Polyacrylamide-Based Block Copolymer Bearing Pyridine Groups Shows Unexpected Salt-Induced LCST Behavior
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Diblock Copolymers (Px) via RAFT Polymerization
2.2. Salt-Induced Thermal Response of Px
2.3. pH-Responsive Properties of Px
3. Materials and Methods
3.1. Materials
3.2. Characterizations
3.3. Synthesis of Px
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Reineke, T.M. Stimuli-responsive polymers for biological detection and delivery. ACS Macro Lett. 2016, 5, 4–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.M.; Liu, R.J.; Yan, Q. Biological stimuli-responsive polymer systems: Design, construction and controlled self-assembly. Chin. J. Polym. Sci. 2018, 36, 347–365. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, Q.; Li, X.; Serpe, M.J. Stimuli-responsive polymers for sensing and actuation. Mater. Horizons 2019, 6, 1774–1793. [Google Scholar] [CrossRef]
- Grzelczak, M.; Liz-Marzán, L.M.; Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 2019, 48, 1342–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Li, L.; Du, Q.; Gou, L.; Zhang, L.; Chai, Y.; Zhang, R.; Shi, T.; Chen, G. Polymorphism of Kdo-Based Glycolipids: The Elaborately Determined Stable and Dynamic Bicelles. CCS Chem. 2022, 4, 2228–2238. [Google Scholar] [CrossRef]
- Montero de Espinosa, L.; Meesorn, W.; Moatsou, D.; Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 2017, 117, 12851–12892. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; An, Z.; Wu, P. UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly (N-acryloylglycinamide-co-diacetone acrylamide). Macromolecules 2017, 50, 2175–2182. [Google Scholar] [CrossRef]
- Wei, P.; Cornel, E.J.; Du, J. Breaking the corona symmetry of vesicles. Macromolecules 2021, 54, 7603–7611. [Google Scholar] [CrossRef]
- Halperin, A.; Kröger, M.; Winnik, F.M. Poly (N-isopropylacrylamide) phase diagrams: Fifty years of research. Angew. Chem. Int. Ed. 2015, 54, 15342–15367. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, X.X.; Luo, J.; Liu, H. Effects of substitution groups on the RAFT polymerization of N-alkylacrylamides in the preparation of thermosensitive block copolymers. Macromolecules 2007, 40, 6481–6488. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, Z.; Zhu, X.X. Rational design of thermoresponsive polymers in aqueous solutions: A thermodynamics map. Prog. Polym. Sci. 2019, 90, 269–291. [Google Scholar] [CrossRef]
- Panja, S.; Dey, G.; Bharti, R.; Kumari, K.; Maiti, T.K.; Mandal, M.; Chattopadhyay, S. Tailor-made temperature-sensitive micelle for targeted and on-demand release of anticancer drugs. ACS Appl. Mater. Interfaces 2016, 8, 12063–12074. [Google Scholar] [CrossRef] [PubMed]
- Sahn, M.; Yildirim, T.; Dirauf, M.; Weber, C.; Sungur, P.; Hoeppener, S.; Schubert, U.S. LCST behavior of symmetrical PNiPAm-b-PEtOx-b-PNiPAm triblock copolymers. Macromolecules 2016, 49, 7257–7267. [Google Scholar] [CrossRef]
- Wang, K.; Chen, S.; Zhang, W. A New Family of Thermo-, pH-, and CO2-Responsive Homopolymers of Poly [Oligo (ethylene glycol) (N-dialkylamino) methacrylate]. Macromolecules 2017, 50, 4686–4698. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Q.; Lu, G.; Zhang, Y.; Zhou, Y.; Chen, S.; Ma, Q.; Liu, G.; Zeng, Y. Acid-Labile Temperature-Responsive Homopolymers and a Diblock Copolymer Bearing the Pendent Acetal Group. Macromolecules 2021, 54, 3725–3734. [Google Scholar] [CrossRef]
- Jochum, F.D.; Theato, P. Temperature-and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468–7483. [Google Scholar] [CrossRef] [PubMed]
- Kunz, W.; Nostro, P.L.; Ninham, B.W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 2004, 9, 1–18. [Google Scholar] [CrossRef]
- Lo Nostro, P.; Fratoni, L.; Ninham, B.W.; Baglioni, P. Water absorbency by wool fibers: Hofmeister effect. Biomacromolecules 2002, 3, 1217–1224. [Google Scholar] [CrossRef]
- Boström, M.; Williams, D.R.M.; Ninham, B.W. Specific ion effects: Why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett. 2001, 87, 168103. [Google Scholar] [CrossRef] [Green Version]
- Hyman, A.A.; Weber, C.A.; Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Isobe, N.; Shimizu, S. Salt-induced LCST-type thermal gelation of methylcellulose: Quantifying non-specific interactions via fluctuation theory. Phys. Chem. Chem. Phys. 2020, 22, 15999–16006. [Google Scholar] [CrossRef] [PubMed]
- Gregory, K.P.; Elliott, G.R.; Robertson, H.; Kumar, A.; Wanless, E.J.; Webber, G.B.; Craig, V.S.J.; Andersson, G.G.; Page, A.J. Understanding specific ion effects and the Hofmeister series. Phys. Chem. Chem. Phys. 2022, 24, 12682–12718. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hua, M.; Alsaid, Y.; Du, Y.; Ma, Y.; Zhao, Y.; Lo, C.; Wang, C.; Wu, D.; Yao, B.; et al. Poly (Vinyl Alcohol) Hydrogels with Broad-Range Tunable Mechanical Properties via the Hofmeister Effect. Adv. Mater. 2021, 33, 2007829. [Google Scholar] [CrossRef]
- Salis, A.; Ninham, B.W. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014, 43, 7358–7377. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Liu, G. Ionic effects on synthetic polymers: From solutions to brushes and gels. Soft Matter 2020, 16, 4087–4104. [Google Scholar] [CrossRef]
- Zhang, Y.; Furyk, S.; Bergbreiter, D.E.; Cremer, P.S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505–14510. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, J.; Yan, Y.; Hai, Z.; Hua, Z.; Chen, G. Multi-Stimuli-Triggered Shape Transformation of Polymeric Filaments Derived from Dynamic Covalent Block Copolymers. Biomacromolecules 2020, 21, 4159–4168. [Google Scholar] [CrossRef]
- Lian, L.L.; Xu, S.Y.; Yuan, H.Y.; Liu, G.M. The Anion Binding Affinity Determines the Strength of Anion Specificities of Thermosensitive Polymers. Chin. J. Polym. Sci. 2021, 39, 1351–1356. [Google Scholar] [CrossRef]
- Wei, P.; Cook, T.R.; Yan, X.; Huang, F.; Stang, P.J. A discrete amphiphilic organoplatinum (II) metallacycle with tunable lower critical solution temperature behavior. J. Am. Chem. Soc. 2014, 136, 15497–15500. [Google Scholar] [CrossRef]
- Fan, X.; Liu, H.; Gao, Y.; Zou, Z.; Craig, V.S.J.; Zhang, G.; Liu, G. Forward-Osmosis Desalination with Poly (Ionic Liquid) Hydrogels as Smart Draw Agents. Adv. Mater. 2016, 28, 4156–4161. [Google Scholar] [CrossRef]
- Beyer, V.P.; Becer, C.R. Thermoresponsive polymers in non-aqueous solutions. Polym. Chem. 2022, 13, 6423–6474. [Google Scholar]
- Ding, Y.; Yan, Y.; Peng, Q.; Wang, B.; Xing, Y.; Hua, Z.; Wang, Z. Multiple stimuli-responsive cellulose hydrogels with tunable LCST and UCST as smart windows. ACS Appl. Polym. Mater. 2020, 2, 3259–3266. [Google Scholar] [CrossRef]
- Ercole, F.; Kim, C.J.; Dao, N.V.; Tse, W.K.; Whittaker, M.R.; Caruso, F.; Quinn, J.F. Synthesis of Thermoresponsive, Catechol-Rich Poly (ethylene glycol) Brush Polymers for Attenuating Cellular Oxidative Stress. Biomacromolecules 2022, 24, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Phunpee, S.; Ruktanonchai, U.R.; Chirachanchai, S. Tailoring a UCST-LCST-pH Multiresponsive Window through a Single Polymer Complex of Chitosan–Hyaluronic Acid. Biomacromolecules 2022, 23, 5361–5372. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.A.; Okur, H.I.; Yan, C.; Yang, T.; Heyda, J.; Cremer, P.S. Weakly hydrated anions bind to polymers but not monomers in aqueous solutions. Nat. Chem. 2022, 14, 40–45. [Google Scholar] [CrossRef]
- Ren, H.; Wei, Z.; Wei, H.; Yu, D.; Li, H.; Bi, F.; Xu, B.; Zhang, H.; Hua, Z.; Yang, G. Pyridine-containing block copolymeric nano-assemblies obtained through complementary hydrogen-bonding directed polymerization-induced self-assembly in water. Polym. Chem. 2022, 13, 3800–3805. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Y.; Fang, D.; Zhan, W.; Wei, Z.; Yang, L.; Shao, P.; Luo, X.; Yang, G. Polyacrylamide-Based Block Copolymer Bearing Pyridine Groups Shows Unexpected Salt-Induced LCST Behavior. Molecules 2023, 28, 2921. https://doi.org/10.3390/molecules28072921
Tu Y, Fang D, Zhan W, Wei Z, Yang L, Shao P, Luo X, Yang G. Polyacrylamide-Based Block Copolymer Bearing Pyridine Groups Shows Unexpected Salt-Induced LCST Behavior. Molecules. 2023; 28(7):2921. https://doi.org/10.3390/molecules28072921
Chicago/Turabian StyleTu, Yunyun, Dandan Fang, Wanli Zhan, Zengming Wei, Liming Yang, Penghui Shao, Xubiao Luo, and Guang Yang. 2023. "Polyacrylamide-Based Block Copolymer Bearing Pyridine Groups Shows Unexpected Salt-Induced LCST Behavior" Molecules 28, no. 7: 2921. https://doi.org/10.3390/molecules28072921
APA StyleTu, Y., Fang, D., Zhan, W., Wei, Z., Yang, L., Shao, P., Luo, X., & Yang, G. (2023). Polyacrylamide-Based Block Copolymer Bearing Pyridine Groups Shows Unexpected Salt-Induced LCST Behavior. Molecules, 28(7), 2921. https://doi.org/10.3390/molecules28072921