and more complex heterogeneous solid–liquid interfaces by topological 2D
graphs and algorithmic graph theory is powerful in order to dissect molecular dynamics
trajectories into time-dependent conformational analyses and statistical properties. The 2D-
MolGraphs that we have developed and presented are versatile and transferable between
various phases of matter (from molecules in the gas phase to the more complex condensed
matter illustrated here with heterogeneous aqueous interfaces). The graph algorithms
applied to the topological 2D graphs were shown to be powerful tools for analyzing the
conformational space and were shown to provide conclusions that would be otherwise hard
to obtain. Ongoing works in our group aim at applying the 2D-MolGraphs to biomolecules
such as proteins. The 2D-MolGraphs and their associated canonical graphs are fast to
compute. For instance, on a simple desktop machine (Macbook Pro, i7, 8Go RAM), it
takes 0.9 s for one snapshot of BPTI (Bovine Pancreatic Trypsin Inhibitor, 1QLQ, 896 atoms)
and 146 s for one snapshot of GLP-1 (Human Glucagon-like Peptide-1 Receptor, 7S15,
6458 atoms). This opens the route to rapid analyses of the trajectories of biomolecules with
the 2D-MolGraphs.

The GaTewAY software [42] has been developed and includes the definitions of the
2D-MolGraphs presented in this paper, as well as the graph algorithms applied in this
paper. As discussed in the text, this software is easily modified and can be expanded in
order to include supplementary definitions for the edges of the 2D-MolGraphs.



Molecules 2023, 28, 2892 18 of 21

We also illustrated the possibility to go beyond the molecular level of granularity of the
2D-MolGraphs (with atoms being the vertices) and hence adopt a more coarse-grained level
of representation of a given molecule (with e.g., H-Bonded rings being the vertices of the
graph). We have shown that this representation is highly promising to characterize the time
evolution of H-Bonded molecules such as peptides. This level of granularity has already
been addressed in [23], and it can be used for either predicting the 3D coarse-grained
structure of molecules or for searching stable polymorphic substructures in a sequence
of conformers (identified by the algorithms of [40]). Some of our ongoing works aim at
developing more algorithmic approaches in this topic.

The second part of this paper reported our preliminary works for back-mapping,
i.e., predicting a 3D structure of a molecule from a 2D-MolGraph using game theory
and reinforcement learning. Our leading idea is to apply stochastic learning methods to
find the molecule’s equilibrium space corresponding to stable or metastable situations.
This assumes that the 3D structure of a molecule is based on the notion of equilibrium
between local components. The first results are promising and show the necessity to
include more descriptors related to the global predicted structure in the utility function of
the reinforcement learning method. One also has to go beyond the RMSD metric in order
to evaluate the relevance of the predicted 3D structures. These are ongoing works.
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